382
Views
40
CrossRef citations to date
0
Altmetric
Articles

Cyanobacteria and eukaryotic microalgae as potential sources of antibiotics

, &
Pages 271-282 | Received 08 Oct 2014, Accepted 17 Mar 2015, Published online: 21 Mar 2019

REFERENCES

  • Abazari M., Zarrini G. & Rasooli I. 2013. Antimicrobial potentials of Leptolyngbya sp. and its synergistic effects with antibiotics. Jundishapur Journal of Microbiology 6: e6536.
  • Abdo S.M., Hetta M.H., Samhan F.A., El Din R.A.S. & Ali G.H. 2012. Phytochemical and antibacterial study of five freshwater algal species. Asian Journal of Plant Sciences 11: 109–116.
  • Abed R.M.M., Dobretsov S. & Sudesh K. 2009. Applications of cyanobacteria in biotechnology. Journal of Applied Microbiology 106: 1–12.
  • Aksoy D.Y. & Unal S. 2008. New antimicrobial agents for the treatment of Gram-positive bacterial infections. Clinical Microbiology and Infection 14: 411–420.
  • Al-Wathnani H., Ara I., Tahmaz R.R., Al-Dayel T.H. & Bakir M.A. 2012. Bioactivity of natural compounds isolated from cyanobacteria and green algae against human pathogenic bacteria and yeast. Journal of Medicinal Plants Research 6: 3425–3433.
  • Amaro H.M., Guedes A.C. & Malcata F.X. 2011. Antimicrobial activities of microalgae: an invited review. In: Science against microbial pathogens: communicating current research and technological advances (Ed. by Mendez-Vilas pp. 1272–1284. Formatex Research Center, Badajoz, Spain.
  • Andersen R.A. 2013. The microalgal cell. In: Handbook of microalgal culture applied phycology and biotechnology (Ed. by A. Richmond & Q. Hu), pp. 3–20. Willey Blackwell, West Sussex, UK.
  • Arun N., Gupta S. & Singh D.P. 2012. Antimicrobial and antioxidant property of commonly found microalgae Spirulina platensis, Nostoc muscorum and Chlorella pyrenoidosa against some pathogenic bacteria and fungi. International Journal of Pharmaceutical Sciences and Research 3: 4866–4875.
  • Asthana R.K., Srivastava A., Kayastha A.M., Nath G. & Singh S.P. 2006. Antibacterial potential of γ-linolenic acid from Fischerella sp. colonizing Neem tree bark. World Journal of Microbiology and Biotechnology 22: 443–448.
  • Asthana R.K., Deepali, Tripathi M.K., Srivastava A., Singh A.P., Singh S.P., Nath G., Srivastava R. & Srisvatava B.S. 2009. Isolation and identification of a new antibacterial entity from the Antarctic cyanobacterium Nostoc CCC 537. Journal of Applied Phycology 21: 81–88.
  • Bai V.D.M. & Krishnakumar S. 2013. Evaluation of antimicrobial metabolites from marine microalgae Tetraselmis suecica using gas chromatography–mass spectrometry (GC-MS) analysis. Academic Sciences 5: 17–23.
  • Berland B.R., Bonin D.J., Cornu A.L., Maestrini S.Y. & Marino J. 1972. The antibacterial substances of the marine alga Stichochrysis immobilis (Chrysophyta). Journal of Phycology 8: 383–392.
  • Berry J.P., Gantar M., Gawley R.E., Wang M. & Rein K.S. 2004. Pharmacology and toxicology of pahayokolide A, a bioactive metabolite from a freshwater species of Lyngbya isolated from the Florida Everglades. Comparative Biochemistry and Physiology: Toxicology & Pharmacology 139: 231–238.
  • Bhagavathy S., Sumathi P. & Bell J.S. 2011. Green algae Chlorococcum humicola – a new source of bioactive compounds with antimicrobial activity. Asian Pacific Journal of Tropical Biomedicine 1: S1–S7.
  • Bloor S. & England R.R. 1989. Antibiotic production by the cyanobacterium Nostoc muscorum. Journal of Applied Phycology 1: 367–372.
