350
Views
0
CrossRef citations to date
0
Altmetric
Review

Application of Pharmacogenomics to Malaria: A Holistic Approach for Successful Chemotherapy

, &
Pages 435-449 | Published online: 16 Mar 2009

Bibliography

  • Guerra CA , SnowRW, HaySI: Mapping the global extent of malaria in 2005.Trends Parasitol.22(8) , 353–358 (2006).
  • Hay SI , GuerraCA, TatemAJ, NoorAM, SnowRW: The global distribution and population at risk of malaria: past, present, and future.Lancet Infect. Dis.4(6) , 327–336 (2004).
  • Snow RW , GuerraCA, NoorAM, MyintHY, HaySI: The global distribution of clinical episodes of Plasmodium falciparum malaria.Nature434(7030) , 214–217 (2005).
  • Wernsdorfer WH , PayneD: The dynamics of drug resistance in Plasmodium falciparum.Pharmacol. Ther.50(1) , 95–121 (1991).
  • Hemingway J , RansonH: Insecticide resistance in insect vectors of human disease.Annu. Rev. Entomol.45 , 371–391 (2000).
  • Hay SI , ShanksGD, SternDI, SnowRW, RandolphSE, RogersDJ: Climate variability and malaria epidemics in the highlands of East Africa.Trends Parasitol.21(2) , 52–53 (2005).
  • Hay SI , GuerraCA, TatemAJ, AtkinsonPM, SnowRW: Urbanization, malaria transmission and disease burden in Africa.Nat. Rev. Microbiol.3(1) , 81–90 (2005).
  • Sachs J , MalaneyP: The economic and social burden of malaria.Nature415(6872) , 680–685 (2002).
  • Stratton L , O‘NeillMS, KrukME, BellML: The persistent problem of malaria: Addressing the fundamental causes of a global killer.Soc. Sci. Med.67(5) , 854–862 (2008).
  • Krogstad DJ : Malaria. In: Tropical Infectious Diseases-Principles, Pathogens, & Practice (Volume 1). Guerrant RL, Walker DH and Weller PF (Eds). Churchill Livingstone, PA, USA, 736–766 (1999).
  • Gurarie D , ZimmermanPA, KingCH: Dynamic regulation of single- and mixed-species malaria infection: insights to specific and non-specific mechanisms of control.J. Theor. Biol.240(2) , 185–199 (2006).
  • Mayxay M , PukrittayakameeS, NewtonPN, WhiteNJ: Mixed-species malaria infections in humans.Trends Parasitol.20(5) , 233–240 (2004).
  • Zimmerman PA , MehlotraRK, KasehagenLJ, KazuraJW: Why do we need to know more about mixed Plasmodium species infections in humans?Trends Parasitol.20(9) , 440–447 (2004).
  • Roca-Feltrer A , CarneiroI, Armstrong Schellenberg JR: Estimates of the burden of malaria morbidity in Africa in children under the age of 5 years. Trop. Med. Int. Health13(6) , 771–783 (2008).
  • Guyatt HL , SnowRW: Impact of malaria during pregnancy on low birth weight in sub-Saharan Africa.Clin. Microbiol. Rev.17(4) , 760–769 (2004).
  • Schlagenhauf P , PetersenE: Malaria chemoprophylaxis: strategies for risk groups.Clin. Microbiol. Rev.21(3) , 466–472 (2008).
  • Baird JK : Neglect of Plasmodium vivax malaria.Trends Parasitol.23(11) , 533–539 (2007).
  • Price RN , TjitraE, GuerraCA, YeungS, WhiteNJ, AnsteyNM: Vivax malaria: neglected and not benign.Am. J. Trop. Med. Hyg.77(Suppl. 6) , 79–87 (2007).
  • Rogerson SJ , CarterR: Severe vivax malaria: newly recognised or rediscovered.PLoS Med.5(6) , E136 (2008).
  • ter Kuile FO , RogersonSJ: Plasmodium vivax infection during pregnancy: an important problem in need of new solutions.Clin. Infect. Dis.46(9) , 1382–1384 (2008).
