285
Views
12
CrossRef citations to date
0
Altmetric
Articles

Bioprospecting freshwater microalgae for antibacterial activity from water bodies associated with abandoned mine sites

, &
Pages 432-439 | Received 12 Oct 2017, Accepted 16 Feb 2018, Published online: 08 Mar 2019

REFERENCES

  • Al-Wathnani H., Ara I., Tahmaz R.R., Al-Dayel T.H. & Bakir M.A. 2012. Bioactivity of natural compounds isolated from cyanobacteria and green algae against human pathogenic bacteria and yeast. Journal of Medicinal Plants Research 6: 3425–3433.
  • Amade P. & Lemee R. 1998. Chemical defence of the Mediterranean alga Caulerpa taxifolia: variations in caulerpenyne production. Aquatic Toxicology 43: 287–300.
  • AMIS. 2014. Abandoned Mines Information System database. http://www.mndm.gov.on.ca/en/mines-and-minerals/applications/ogsearth/abandoned-mines; searched on 21 June 2014.
  • Andrews J.M. 2001. Determination of minimum inhibitory concentrations. Journal of Antimicrobial Chemotherapy 48: 5–16.
  • Balouiri M., Sadiki M. & Ibnsouda S.K.2016. Methods for in vitro evaluating antimicrobial activity: a review. Journal of Pharmaceutical Analysis 6: 71–79.
  • Bellinger E.G. & Sigee D.C. 2010. A key to the more frequently occurring freshwater algae. In: Freshwater algae identification and use as bioindicators (Ed. by E.G. Bellinger & D.C. Sigee), pp. 137–243. Wiley Blackwell, West Sussex, UK.
  • Bhagavathy S., Sumathi P. & Bell J.S. 2011. Green algae Chlorococcum humicola—a new source of bioactive compounds with antimicrobial activity. Asian Pacific Journal of Tropical Biomedicine 1: S1–S7.
  • Bold H.C. 1949. The morphology of Chlamydomonas chlamydogama, sp. nov. Bulletin of the Torrey Botanical Club 76: 101–108.
  • Borowitzka M.A. 1995. Microalgae as sources of pharmaceuticals and other biologically active compounds. Journal of Applied Phycology 7: 3–15.
  • Borowitzka M.A. 2013. High-value products from microalgae—their development and commercialisation. Journal of Applied Phycology 25: 743–756.
  • Burja A.M., Banaigs B., Abou-Mansour E., Burguess J.G. & Wright P.C. 2001. Marine cyanobacteria—a prolific source of natural products. Tetrahedron 57: 9347–9377.
  • Canadian Ice Service Publications. 2010. Lake ice climatic atlas for the Great Lakes 1981 to 2010. Government of Canada. https:/www.canada.ca/en/environment-climate-change/services/pice-forecasts-observations/publications/lake-climatic-atlas-great-lakes-1981-2010/chapter-2.html; searched on 10 January 2018.
  • Cannell R.J.P., Owsianka M. & Walker J.M. 1988. Results of a large-scale screening programme to detect antibacterial activity from freshwater algae. British Phycological Journal 23: 41–44.
  • Cavalcante F.S., Ferreira D.C., Chamon R.C., da Costa T.M., Maia F., Barros E.M., Dantas T.S. & Dos Santos K.R. 2014. Daptomycin and methicillin-resistant Staphylococcus aureus isolated from a catheter-related bloodstream infection: a case report. BMC Research Notes 7: 759.
  • Challouf R., Dhieb R.B., Omrane H., Ghozzi K. & Ben Ouada H. 2012. Antibacterial, antioxidant and cytotoxic activities of extracts from the thermophilic green alga, Cosmarium sp. African Journal of Biotechnology 11: 14844–14849.
  • Coates R.C., Trentacoste E. & Gerwick W.H. 2013. Bioactive and novel chemicals from microalgae. In: Handbook of microalgal culture: applied phycology and biotechnology (Ed. by A. Richmond & Q. Hu), pp. 504–544. Willey Blackwell, West Sussex, UK.
  • Cranstone D.A. 2002. A history of mining and mineral exploration in Canada and outlook for the future. Minister of Public Works and Government Services Canada. http://publications.gc.ca/collections/Collection/M37-51-2002E.pdf; searched on 1 February 2018.
  • Debro L.H. & Ward H.B. 1979. Antibacterial activity of freshwater green algae. Planta Medica 36: 375–378.
  • Demain A.L. 1981. Industrial microbiology. Science 214: 987–995.
  • Eibl J.K., Corcoran J.D., Senhorinho G.N.A., Zhang K., Hosseini N.S., Marsden J., Laamanen C.A., Scott J.A. & Ross G.M. 2014. Bioprospecting for acidophilic lipid-rich green microalgae isolated from abandoned mine site water bodies. AMB Express 26: 7.