  • Borowitzka M.A. 1995. Microalgae as sources of pharmaceuticals and other biologically active compounds. Journal of Applied Phycology 7: 3–15.
  • Borowitzka M.A. 2013. High-value products from microalgae – their development and commercialisation. Journal of Applied Phycology 25: 743–756.
  • Breuer G., Lamers P.P., Martens D.E., Draaisma R.B. & Wijffels R.H. 2013. Effect of light intensity, pH, and temperature on triacylglycerol (TAG) accumulation induced by nitrogen starvation in Scenedesmus obliquus. Bioresource Technology 143: 1–9.
  • Bruce D.L., Duff D.C.B. & Antia N.J. 1967. The identification of two antibacterial products of the marine planktonic alga Isochrysis galbana. Journal of General Society of Microbiology 48: 293–298.
  • Brumfitt W. & Hamilton-Miller J.M.T. 1988. The changing face of chemotherapy. Postgraduate Medical Journal 64: 552–558.
  • Burja A.M., Banaigs B., Abou-Mansour E., Burgess J.G. & Wright P.C. 2001. Marine cyanobacteria – a prolific source of natural products. Tetrahedron 57: 9347–9377.
  • Burkholder P.R., Burkholder L.M. & Almodovar L.R. 1960. Antibacterial activity of some marine algae of Puerto Rico. Botanica Marina 2: 149–156.
  • Cannell R.J.P., Owsianka A.M. & Walker J.M. 1988. Results of a large-scale screening programme to detect antibacterial activity from freshwater algae. British Phycological Journal 23: 41–44.
  • Cardllina J.H. II, Moore R.E., Arnold E.V. & Clardy J. 1979. Structure and absolute configuration of malygolyde, an antibiotic from the marine blue-green alga Lyngbya majuscula Gomont. The Journal of Organic Chemistry 44: 4039–4042.
  • Chaudhary H.S., Soni B., Shrivastava A.R. & Shrivastava S. 2013. Diversity and versatility of actinomycetes and its role in antibiotic production. Journal of Applied Pharmaceutical Science 3: S83–S94.
  • Chetsumon A., Maeda I., Umeda F., Yagi K., Miura Y. & Mizoguchi T. 1994. Antibiotic production by the immobilized cyanobacterium, Scytonema sp. TISTR 8208, in a seaweed-type photobioreactor. Journal of Applied Phycology 6: 539–543.
  • Clardy J., Fischbach M.A. & Walsh C.T. 2006. New antibiotics from bacterial natural products. Nature Biotechnology 24: 1541–1550.
  • Consden R., Gordon A.H. & Martin A.J.P. 1944. Qualitative analysis of proteins: a partition chromatographic method using paper. Biochemical Journal 38: 224–232.
  • Cooper S., Battat A., Marsot P. & Sylvestre M. 1983. Production of antibacterial activities by two Bacillariophyceae grown in dialysis culture. Canadian Journal of Microbiology 29: 338–341.
  • Dahms H.U., Ying X. & Pfeiffer C. 2006. Antifouling potential of cyanobacteria: a mini-review. Biofouling 22: 317–327.
  • Danyal A., Mubeen U. & Malik K.A. 2013. Investigating two native algal species to determine antibiotic susceptibility against some pathogens. Current Research Journal of Biological Sciences 5: 70–74.
  • Debro L.H. & Ward H.B. 1979. Antibacterial activity of freshwater green algae. Planta Medica 36: 375–378.
  • Demain A.L. 1981. Industrial microbiology. Science 214: 987–995.
  • Desbois A.P., Lebl T., Yan L. & Smith V.J. 2008. Isolation and structural characterisation of two antibacterial free fatty acids from the marine diatom, Phaeodactylum tricornutum. Applied Microbiology and Biotechnology 81: 755–764.
  • Desbois A.P., Mearns-Spragg A. & Smith V.J. 2009. A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Marine Biotechnology 11: 45–52.
  • Duff D.C.B., Bruce D.L. & Antia N.J. 1966. The antibacterial activity of marine planktonic algae. Canadian Journal of Microbiology 12: 877–884.
  • Ettre L.S. 2000. Chromatography: the separation technique of the 20th century. Chromatographia 51: 7–17.