  • Mueller I , ZimmermanPA, ReederJC: Plasmodium malariae and Plasmodium ovale – the ‘bashful‘ malaria parasites.Trends Parasitol.23(6) , 278–283 (2007).
  • Cox-Singh J , DavisTM, LeeKS et al.: Plasmodium knowlesi malaria in humans is widely distributed and potentially life threatening.Clin. Infect. Dis.46(2) , 165–171 (2008).
  • McCutchan TF : Is a monkey malaria from Borneo an emerging human disease?Future Microbiol.3 , 115–118 (2008).
  • White NJ : Plasmodium knowlesi: the fifth human malaria parasite.Clin. Infect. Dis.46(2) , 172–173 (2008).
  • Greenwood BM , FidockDA, KyleDE et al.: Malaria: progress, perils, and prospects for eradication.J. Clin. Invest.118(4) , 1266–1276 (2008).
  • Girard MP , ReedZH, FriedeM, KienyMP: A review of human vaccine research and development: malaria.Vaccine25(9) , 1567–1580 (2007).
  • Winstanley PA , WardSA, SnowRW: Clinical status and implications of antimalarial drug resistance.Microbes Infect.4(2) , 157–164 (2002).
  • Schlitzer M : Antimalarial drugs – what is in use and what is in the pipeline.Arch. Pharm.341(3) , 149–163 (2008).
  • Wiesner J , OrtmannR, JomaaH, SchlitzerM: New antimalarial drugs.Angew. Chem.42(43) , 5274–5293 (2003).
  • Lang T , GreenwoodB: The development of Lapdap, an affordable new treatment for malaria.Lancet Infect. Dis.3(3) , 162–168 (2003).
  • Winstanley P : Chlorproguanil-dapsone (LAPDAP) for uncomplicated falciparum malaria.Trop. Med. Int. Health6(11) , 952–954 (2001).
  • Wootton DG , OparaH, BiaginiGA et al.: Open-label comparative clinical study of chlorproguanil-dapsone fixed dose combination (Lapdap) alone or with three different doses of artesunate for uncomplicated Plasmodium falciparum malaria.PLoS ONE3(3) , E1779 (2008).
  • White NJ : Qinghaosu (artemisinin): the price of success.Science320(5874) , 330–334 (2008).
  • Bosman A , MendisKN: A major transition in malaria treatment: the adoption and deployment of artemisinin-based combination therapies.Am. J. Trop. Med. Hyg.77(Suppl. 6) , 193–197 (2007).
  • German PI , AweekaFT: Clinical pharmacology of artemisinin-based combination therapies.Clin. Pharmacokinet.47(2) , 91–102 (2008).
  • Sutherland CJ , OrdR, DunyoS et al.: Reduction of malaria transmission to Anopheles mosquitoes with a six-dose regimen of co-artemether.PLoS Med.2(4) , E92 (2005).
  • Hyde JE : Drug-resistant malaria – an insight.FEBS J.274(18) , 4688–4698 (2007).
  • Musset L , BouchaudO, MatheronS, MassiasL, Le Bras J: Clinical atovaquone-proguanil resistance of Plasmodium falciparum associated with cytochrome b codon 268 mutations. Microbes Infect.8(11) , 2599–2604 (2006).
  • Hyde JE : Drug-resistant malaria.Trends Parasitol.21(11) , 494–498 (2005).
  • Wongsrichanalai C , PickardAL, WernsdorferWH, MeshnickSR: Epidemiology of drug-resistant malaria.Lancet Infect. Dis.2(4) , 209–218 (2002).
  • Hyde JE : Antifolate resistance in Africa and the 164-dollar question.Trans. R. Soc. Trop. Med. Hyg.102(4) , 301–303 (2008).
  • Ajdukiewicz KM , OngEL: Management of vivax malaria with low sensitivity to primaquine.J. Infect.54(3) , 209–211 (2007).