  • Fernandes P. 2006. Antibacterial discovery and development—the failure of success? Nature Biotechnology 24: 1497–1503.
  • Fogg G.E. 2001. Algal adaptation to stress—some general remarks. In: Algal adaptation to environmental stresses: physiological, biochemical and molecular mechanisms (Ed. by L.C. Rai & J.P. Gaur), pp. 1–20. Springer-Verlag, Berlin.
  • Fuentes J.L., Huss V.A.R., Montero Z., Torronteras R., Cuaresma M., Garbayo I. & Vilchez C. 2016. Phylogenetic characterization and morphological and physiological aspects of a novel acidotolerant and halotolerant microalga Coccomyxa onubensis sp. nov. (Chlorophyta, Trebouxiophyceae). Journal of Applied Phycology 28: 3269–3279.
  • Garcia-Balboa C., Baselga-Cervera B., Garcia-Sanchez, Igual J.M., Lopez-Rodas V. & Costas E. 2013. Rapid adaptation of microalgae to bodies of water with extreme pollution from uranium mining: an explanation of how mesophilic organisms can rapidly colonise extremely toxic environments. Aquatic Toxicology 144–145: 116–123.
  • Garcia-Villada L., Lopez-Rodas V., Banares-Espana E., Flores-Moya A., Agrelo M., Martin-Otero L. & Costas E. 2002. Evolution of microalgae in highly stressing environments: an experimental model analyzing the rapid adaptation of Dictyosphaerium chlorelloides (Chlorophyceae) from sensitivity to resistance against 2,4,6-trinitrotoluene by rare preselective mutations. Journal of Phycology 38: 1074–1081.
  • Ghasemi Y., Moradian A., Mohagheghzadeh A., Shokravi S. & Morowvat M.H. 2007. Antifungal and antibacterial activity of the microalgae collected from paddy fields of Iran: characterization of antimicrobial activity of Chroococcus disperses. Journal of Biological Sciences 7: 904–910.
  • Gigova L.G., Toshkova R.A., Gardeva E.G., Gacheva G.V., Ivanova N.J., Yossifova L.S. & Petkov G.D. 2011. Growth inhibitory activity of selected microalgae and cyanobacteria towards human cervical carcinoma cells (HeLa). Journal of Pharmacy Research 4: 4702–4707.
  • Gimmler H. 2001. Acidophilic and acid tolerant algae. In: Algal adaptation to environmental stresses. Phycological, biochemical and molecular mechanisms (Ed. by L.C. Rai & J.P. Gaur), pp. 259–290. Springer-Verlag, Berlin.
  • Goiris K., Muylaert K., Fraeye I., Foubert I., De Brabanter J. & De Cooman L. 2012. Antioxidant potential of microalgae in relation to their phenolic and carotenoid content. Journal of Applied Phycology 24: 1477.
  • Gray N.F. 1997. Environmental impact and remediation of acid mine drainage: a management problem. Environmental Geology 30: 62–71.
  • Heidari F., Riahi H., Yousefzadi M. & Asadi M. 2012. Antimicrobial activity of cyanobacteria isolated from hot spring of Geno. Middle-East Journal of Scientific Research 12: 336–339.
  • Jang K., Nam S.J., Locke J.B., Kauffman C.A., Beatty D.S., Paul L.A. & Fenical W. 2013. Anthracimycin, a potent anthrax antibiotic from a marine-derived actinomycete. Angewandte Chemie International Edition 52: 7822–7824.
  • Kellam S.J. & Walker J.M. 1989. Antibacterial activity from marine microalgae in laboratory culture. British Phycological Journal 24: 191–194.
  • Kokou F., Makridis P., Kentouri M. & Divanach P. 2012. Antibacterial activity in microalgae cultures. Aquaculture Research 43: 1520–1527.
  • Koller M., Muhr A. & Braunegg G. 2014. Microalgae as versatile cellular factories for valued products. Algal Research 6: 52–63.
  • Kwiatkowski R.E. & Roff J.C. 1976. Effects of acidity on the phytoplankton and primary productivity of selected northern Ontario lakes. Canadian Journal of Botany 54: 2546–2561.
  • Lam K.S. 2007. New aspects of natural products in drug discovery. Trends in Microbiology 15: 279–289.
  • Lee R.E. 2008. Basic characteristics of the algae. In: Phycology (Ed. by R.E. Lee), pp. 3–29. Cambridge University Press, New York.
  • Leflaive J.P. & Ten-Hage L. 2007. Algal and cyanobacterial secondary metabolites in freshwaters: a comparison of allelopathic compounds and toxins. Freshwater Biology 52: 199–214.