  • Falch B.S., Konig G.M., Wright A.D., Sticher O., Ruegger H. & Bernardinelli G. 1993. Ambigol A and B: new biologically active polychlorinated aromatic compounds from the terrestrial blue-green alga Fischerella ambigua. Journal of Organic Chemistry 58: 6570–6575.
  • Fernandes P. 2003. Solvent tolerance in bacteria: role of efflux pumps and cross-resistance with antibiotics. International Journal of Antimicrobial Agents 22: 211–216.
  • Fernandes P. 2006. Antibacterial discovery and development – the failure of success? Nature Biotechnology 24: 1497–1503.
  • Findlay J.A. & Patil A.D. 1984. Antibacterial constituents of the diatom Navicula delognei. Journal of Natural Products 47: 815–818.
  • Ghasemi Y., Yazdi M.T., Shokravi S., Soltani N. & Zarrini G. 2003. Antifungal and antibacterial activity of paddy-fields cyanobacteria from north of Iran. Journal of Sciences, Islamic Republic of Iran 14: 203–209.
  • Ghasemi Y., Yazdi M.T., Shafiee A., Amini M., Shokravi S. & Zarrini G. 2004. Parsiguine, a novel antimicrobial substance from Fischerella ambigua. Pharmaceutical Biology 42: 318–322.
  • Gil-Chávez J., Villa J.A., Fernando Ayala-Zavala J., Basilio Heredia J., Sepulveda D., Yahia E.M. & González-Aguilar G.A. 2013. Technologies for extraction and production of bioactive compounds to be used as nutraceuticals and food ingredients: an overview. Comprehensive Reviews in Food Science and Food Safety 12: 5–23.
  • Glombitza K.W. 1969. Antibakterielle Inhaltsstoffe in Algen. Helgoland Marine Research 19: 376–384.
  • Hansen J.A. 1973. Antibiotic activity of the Chrysophyte Ochromanas malhamensis. Physiologia Plantarum 29: 234–238.
  • Harder R. 1917. Ernahrungsphysiologische untersuchungen an Cyanophyceen, hauptsachlich dem endophytischen Nostoc punctiforme. Zeitschrift für Botanik 9: 145–245.
  • Harvey A. 2000. Strategies for discovering drugs from previously unexplored natural products. Drug Discovery Today 5: 294–300.
  • Heidari F., Riahi H., Yousefzadi M. & Asadi M. 2012. Antimicrobial activity of cyanobacteria isolated from hot spring of Geno. Middle-East Journal of Scientific Research 12: 336–339.
  • Hernández-Carlos B. & Gamboa-Angulo M.M. 2011. Metabolites from freshwater aquatic microalgae and fungi as potential natural pesticides. Phytochemistry Reviews 10: 261–286.
  • Hocart C.H. 2010. Mass spectrometry: an essential tool for trace identification and quantification. In: Comprehensive natural products II chemistry and biology (Ed. by L. Mander & Lui) H.-W., pp. 327–388. Elsevier, Oxford, UK.
  • Hoppe H.A. 1979. Marine algae and their products and constituents in pharmacy. In: Marine algae in pharmaceutical science (Ed. by H.A. Hoppe, T. Levring & Y. Tanaka), pp. 25–119. Walter de Gruyter, New York.
  • Ishida K., Matsuda H., Murakami M. & Yamaguchi K. 1997. Kawaguchipeptin B, an antibacterial cyclic undecapeptide from the cyanobacterium Microcystis aeruginosa. Journal of Natural Products 60: 724–726.
  • Jaki B., Orjala J., Burgi H.-R. & Sticher O. 1999. Biological screening of cyanobacteria for antimicrobial and molluscicidal activity brine shrimp lethality and cytotoxicity. Pharmaceutical Biology 37: 138–143.
  • Jaki B., Heilmann J. & Sticher O. 2000. New antibacterial metabolites from the cyanobacterium Nostoc commune (EAWAG 122b). Journal of Natural Products 63: 1283–1285.
  • James A.T. & Martin A.J.P. 1952. Gas-liquid partition chromatography: the separation and micro-estimation of volatile fatty acids from formic acid to dodecanoic acid. Biochemical Journal 50: 679–690.