  • Baird JK , SchwartzE, HoffmanSL: Prevention and treatment of vivax malaria.Curr. Infect. Dis. Rep.9(1) , 39–46 (2007).
  • de Santana Filho FS , ArcanjoAR, ChehuanYM et al.: Chloroquine-resistant Plasmodium vivax, Brazilian Amazon.Emerg. Infect. Dis.13(7) , 1125–1126 (2007).
  • Maguire JD , SumawinataIW, MasbarS et al.: Chloroquine-resistant Plasmodium malariae in south Sumatra, Indonesia. Lancet360(9326) , 58–60 (2002).
  • Ekland EH , FidockDA: Advances in understanding the genetic basis of antimalarial drug resistance.Curr. Opin. Microbiol.10(4) , 363–370 (2007).
  • Kidgell C , WinzelerEA: Using the genome to dissect the molecular basis of drug resistance.Future Microbiol.1 , 185–199 (2006).
  • Valderramos SG , FidockDA: Transporters involved in resistance to antimalarial drugs.Trends Pharmacol. Sci.27(11) , 594–601 (2006).
  • Hayton K , SuXZ: Genetic and biochemical aspects of drug resistance in malaria parasites.Curr. Drug Targets Infect. Disord.4(1) , 1–10 (2004).
  • Imwong M , PukrittayakameeS, PongtavornpinyoW et al.: Gene amplification of the multidrug resistance 1 gene of Plasmodium vivax isolates from Thailand, Laos, and Myanmar.Antimicrob. Agents Chemother.52(7) , 2657–2659 (2008).
  • Suwanarusk R , ChavchichM, RussellB et al.: Amplification of pvmdr1 associated with multidrug-resistant Plasmodium vivax.J. Infect. Dis.198(10) , 1558–1564 (2008).
  • Barnes KI , WatkinsWM, WhiteNJ: Antimalarial dosing regimens and drug resistance.Trends Parasitol.24(3) , 127–134 (2008).
  • Duarte EC , PangLW, RibeiroLC, FontesCJ: Association of subtherapeutic dosages of a standard drug regimen with failures in preventing relapses of vivax malaria.Am. J. Trop. Med. Hyg.65(5) , 471–476 (2001).
  • Brocks DR , MehvarR: Stereoselectivity in the pharmacodynamics and pharmacokinetics of the chiral antimalarial drugs.Clin. Pharmacokinet.42(15) , 1359–1382 (2003).
  • Giao PT , de Vries PJ: Pharmacokinetic interactions of antimalarial agents. Clin. Pharmacokinet.40(5) , 343–373 (2001).
  • Ward SA , SeveneEJ, HastingsIM, NostenF, McGreadyR: Antimalarial drugs and pregnancy: safety, pharmacokinetics, and pharmacovigilance.Lancet Infect. Dis.7(2) , 136–144 (2007).
  • Zhang H , CovillePF, WalkerRJ, MinersJO, BirkettDJ, WanwimolrukS: Evidence for involvement of human CYP3A in the 3-hydroxylation of quinine.Br. J. Clin. Pharmacol.43(3) , 245–252 (1997).
  • Zhao XJ , YokoyamaH, ChibaK, WanwimolrukS, IshizakiT: Identification of human cytochrome P450 isoforms involved in the 3-hydroxylation of quinine by human liver microsomes and nine recombinant human cytochromes P450.J. Pharmacol. Exp. Ther.279(3) , 1327–1334 (1996).
  • Nielsen TL , RasmussenBB, FlinoisJP, BeauneP, BrosenK: In vitro metabolism of quinidine: the (3S)-3-hydroxylation of quinidine is a specific marker reaction for cytochrome P-4503A4 activity in human liver microsomes.J. Pharmacol. Exp. Ther.289(1) , 31–37 (1999).
  • Li XQ , BjorkmanA, AnderssonTB, GustafssonLL, MasimirembwaCM: Identification of human cytochrome P(450)s that metabolise anti-parasitic drugs and predictions of in vivo drug hepatic clearance from in vitro data.Eur. J. Clin. Pharmacol.59(5–6) , 429–442 (2003).
