102
Views
3
CrossRef citations to date
0
Altmetric
Articles

Combined effects of ocean acidification and nutrient levels on the photosynthetic performance of Thalassiosira (Conticribra) weissflogii (Bacillariophyta)

, , &
Pages 121-129 | Received 24 Nov 2016, Accepted 11 Sep 2017, Published online: 08 Mar 2019

REFERENCES

  • Allen A.E., Dupont C.L., Oborník M., Horák A., Nunes-Nesi A., McCrow J.P., Zheng H., Johnson D.A., Hu H., Fernie A.R. & Bowler C. 2011. Evolution and metabolic significance of the urea cycle in photosynthetic diatoms. Nature 473: 203–207.
  • Barufi J.B., Korbee N., Oliveira M.C. & Figueroa F.L. 2011. Effects of N supply on the accumulation of photosynthetic pigments and photoprotectors in Gracilaria tenuistipitata (Rhodophyta) cultured under UV radiation. Journal of Applied Phycology 23: 457–466.
  • Beardall J., Young E. & Roberts S. 2001. Approaches for determining phytoplankton nutrient limitation. Aquatic Sciences 63: 44–69.
  • Bilger W. & Björkman O. 1990. Role of the xanthophyll cycle in photoprotection elucidated by measurements of light-induced absorbance changes, fluorescence and photosynthesis in leaves of Hedera canariensis. Photosynthesis Research 25: 173–185.
  • Boyd P.W. 2011. Beyond ocean acidification. Nature Geoscience 4: 273–274.
  • Boyd P.W. & Doney S.C. 2002. Modelling regional responses by marine pelagic ecosystems to global climate change. Geophysical Research Letters 29: 1806.
  • Brandenburg K. 2014. Combined effects of elevated pCO2 and nitrogen limitation on bloom-forming dinoflagellate species. Master's thesis. Utrecht University.
  • Brennan G. & Collins S. 2015. Growth responses of a green alga to multiple environmental drivers. Nature Climate Change 5: 892–897.
  • Button D. 1985. Kinetics of nutrient-limited transport and microbial growth. Microbiological Reviews 49: 270–297.
  • Caldeira K. & Wickett M.E. 2003. Anthropogenic carbon and ocean pH. Nature 425: 365–365.
  • Cermeño P., Dutkiewicz S., Harris R.P., Follows M., Schofield O. & Falkowski P.G. 2008. The role of nutricline depth in regulating the ocean carbon cycle. Proceedings of the National Academy of Sciences of the United States of America 105: 20344–20349.
  • Feely R.A., Sabine C.L., Lee K., Berelson W., Kleypas J., Fabry V.J. & Millero F.J. 2004. Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science 305: 362–366.
  • Field C.B., Behrenfeld M.J., Randerson J.T. & Falkowski P. 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237–240.
  • Flynn K.J., Blackford J.C., Baird M.E., Raven J.A., Clark D.R., Beardall J., Brownlee C., Fabian H. & Wheeler G.L. 2012. Changes in pH at the exterior surface of plankton with ocean acidification. Nature Climate Change 2: 510–513.
  • Gao K. & Campbell D.A. 2014. Photophysiological responses of marine diatoms to elevated CO2 and decreased pH: a review. Functional Plant Biology 41: 449–459.
  • Gao K., Xu J., Gao G., Li Y., Hutchins D.A., Huang B., Wang L., Zheng Y., Jin P., Cai X., Häder D.P., Li W., Xu K., Liu N. & Riebesell U. 2012. Rising CO2 and increased light exposure synergistically reduce marine primary productivity. Nature Climate Change 2: 519–523.
  • Genty B., Briantais J.-M. & Baker N.R. 1989. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochimica et Biophysica Acta (BBA) – General Subjects 990: 87–92.
  • Giordano M., Beardall J. & Raven J.A. 2005. CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annual Review of Plant Biology 56: 99–131.
  • Hipkin C.R., Thomas R.J. & Syrett P.J. 1983. Effects of nitrogen deficiency on nitrate reductase, nitrate assimilation and photosynthesis in unicellular marine algae. Marine Biology 77: 101–105.