  • Jang K.H., Nam S.J., Locke J.B., Kauffman C.A., Beatty D.S., Paul L.A. & Fenical W. 2013. Anthracimycin, a potent anthrax antibiotic from a marine-derived actinomycete. Angewandte Chemie International Edition 52: 7822–7824.
  • Jorgensen E.G. & Nielsen E.S. 1961. Effect of filtrates from cultures of unicellular algae on the growth of Staphylococcus aureus. Physiologia Plantarum 14: 896–908.
  • Juneja A., Ceballos R. & Murthy G. 2013. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6: 4607–4638.
  • King A.M., Reid-Yu S.A., Wang W., King D.T., De Pascale G., Strynadka N.C., Walsh T.R., Coombes B.K. & Wright G.D. 2014. Aspergillomarasmine A overcomes metallo-β-lactamase antibiotic resistance. Nature 510: 503–506.
  • Kokou F., Makridis P., Kentouri M. & Divanach P. 2012. Antibacterial activity in microalgae cultures. Aquaculture Research 43: 1520–1527.
  • Kumar V., Bhatnagar A.K. & Srivastava. 2011. Antibacterial activity of crude extracts of Spirulina platensis and its structural elucidation of bioactive compound. Journal of Medicinal Plants Research 5: 7043–7048.
  • Kumar M., Tripathi M.K., Srivastava A., Nath G. & Asthana R.K. 2012. A comparative study of antibacterial activity of brackish and fresh water cyanobacterial strains. Asian Journal of Experimental Biological Sciences 3: 548–552.
  • Lang G., Mayhudin N.A., Mitova M.I., Sun L., Van Der Sar S., Blunt J.W., Cole A.L.J., Ellis G., Laatsch H. & Munro M.H.G. 2008. Evolving trends in the dereplication of natural product extracts: new methodology for rapid, small-scale investigation of natural product extracts. Journal of Natural Products 71: 1595–1599.
  • Leão P.N., Costa M., Ramos V., Pereira A.R., Fernandes V.C., Domingues V.F., Gerwich W.H., Vasconcelos V.M. & Martins R. 2013. Antitumor activity of hierridin B, a cyanobacterial secondary metabolite found in both filamentous and unicellular marine strains. PLOS One 8: e69562.
  • Leeds J.A., Schmitt E.K. & Krastel P. 2006. Recent developments in antibacterial drug discovery: microbe-derived natural products – from collection to the clinic. Expert Opinion on Investigational Drugs 15: 211–226.
  • Lefevre M. 1964. Extracellular products of algae. In: Algae and man (Ed. by Jackson D.F.), pp. 337–367. Plenum Press, New York.
  • Leflaive J.P. & Ten-Hage L. 2007. Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biology 52: 199–214.
  • Ling L.L., Schneider T., Peoples A.J., Spoering A.L., Engels I., Conlon B.P., Mueller A., Schaberle T.F., Hughes D.E., Epstein S., Jones M., Lazarides L., Steadman V.A., Cohen D.R., Felix C.R., Fetterman K.A., Millett W.P., Nitti A.G., Zullo A.M., Chen C. & Lewis K. 2015. A new antibiotic kills pathogens without detectable resistance. Nature 7535: 455–459.
  • Lustigman B. 1988. Comparison of antibiotic production from four ecotypes of the marine alga, Dunaliella. Bulletin of Environmental Contamination and Toxicology 40: 18–22.
  • Madhumathi V., Deepa P., Jeyachandran S., Manoharan C. & Vijayakumar S. 2011. Antimicrobial activity of cyanobacteria isolated from freshwater lake. International Journal of Microbiological Research 2: 213–214.
  • Malik V.S. 1980. Microbial secondary metabolism. Trends in Biochemical Sciences 5: 68–72.
  • Mandal S. & Rath J. 2015. Secondary metabolites of cyanobacteria and drug development. In: Extremophilic cyanobacterium for novel drug development (Ed. by S. Mandal & J. Rath), pp. 23–43. Springer, Zürich, Switzerland.
  • Marston A. & Hostettmann K. 2009. Natural product analysis over the last decades. Planta Medica 75: 672–682.