  • Projean D , BauneB, FarinottiR et al.: In vitro metabolism of chloroquine: identification of CYP2C8, CYP3A4, and CYP2D6 as the main isoforms catalyzing N-desethylchloroquine formation.Drug Metab. Dispos.31(6) , 748–754 (2003).
  • Li XQ , BjorkmanA, AnderssonTB, RidderstromM, MasimirembwaCM: Amodiaquine clearance and its metabolism to N-desethylamodiaquine is mediated by CYP2C8: a new high affinity and turnover enzyme-specific probe substrate.J. Pharmacol. Exp. Ther.300(2) , 399–407 (2002).
  • Bangchang KN , KarbwangJ, BackDJ: Primaquine metabolism by human liver microsomes: effect of other antimalarial drugs.Biochem. Pharmacol.44(3) , 587–590 (1992).
  • Bangchang KN , KarbwangJ, BackDJ: Mefloquine metabolism by human liver microsomes. Effect of other antimalarial drugs.Biochem. Pharmacol.43(9) , 1957–1961 (1992).
  • Fontaine F , de Sousa G, Burcham PC, Duchene P, Rahmani R: Role of cytochrome P450 3A in the metabolism of mefloquine in human and animal hepatocytes. Life Sci.66(22) , 2193–2212 (2000).
  • Baune B , FlinoisJP, FurlanV et al.: Halofantrine metabolism in microsomes in man: major role of CYP3A4 and CYP3A5.J. Pharm. Pharmacol.51(4) , 419–426 (1999).
  • Winter HR , WangY, UnadkatJD: CYP2C8/9 mediate dapsone N-hydroxylation at clinical concentrations of dapsone.Drug Metab. Dispos.28(8) , 865–868 (2000).
  • May DG , PorterJ, WilkinsonGR, BranchRA: Frequency distribution of dapsone N-hydroxylase, a putative probe for P4503A4 activity, in a white population.Clin. Pharmacol. Ther.55(5) , 492–500 (1994).
  • Somogyi AA , ReinhardHA, BochnerF: Pharmacokinetic evaluation of proguanil: a probe phenotyping drug for the mephenytoin hydroxylase polymorphism.Br. J. Clin. Pharmacol.41(3) , 175–179 (1996).
  • Ward SA , HelsbyNA, SkjelboE, BrosenK, GramLF, BreckenridgeAM: The activation of the biguanide antimalarial proguanil co-segregates with the mephenytoin oxidation polymorphism – a panel study.Br. J. Clin. Pharmacol.31(6) , 689–692 (1991).
  • Thapar MM , AshtonM, LindegardhN et al.: Time-dependent pharmacokinetics and drug metabolism of atovaquone plus proguanil (Malarone) when taken as chemoprophylaxis.Eur. J. Clin. Pharmacol.58(1) , 19–27 (2002).
  • Miller JL , TrepanierLA: Inhibition by atovaquone of CYP2C9-mediated sulphamethoxazole hydroxylamine formation.Eur. J. Clin. Pharmacol.58(1) , 69–72 (2002).
  • Navaratnam V , MansorSM, SitNW, GraceJ, LiQ, OlliaroP: Pharmacokinetics of artemisinin-type compounds.Clin. Pharmacokinet.39(4) , 255–270 (2000).
  • Svensson US , AshtonM: Identification of the human cytochrome P450 enzymes involved in the in vitro metabolism of artemisinin.Br. J. Clin. Pharmacol.48(4) , 528–535 (1999).
  • Grace JM , AguilarAJ, TrotmanKM, PegginsJO, BrewerTG: Metabolism of β-arteether to dihydroqinghaosu by human liver microsomes and recombinant cytochrome P450.Drug Metab. Dispos.26(4) , 313–317 (1998).
  • Grace JM , SkanchyDJ, AguilarAJ: Metabolism of artelinic acid to dihydroqinqhaosu by human liver cytochrome P4503A.Xenobiotica29(7) , 703–717 (1999).