  • Hönisch B., Ridgwell A., Schmidt D.N., Thomas E., Gibbs S.J., Sluijs A., Zeebe R., Kump L., Martindale R.C., Greene S.E., Kiessling W., Ries J., Zachos J.C., Royer D.L., Barker S., Marchitto T.M., Moyer R., Pelejero C., Ziveri P., Foster G.L. & Williams B. 2012. The geological record of ocean acidification. Science 335: 1058–1063.
  • Hopkinson B.M., Dupont C.L., Allen A.E. & Morel F.M.M. 2011. Efficiency of the CO2-concentrating mechanism of diatoms. Proceedings of the National Academy of Sciences of the United States of America 108: 3830–3837.
  • Huppe H. & Turpin D. 1994. Integration of carbon and nitrogen metabolism in plant and algal cells. Annual Review of Plant Biology 45: 577–607.
  • Levitan O., Dinamarca J., Zelzion E., Lun D.S., Guerra L.T., Kim M.K., Kim J., Van Mooy B.A., Bhattacharya D. & Falkowski P.G. 2015. Remodeling of intermediate metabolism in the diatom Phaeodactylum tricornutum under nitrogen stress. Proceedings of the National Academy of Sciences of the United States of America 112: 412–417.
  • Li F., Wu Y., Hutchins D.A., Fu F. & Gao K. 2016. Physiological responses of coastal and oceanic diatoms to diurnal fluctuations in seawater carbonate chemistry under two CO2 concentrations. Biogeoscience 13: 6247–6259.
  • Li W., Gao K. & Beardall J. 2012. Interactive effects of ocean acidification and nitrogen-limitation on the diatom Phaeodactylum tricornutum. PLoS ONE 7: e51590.
  • Li W., Gao K. & Beardall J. 2015. Nitrate limitation and ocean acidification interact with UV-B to reduce photosynthetic performance in the diatom Phaeodactylum tricornutum. Biogeosciences 12: 2383–2393.
  • Li W., Yang Y., Li Z., Xu J. & Gao K. 2017. Effects of seawater acidification on the growth rates of the diatom Thalassiosira (Conticribra) weissflogii under different nutrient, light, and UV radiation regimes. Journal of Applied Phycology 29: 313–322.
  • Morel F.M.M., Rueter J.G., Anderson D.M. & Guillard R.R.L. 1979. Aquil: a chemically defined phytoplankton culture medium for trace metal studies. Journal of Phycology 15: 135–141.
  • Orr J.C., Fabry V.J., Aumont O., Bopp L., Doney S.C., Feely R.A., Gnanadesikan A., Gruber N., Ishida A., Joos F., Key R.M., Lindsay K., Maier-Reimer E., Matear R., Monfray P., Mouchet A., Najjar R.G., Plattner G.K., Rodgers K.B., Sabine C.L., Sarmiento J.L., Schlitzer R., Slater R.D., Totterdell I.J., Weirig M.F., Yamanaka Y. & Yool A. 2005. Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature 437: 681–686.
  • Parkhill J.P., Maillet G. & Cullen J.J. 2001. Fluorescence-based maximal quantum yield for PSII as a diagnostic of nutrient stress. Journal of Phycology 37: 517–529.
  • Passow U. & Laws E.A. 2015. Ocean acidification as one of multiple stressors: growth response of Thalassiosira weissflogii (diatom) under temperature and light stress. Marine Ecology Progress Series 541: 75–90.
  • Porra R.J. 2002. The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b. Photosynthesis Research 73: 149–156.
  • Raven J.A., Giordano M., Beardall J. & Maberly S.C. 2011. Algal and aquatic plant carbon concentrating mechanisms in relation to environmental change. Photosynthesis Research 109: 281–296.
  • Reinfelder J.R. 2011. Carbon concentrating mechanisms in eukaryotic marine phytoplankton. Annual Review of Marine Science 3: 291–315.
  • Reul A., Muñoz M., Bautista B., Neale P., Sobrino C., Mercado J., Segovia M., Salles S., Kulk G. & León P. 2014. Effect of CO2, nutrients and light on coastal plankton. III. Trophic cascade, size structure and composition. Aquatic Biology 22: 59–76.