  • Martin A.J.P. & Synge R.L.M. 1941. A new form of chromatogram employing two liquid phases. Biochemical Journal 35: 1358–1368.
  • Maschek J.A. & Baker B.J. 2008. The chemistry of algal secondary metabolism. In: Algal chemical ecology (Ed. by Amsler C.D.), pp. 1–24. Springer, Berlin, Germany.
  • Mautner H.G., Gardner G.M. & Pratt R. 1953. Antibiotic activity of seaweed extracts II. Rhodomela larix. Journal of Pharmaceutical Sciences 42: 294–296.
  • Metting B. & Pyne J.W. 1986. Biologically active compounds from microalgae. Enzyme and Microbial Technology 8: 386–394.
  • Mo S., Krunic A., Chlipala G. & Orjala J. 2009a. Antimicrobial ambiguine isonitriles from the cyanobacterium Fischerella ambigua. Journal of Natural Products 72: 894–899.
  • Mo S., Krunic A., Pegan S.D., Franzblau S.G. & Orjala J. 2009b. An antimicrobial guanidine-bearing sesterterpene from the cultured cyanobacterium Scytonema sp. Journal of Natural Products 72: 2043–2045.
  • Mo S., Krunic A., Santasiero B.D., Franzblau S.G. & Orjala J. 2010. Hapalindole-related alkaloids from the cultured cyanobacterium Fischerella ambigua. Phytochemistry 71: 2116–2123.
  • Moore J.C. 1964. Gel permeation chromatography. I. A new method for molecular weight distribution of high polymers. Journal of Polymer Science (A) 2: 835–843.
  • Mudimu O., Rybalka N., Bauersachs T., Born J., Friedl T. & Schulz R. 2014. Biotechnological screening of microalgal and cyanobacterial strains for biogas production and antibacterial and antifungal effects. Metabolites 4: 373–393.
  • Mundt S., Kreitlow S. & Jansen R. 2003. Fatty acids with antibacterial activity from the cyanobacterium Oscillatoria redekei HUB 051. Journal of Applied Phycology 15: 263–267.
  • Nair B.B. & Krishnika A. 2011. Antibacterial activity of freshwater microalgae (Scenedesmus sp.) against three bacterial strains. Journal of Biosciences Research 2: 160–165.
  • Najdenski H.M., Gigova L.G., Iliev I.I., Pilarski P.S., Lukavský J., Tsvetkova I.V., Ninova N.S. & Kussovski V.K. 2013. Antibacterial and antifungal activities of selected microalgae and cyanobacteria. International Journal of Food Science & Technology 48: 1533–1540.
  • Noaman N.H., Fattah A., Khaleafa M. & Zaky S.H. 2004. Factors affecting antimicrobial activity of Synechococcus leopoliensis. Microbiological Research 159: 395–402.
  • Ohta S., Chang T., Kawashima A., Nagate T., Murase M., Nakanishi H., Miyata H. & Kondo M. 1994. Anti methicillin-resistant Staphylococcus aureus (MRSA) activity by linolenic acid isolated from the marine microalga Chlorococcum HS-101. Bulletin of Environmental Contamination and Toxicology 52: 673–680.
  • Ohta S., Shiomi Y., Kawashima A., Aozasa O., Nakao T., Nagate T., Kitamura K. & Miyata H. 1995. Antibiotic effect of linolenic acid from Chlorococcum strain HS-101 and Dunaliella primolecta on methicillin-resistant Staphylococcus aureus. Journal of Applied Phycology 7: 121–127.
  • Olaizola M. 2003. Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomolecular Engineering 20: 459–466.
  • Ordog V., Stirk W.A., Lenobel R., Bancirova M., Strnad M., van Staden J., Szigeti J. & Nemeth L. 2004. Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. Journal of Applied Phycology 16: 309–314.
  • Parisi A.S., Younes S., Reinehr C.O. & Colla L.M. 2009. Avaliação da atividade antibacteriana da microalga Spirulina platensis. Revista de Ciencias Farmaceuticas Basica e Aplicada 30: 1–6.