  • Ilett KF , EthellBT, MaggsJL et al.: Glucuronidation of dihydroartemisinin in vivoand by human liver microsomes and expressed UDP-glucuronosyltransferases.Drug Metab. Dispos.30(9) , 1005–1012 (2002).
  • O‘Neill PM , ScheinmannF, StachulskiAV, MaggsJL, ParkBK: Efficient preparations of the β-glucuronides of dihydroartemisinin and structural confirmation of the human glucuronide metabolite.J. Med. Chem.44(9) , 1467–1470 (2001).
  • Elsherbiny DA , AsimusSA, KarlssonMO, AshtonM, SimonssonUS: A model based assessment of the CYP2B6 and CYP2C19 inductive properties by artemisinin antimalarials: implications for combination regimens.J. Pharmacokinet. Pharmacodyn.35(2) , 203–217 (2008).
  • Asimus S , ElsherbinyD, HaiTN et al.: Artemisinin antimalarials moderately affect cytochrome P450 enzyme activity in healthy subjects.Fundam. Clin. Pharmacol.21(3) , 307–316 (2007).
  • Asimus S , HaiTN, van Huong N, Ashton M: Artemisinin and CYP2A6 activity in healthy subjects. Eur. J. Clin. Pharmacol.64(3) , 283–292 (2008).
  • Burk O , ArnoldKA, NusslerAK et al.: Antimalarial artemisinin drugs induce cytochrome P450 and MDR1 expression by activation of xenosensors pregnane X receptor and constitutive androstane receptor.Mol. Pharmacol.67(6) , 1954–1965 (2005).
  • Simonsson US , LindellM, Raffalli-MathieuF, LannerbroA, HonkakoskiP, LangMA: In vivo and mechanistic evidence of nuclear receptor CAR induction by artemisinin.Eur. J. Clin. Invest.36(9) , 647–653 (2006).
  • Tomalik-Scharte D , LazarA, FuhrU, KirchheinerJ: The clinical role of genetic polymorphisms in drug-metabolizing enzymes.Pharmacogenomics J.8(1) , 4–15 (2008).
  • Ribeiro V , CavacoI: Pharmacogenetics of cytochromes P450 in tropical medicine.Curr. Drug Targets7(12) , 1709–1719 (2006).
  • Hellgren U , AlvanG, JerlingM: On the question of interindividual variations in chloroquine concentrations.Eur. J. Clin. Pharmacol.45(4) , 383–385 (1993).
  • Walker O , DawoduAH, AdeyokunnuAA, SalakoLA, AlvanG: Plasma chloroquine and desethylchloroquine concentrations in children during and after chloroquine treatment for malaria.Br. J. Clin. Pharmacol.16(6) , 701–705 (1983).
  • Hellgren U , KihamiaCM, MahikwanoLF, BjorkmanA, ErikssonO, RomboL: Response of Plasmodium falciparum to chloroquine treatment: relation to whole blood concentrations of chloroquine and desethylchloroquine.Bull. World Health Organ.67(2) , 197–202 (1989).
  • Hellgren U , EricssonO, KihamiaCM, RomboL: Malaria parasites and chloroquine concentrations in Tanzanian schoolchildren.Trop. Med. Parasitol.45(4) , 293–297 (1994).
  • Mockenhaupt FP , MayJ, BergqvistY et al.: Concentrations of chloroquine and malaria parasites in blood in Nigerian children.Antimicrob. Agents Chemother.44(4) , 835–839 (2000).
  • Maitland K , WilliamsTN, KoteckaBM, EdsteinMD, RieckmannKH: Plasma chloroquine concentrations in young and older malaria patients treated with chloroquine.Acta Trop.66(3) , 155–161 (1997).
  • Ringwald P , Same Ekobo A, Keundjian A, Kedy Mangamba D, Basco LK: Chemoresistance of P. falciparum in urban areas of Yaounde, Cameroon. Part 1: Surveillance of in vitro and in vivo resistance of Plasmodium falciparum to chloroquine from 1994 to 1999 in Yaounde, Cameroon. Trop. Med. Int. Health5(9) , 612–619 (2000).