  • Ling L.L., Schneider T., Peoples A.J., Spoering A.L., Engels I., Conlon B.P., Mueller A., Schaberle T.F., Hughes D.E., Epstein S., Jones M., Lazarides L., Steadman V.A., Cohen D.R., Felix C.R., Fetterman K.A., Millett W.P., Nitti A.G., Zullo A.M., Chen C. & Lewis K. 2015. A new antibiotic kills pathogens without detectable resistance. Nature 7535: 455–459.
  • Lustigman B. 1988. Comparison of antibiotic production from four ecotypes of the marine alga, Dunaliella. Bulletin of Environmental Contamination and Toxicology 40 (1): 18–22.
  • Mudimu O., Rybalka N., Bauersachs T., Born J., Friedl T. & Schulz R. 2014. Biotechnological screening of microalgal and cyanobacterial strains for biogas production and antibacterial and antifungal effects. Metabolites 4: 373–393.
  • Navarro F., Forjan E., Vazquez M., Toimil A., Montero Z., Ruiz-Dominguez M.C., Garbayo I., Castano M.A., Vilchez C. & Vega J.M. 2016. Antimicrobial activity of the acidophilic eukaryotic microalga Coccomyxa onubensis. Phycological Research 65: 38–43.
  • Ordog V., Stirk W.A., Lenobel R., Bancirova M., Strnad M., Van Staden J., Szigeti J. & Nemeth L. 2004. Screening microalgae for some potentially useful agricultural and pharmaceutical secondary metabolites. Journal of Applied Phycology 16: 309–314.
  • Osundeko O., Dean A.P., Davies H. & Pittman J.K. 2014. Acclimation of microalgae to wastewater environments involves increased oxidative stress tolerance activity. Plant Cell Physiology 55: 1848–1857.
  • Pantosti A., Sanchini A. & Monaco M. 2007. Mechanisms of resistance in Staphylococcus aureus. Future Microbiology 2: 323–334.
  • Patel V., Berthold D., Puranik P. & Gantar M. 2015. Screening of cyanobacteria and microalgae for their ability to synthesize silver nanoparticles with antibacterial activity. Biotechnology Reports 5: 112–119.
  • Ramakrishna A. & Ravishankar G.A. 2011. Influence of abiotic stress signals on secondary metabolites in plants. Plant Signaling & Behavior 6: 1720–1731.
  • Say P.J. & Whitton B.A. 1983. Accumulation of heavy metals by aquatic mosses. 1: Fontinalis antipyretica Hedw. Hydrobiologia 100: 245–260.
  • Schindler D.W., Bayley S.E. & Parker B.R. 1996. The effects of climatic warming on the properties of boreal lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnology and Oceanography 41: 1004–1017.
  • Senhorinho G.N.A., Ross G.M. & Scott J.A. 2015. Cyanobacteria and eukaryotic microalgae as potential sources of antibiotics. Phycologia 54: 271–282.
  • Shubert E.L. 2003. Nonmotile coccoid and colonial green algae. In: Freshwater algae of North America. Ecology and classification (Ed. by J.D. Wehr & R.G. Sheath), pp. 253–307. Academic Press, San Diego.
  • Silhavy T.J., Kahne D. & Walker S. 2010. The bacterial cell envelope. Cold Spring Harbor Perspectives in Biology 2: a000414.
  • Stanton, T.B. 2013. A call for antibiotic alternatives research. Trends in Microbiology 21: 111–113.
  • Stokes P.M., Hutchinson T.C. & Krauter K. 1973. Heavy-metal tolerance in algae isolated from contaminated lakes near Sudbury, Ontario. Canadian Journal of Botany 51: 2155–2168.
  • Tarai B., Das P. & Kumar D. 2013. Recurrent challenges for clinicians: emergence of methicillin-resistant Staphylococcus aureus, vancomycin resistance, and current treatment options. Journal of Laboratory Physicians 5: 71–78.
  • Wijffels R.H., Kruse O. & Hellingwerf K.J. 2013. Potential of industrial biotechnology with cyanobacteria and eukaryotic microalgae. Current Opinion in Biotechnology 24: 405–413.
  • Wilson P., Andrews J.A., Charlesworth R., Walesby R., Sinfer M., Farrell D.J. & Robbins M. 2003. Linezolid resistance in clinical isolates of Staphylococcus aureus. Journal of Antimicrobial Chemotherapy 51: 186–188.
  • Zhanel G.G., DeCorby M., Laing N., Weshnoweski B., Vashisht R., Tailor F., Nichol A., McCracken M., Mulvey M.R., Johnson J., Canadian Antimicrobial Resistance Alliance (CARA) & Hoban D.J. 2008. Antimicrobial-resistant pathogens in intensive care units in Canada: results of the Canadian National Intensive Care Unit (CAN-ICU) study, 2005–2006. Antimicrobial Agents and Chemotherapy 52: 1430–1437.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.