  • Patel K.N., Patel J.K., Patel M.P., Rajput G.C. & Patel H.A. 2010. Introduction to hyphenated techniques and their applications in pharmacy. Pharmaceutical Methods 1: 2–13.
  • Patterson G.M., Larsen L.K. & Moore R.E. 1994. Bioactive natural products from blue-green algae. Journal of Applied Phycology 6: 151–157.
  • Plaza M., Santoyo S., Jaime L., García-Blairsy Reina G., Herrero M., Señoráns F.J. & Ibáñez E. 2010. Screening for bioactive compounds from algae. Journal of Pharmaceutical and Biomedical Analysis 51: 450–455.
  • Ploutno A. & Carmeli S. 2000. Nostocyclyne A, a novel antimicrobial cyclophane from the cyanobacterium Nostoc sp. Journal of Natural Products 63: 1524–1526.
  • Porath J. & Flodin P. 1959. Gel filtration: a method for desalting and group separation. Nature 183: 1657–1659.
  • Prakash J.W., Antonisamy J.M. & Jeeva S. 2011. Antimicrobial activity of certain fresh water microalgae from Thamirabarani River, Tamil Nadu, South India. Asian Pacific Journal of Tropical Biomedicine 1: S170–S173.
  • Prakash S. & Bhimba B.V. 2005. Pharmaceutical development of novel microalgal compounds for Mdr Mycobacterium tuberculosis. Niscair Online Periododicals Repository 4: 264–269.
  • Pratt R., Daniels T.C., Eiler J.J., Gunnison J.B., Kumler W.D., Oneto J.F., Strait L.A., Spoehr H.A., Hardin G.J., Milner H.W., Smith J.H.C. & Strain H.H. 1944. Chorellin, an antibacterial substance from Chlorella. Science 99: 351–352.
  • Pratt R., Mautner H., Gardner G.M., Sha Y. & Dufrenoy J. 1951. Report on antibiotic activity of seaweed extracts. Journal of Pharmaceutical Sciences 40: 575–579.
  • Puddick J. & Prinsep M.R. 2008. MALDI-TOF spectrometry of cyanobacteria: a global approach to the discovery of novel secondary metabolites. Chemistry in New Zealand 72: 68–71.
  • Pulz O. & Gross W. 2004. Valuable products from biotechnology of microalgae. Applied Microbiology and Biotechnology 65: 635–648.
  • Ramamurthy V.D. 1970. Antibacterial activity of the marine blue green-alga Trichodesmium erythraeum in the gastrointestinal contents of the sea gull Laurus brunicephalus. Marine Biology 6: 74–76.
  • Raveh A. & Carmeli S. 2007. Antimicrobial ambiguines from the cyanobacterium Fischerella sp. collected in Israel. Journal of Natural Products 70: 196–201.
  • Reichelt J.L. & Borowitzka M.A. 1984. Antimicrobial activity from marine algae: results of a large-scale screening programme. Hydrobiologia 116–117: 158–168.
  • Sang M., Wang M., Liu J., Zhang C. & Li A. 2012. Effects of temperature, salinity, light intensity, and pH on the eicosapentaenoic acid production of Pinguiococcus pyrenoidosus. Journal of Ocean University of China 11: 181–186.
  • Sasso S., Pohnert G., Lohr M., Mittag M. & Hertweck C. 2012. Microalgae in the postgenomic era: a blooming reservoir for new natural products. FEMS Microbiology Reviews 36: 761–785.
  • Seger C., Sturma S. & Stuppner H. 2013. Mass spectrometry and NMR spectroscopy: modern high-end detectors for high resolution separation techniques – state of the art in natural product HPLC-MS, HPLC-NMR, and CE-MS hyphenations. Natural Product Reports 30: 970–987.
  • Seraspe E.B., Ticar B.F., Formacion M.J., Pahila I.G., de la Pena M.R. & Amar E.C. 2012. Antibacterial properties of the microalgae Chaetoceros calcitrans. Asian Fisheries Science 25: 343–356.
  • Sheridan C. 2006. Antibiotics au naturel. Nature Biotechnology 24: 1494–1496.
  • Sieburth J.M. 1959. Antibacterial activity of Antarctic marine phytoplankton. Limnology and Oceanography 4: 419–424.