  • Karim EA , IbrahimKE, HassabalrasoulMA, SaeedBO, BayoumiRA: A study of chloroquine and desethylchloroquine plasma levels in patients infected with sensitive and resistant malaria parasites.J. Pharm. Biomed. Anal.10(2–3) , 219–223 (1992).
  • Dua VK , GuptaNC, KarPK et al.: Chloroquine and desethylchloroquine concentrations in blood cells and plasma from Indian patients infected with sensitive or resistant Plasmodium falciparum.Ann. Trop. Med. Parasitol.94(6) , 565–570 (2000).
  • Kim YR , KuhHJ, KimMY et al.: Pharmacokinetics of primaquine and carboxyprimaquine in Korean patients with vivax malaria.Arch. Pharm. Res.27(5) , 576–580 (2004).
  • Fletcher KA , EvansDA, GillesHM, GreavesJ, BunnagD, HarinasutaT: Studies on the pharmacokinetics of primaquine.Bull. World Health Organ.59(3) , 407–412 (1981).
  • Goller JL , JolleyD, RingwaldP, BiggsBA: Regional differences in the response of Plasmodium vivax malaria to primaquine as anti-relapse therapy.Am. J. Trop. Med. Hyg.76(2) , 203–207 (2007).
  • Gil JP , Gil Berglund E: CYP2C8 and antimalaria drug efficacy. Pharmacogenomics8(2) , 187–198 (2007).
  • Parikh S , OuedraogoJB, GoldsteinJA, RosenthalPJ, KroetzDL: Amodiaquine metabolism is impaired by common polymorphisms in CYP2C8: implications for malaria treatment in Africa.Clin. Pharmacol. Ther.82(2) , 197–203 (2007).
  • Mehlotra RK , ZimmermanPA: Resistance to antimalarial drugs: parasite and host genetic factors. In: Malaria-Genetic and Evolutionary Aspects.Dronamraju KR and Arese P (Eds). Springer, NY, USA, 81–124 (2006).
  • Rosemary J , AdithanC: The pharmacogenetics of CYP2C9 and CYP2C19: ethnic variation and clinical significance.Curr. Clin. Pharmacol.2(1) , 93–109 (2007).
  • Desta Z , ZhaoX, ShinJG, FlockhartDA: Clinical significance of the cytochrome P450 2C19 genetic polymorphism.Clin. Pharmacokinet.41(12) , 913–958 (2002).
  • Skjelbo E , MutabingwaTK, BygbjergI, NielsenKK, GramLF, BroosenK: Chloroguanide metabolism in relation to the efficacy in malaria prophylaxis and the S-mephenytoin oxidation in Tanzanians.Clin. Pharmacol. Ther.59(3) , 304–311 (1996).
  • Mberu EK , WansorT, SatoH, NishikawaY, WatkinsWM: Japanese poor metabolizers of proguanil do not have an increased risk of malaria chemoprophylaxis breakthrough.Trans. R. Soc. Trop. Med. Hyg.89(6) , 658–659 (1995).
  • Kaneko A , BergqvistY, TaleoG, KobayakawaT, IshizakiT, BjorkmanA: Proguanil disposition and toxicity in malaria patients from Vanuatu with high frequencies of CYP2C19 mutations.Pharmacogenetics9(3) , 317–326 (1999).
  • Kaneko A , LumJK, YaviongL et al.: High and variable frequencies of CYP2C19 mutations: medical consequences of poor drug metabolism in Vanuatu and other Pacific islands.Pharmacogenetics9(5) , 581–590 (1999).
  • Kaneko A , BergqvistY, TakechiM et al.: Intrinsic efficacy of proguanil against falciparum and vivax malaria independent of the metabolite cycloguanil.J. Infect. Dis.179(4) , 974–979 (1999).
  • Coller JK , SomogyiAA, BochnerF: Comparison of (S)-mephenytoin and proguanil oxidation in vitro: contribution of several CYP isoforms.Br. J. Clin. Pharmacol.48(2) , 158–167 (1999).