  • Riebesell U. & Gattuso J.-P. 2015. Lessons learned from ocean acidification research. Nature Climate Change 5: 12–14.
  • Riebesell U. & Tortell P.D. 2011. Effects of ocean acidification on pelagic organisms and ecosystems. In: Ocean acidification (Ed. by J.-P. Gattuso & L. Hansson), pp. 99–116. Oxford University Press, New York.
  • Riebesell U., Wolf-Gladrow D.A. & Smetacek V. 1993. Carbon dioxide limitation of marine phytoplankton growth rates. Nature 361: 249–251.
  • Roy A.-S., Gibbons S., Schunck H., Owens S., Caporaso J., Sperling M., Nissimov J., Romac S., Bittner L. & Mühling M. 2013. Ocean acidification shows negligible impacts on high-latitude bacterial community structure in coastal pelagic mesocosms. Biogeosciences 10: 555–566.
  • Shi D., Li W., Hopkinson B.M., Hong H., Li D., Kao S.J. & Lin W. 2015. Interactive effects of light, nitrogen source, and carbon dioxide on energy metabolism in the diatom Thalassiosira pseudonana. Limnology and Oceanography 60: 1805–1822.
  • Sobrino C., Ward M.L. & Neale P.J. 2008. Acclimation to elevated carbon dioxide and ultraviolet radiation in the diatom Thalassiosira pseudonana: effects on growth, photosynthesis, and spectral sensitivity of photoinhibition. Limnology and Oceanography 53: 494–505.
  • Stachura-Suchoples K. & Williams D.M. 2009. Description of Conticribra tricircularis, a new genus and species of Thalassiosirales, with a discussion on its relationship to other continuous cribra species of Thalassiosira Cleve (Bacillariophyta) and its freshwater origin. European Journal of Phycology 44: 477–486.
  • Steglich C., Behrenfeld M., Koblizek M., Claustre H., Penno S., Prasil O., Partensky F. & Hess W.R. 2001. Nitrogen deprivation strongly affects Photosystem II but not phycoerythrin level in the divinyl-chlorophyll b-containing cyanobacterium Prochlorococcus marinus. Biochimica et Biophysica Acta 1503: 341–349.
  • Strickland J.D.H. & Parsons T.R. 1968. A practical handbook of seawater analysis. Bulletin of the Fisheries Research Board of Canada 167: 49–80.
  • Taucher J., Jones J., James A., Brzezinski M., Carlson C., Riebesell U. & Passow U. 2015. Combined effects of CO2 and temperature on carbon uptake and partitioning by the marine diatoms Thalassiosira weissflogii and Dactyliosolen fragilissimus. Limnology and Oceanography 60: 901–919.
  • Tilman D., Kilham S.S. & Kilham P. 1982. Phytoplankton community ecology: the role of limiting nutrients. Annual Review of Ecology and Systematics 13: 349–372.
  • Whiteley N.M. 2011. Physiological and ecological responses of crustaceans to ocean acidification. Marine Ecology Progress Series 430: 257–271.
  • Wu Y., Gao K. & Riebesell U. 2010. CO2-induced seawater acidification affects physiological performance of the marine diatom Phaeodactylum tricornutum. Biogeosciences 7: 2915–2923.
  • Wu Y., Campbell D.A., Irwin A.J., Suggett D.J. & Finkel Z.V. 2014. Ocean acidification enhances the growth rate of larger diatoms. Limnology and Oceanography 59: 1027–1034.
  • Xu J., Gao K., Li Y. & Hutchins D.A. 2014. Physiological and biochemical responses of diatoms to projected ocean changes. Marine Ecology Progress Series 515: 73–81.
  • Yang G. & Gao K. 2012. Physiological responses of the marine diatom Thalassiosira pseudonana to increased pCO2 and seawater acidity. Marine Environmental Research 79: 142–151.
  • Zheng Y., Giordano M. & Gao K. 2015. The impact of fluctuating light on the dinoflagellate Prorocentrum micans depends on NO3− and CO2 availability. Journal of Plant Physiology 180: 18–26.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.