  • Sieburth J.M. 1960. Acrylic acid, an ‘antibiotic’ principle in Phaeocystis blooms in Antarctic waters. Science 132: 676–677.
  • Sieburth J.M. 1961. Antibiotic properties of acrylic acid, a factor in the gastrointestinal antibiosis of polar marine animals. Journal of Bacteriology 82: 72–79.
  • Silver L.L. 2011. Challenges of antibacterial discovery. Clinical Microbiology Reviews 24: 71–109.
  • Singh R.K., Tiwari S.P., Rai A.K. & Mohapatra T.M. 2011. Cyanobacteria: an emerging source for drug discovery. The Journal of Antibiotics 64: 401–412.
  • Singh S. & Verma S.K. 2012. Application of direct analysis in real time mass spectrometry (DART-MS) for identification of an epiphytic cyanobacterium, Nostoc sp. Analytical Letters 45: 2562–2568.
  • Skjånes K., Rebours, C. & Lindblad P. 2013. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Critical Reviews in Biotechnology 33: 172–215.
  • Skulberg O.M. 2000. Microalgae as a source of bioactive molecules – experience from cyanophyte research. Journal of Applied Phycology 12: 1–8.
  • Soltani N., Khavari-Nejad R.A., Yazdi M.T., Shokravi S. & Fernandez-Valiente E. 2005. Screening of soil cyanobacteria for antifungal and antibacterial activity. Pharmaceutical Biology 43: 455–459.
  • Spolaore P., Joannis-Cassan C., Duran E. & Isambert A. 2006. Commercial applications of microalgae. Journal of Bioscience and Bioengineering 101: 87–96.
  • Stahl E. 1958. Thin-layer chromatography. II. Standardizations, detection, documentation and application. Chemiker-Zeitung 82: 323–329.
  • Stein J.R. & Borden C.A. 1984. Causative and beneficial algae in human disease conditions: a review. Phycologia 23: 485–501.
  • Thummajitsakul S., Silprasit K. & Sittipraneed S. 2012. Antibacterial activity of crude extracts of cyanobacteria Phormidium and Microcoleus species. African Journal of Microbiology Research 6: 2574–2579.
  • Tiwari A. & Sharma D. 2013. Antibacterial activity of bloom forming cyanobacteria against clinically isolated human pathogenic microbes. Journal of Algal Biomass Utilization 4: 83–89.
  • Trick C.G., Andersen R.J., Harrison P.J. 1984. Environmental factors influencing the production of an antibacterial metabolite from a marine dinoflagellate, Prorocentrum minimum. Canadian Journal of Fisheries and Aquatic Sciences 41: 423–432.
  • Volk R.-B. & Furkert F.H. 2006. Antialgal, antibacterial and antifungal activity of two metabolites produced and excreted by cyanobacteria during growth. Microbiological Research 161: 180–186.
  • Wijffels R.H. 2008. Potential of sponges and microalgae for marine biotechnology. Trends in Biotechnology 26: 26–31.
  • Wijffels R.H., Kruse O. & Hellingwerf K.J. 2013. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Current Opinion in Biotechnology 24: 405–413.
  • Willis R.J. 2007. Approaching the modern era. In: The history of allelopathy. (Ed. by Willis R.J.), pp. 251–299. Springer, Dordrecht, the Netherlands.
  • Wolfender J.-L., Queiroz E.F. & Hostettmann K. 2006. The importance of hyphenated techniques in the discovery of new lead compounds from nature. Expert Opinion on Drug Discovery 1: 237–260.
  • Wolfender J., Marti G. & Queiroz E.F. 2010. Advances in techniques for profiling crude extracts and for the rapid identification of natural products: dereplication, quality control and metabolomics. Current Organic Chemistry 14: 1808–1832.
  • Wright G.D. 2014. Something old, something new: revisiting natural products in antibiotic drug discovery. Canadian Journal of Microbiology 60: 147–154.
  • Yadav S., Sinha R.P. & Tyagi M.B. 2012. Antimicrobial activity of some cyanobacteria. International Journal of Pharmacy and Pharmaceutical Sciences 4: 631–635.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.