  • White N : Malaria. In: Manson‘s Tropical Diseases (21st Edition) Cook CG, Zumla A (Eds)., Elsevier Science Ltd, Edinburgh, UK, 1205–1295 (2003).
  • de Vries PJ , DienTK: Clinical pharmacology and therapeutic potential of artemisinin and its derivatives in the treatment of malaria.Drugs52(6) , 818–836 (1996).
  • White NJ : Clinical pharmacokinetics and pharmacodynamics of artemisinin and derivatives.Trans. R. Soc. Trop. Med. Hyg.88(Suppl. 1) , S41–S43 (1994).
  • Angus BJ , ThaiapornI, ChanthapadithK, SuputtamongkolY, WhiteNJ: Oral artesunate dose-response relationship in acute falciparum malaria.Antimicrob. Agents Chemother.46(3) , 778–782 (2002).
  • Koopmans R , DucDD, KagerPA et al.: The pharmacokinetics of artemisinin suppositories in Vietnamese patients with malaria.Trans. R. Soc. Trop. Med. Hyg.92(4) , 434–436 (1998).
  • Bethell DB , Teja-IsavadharmP, CaoXT et al.: Pharmacokinetics of oral artesunate in children with moderately severe Plasmodium falciparum malaria.Trans. R. Soc. Trop. Med. Hyg.91(2) , 195–198 (1997).
  • Halpaap B , NdjaveM, ParisM, BenakisA, KremsnerPG: Plasma levels of artesunate and dihydroartemisinin in children with Plasmodium falciparum malaria in Gabon after administration of 50-milligram artesunate suppositories.Am. J. Trop. Med. Hyg.58(3) , 365–368 (1998).
  • Krishna S , PlancheT, AgbenyegaT et al.: Bioavailability and preliminary clinical efficacy of intrarectal artesunate in Ghanaian children with moderate malaria.Antimicrob. Agents Chemother.45(2) , 509–516 (2001).
  • McGready R , StepniewskaK, WardSA et al.: Pharmacokinetics of dihydroartemisinin following oral artesunate treatment of pregnant women with acute uncomplicated falciparum malaria.Eur. J. Clin. Pharmacol.62(5) , 367–371 (2006).
  • Mithwani S , AaronsL, KokwaroGO et al.: Population pharmacokinetics of artemether and dihydroartemisinin following single intramuscular dosing of artemether in African children with severe falciparum malaria.Br. J. Clin. Pharmacol.57(2) , 146–152 (2004).
  • Ferreira PE , VeigaMI, CavacoI et al.: Polymorphism of antimalaria drug metabolizing, nuclear receptor, and drug transport genes among malaria patients in Zanzibar, East Africa.Ther. Drug Monit.30(1) , 10–15 (2008).
  • Mehlotra RK , BockarieMJ, ZimmermanPA: CYP2B6983T>C polymorphism is prevalent in West Africa but absent in Papua New Guinea: implications for HIV/AIDS treatment.Br. J. Clin. Pharmacol.64(3) , 391–395 (2007).
  • Mehlotra RK , ZiatsMN, BockarieMJ, ZimmermanPA: Prevalence of CYP2B6 alleles in malaria-endemic populations of West Africa and Papua New Guinea.Eur. J. Clin. Pharmacol.62(4) , 267–275 (2006).
  • Nyakutira C , RoshammarD, ChigutsaE et al.: High prevalence of the CYP2B6516G>T (*6) variant and effect on the population pharmacokinetics of efavirenz in HIV/AIDS outpatients in Zimbabwe.Eur. J. Clin. Pharmacol.64(4) , 357–365 (2008).
  • Penzak SR , KabuyeG, MugyenyiP et al.: Cytochrome P450 2B6 (CYP2B6) G516T influences nevirapine plasma concentrations in HIV-infected patients in Uganda.HIV Med.8(2) , 86–91 (2007).
  • Cho JY , LimHS, ChungJY et al.: Haplotype structure and allele frequencies of CYP2B6 in a Korean population.Drug Metab. Dispos.32(12) , 1341–1344 (2004).
  • Guan S , HuangM, ChanE, ChenX, DuanW, ZhouSF: Genetic polymorphisms of cytochrome P450 2B6 gene in Han Chinese.Eur. J. Pharm. Sci.29(1) , 14–21 (2006).
  • Guan S , HuangM, LiX, ChenX, ChanE, ZhouSF: Intra- and inter-ethnic differences in the allele frequencies of cytochrome P450 2B6 gene in Chinese.Pharm. Res.23(9) , 1983–1990 (2006).
  • Mehlotra RK , BockarieMJ, ZimmermanPA: Prevalence of UGT1A9 and UGT2B7 nonsynonymous single nucleotide polymorphisms in West African, Papua New Guinean, and North American populations.Eur. J. Clin. Pharmacol.63(1) , 1–8 (2007).
  • Laufer MK , DjimdeAA, PloweCV: Monitoring and deterring drug-resistant malaria in the era of combination therapy.Am. J. Trop. Med. Hyg.77(Suppl. 6) , 160–169 (2007).
  • Talisuna AO , StaedkeSG, D‘AlessandroU: Pharmacovigilance of antimalarial treatment in Africa: is it possible?Malaria J.5 , 50 (2006).
  • Simooya O : The WHO ‘Roll Back Malaria Project‘: planning for adverse event monitoring in Africa.Drug Saf.28(4) , 277–286 (2005).
  • White NJ , StepniewskaK, BarnesK, PriceRN, SimpsonJ: Simplified antimalarial therapeutic monitoring: using the day-7 drug level?Trends Parasitol.24(4) , 159–163 (2008).
  • Mugittu K , GentonB, MshindaH, BeckHP: Molecular monitoring of Plasmodium falciparum resistance to artemisinin in Tanzania.Malaria J.5 , 126 (2006).
  • Gardner MJ , HallN, FungE et al.: Genome sequence of the human malaria parasite Plasmodium falciparum.Nature419(6906) , 498–511 (2002).
  • Carlton JM , AdamsJH, SilvaJC et al.: Comparative genomics of the neglected human malaria parasite Plasmodium vivax.Nature455(7214) , 757–763 (2008).
  • Pain A , BohmeU, BerryAE et al.: The genome of the simian and human malaria parasite Plasmodium knowlesi.Nature455(7214) , 799–803 (2008).
  • Holt RA , SubramanianGM, HalpernA et al.: The genome sequence of the malaria mosquito Anopheles gambiae.Science298(5591) , 129–149 (2002).
  • Carucci DJ : Functional genomic technologies applied to the control of the human malaria parasite, Plasmodium falciparum.Pharmacogenomics2(2) , 137–142 (2001).
  • Mu J , AwadallaP, DuanJ et al.: Genome-wide variation and identification of vaccine targets in the Plasmodium falciparum genome.Nat. Genet.39(1) , 126–130 (2007).
  • Llinas M , BozdechZ, WongED, AdaiAT, DeRisiJL: Comparative whole genome transcriptome analysis of three Plasmodium falciparum strains.Nucleic Acids Res.34(4) , 1166–1173 (2006).
  • Wu J , SieglaffDH, GervinJ, XieXS: Discovering regulatory motifs in the Plasmodium genome using comparative genomics.Bioinformatics24(17) , 1843–1849 (2008).
  • Young JA , WinzelerEA: Using expression information to discover new drug and vaccine targets in the malaria parasite Plasmodium falciparum.Pharmacogenomics6(1) , 17–26 (2005).
  • Yanow SK , PurcellLA, LeeM, SpithillTW: Genomics-based drug design targets the AT-rich malaria parasite: implications for antiparasite chemotherapy.Pharmacogenomics8(9) , 1267–1272 (2007).
  • Black WCT , Gorrochetegui-EscalanteN, RandleNP, DonnellyMJ: The Yin and Yang of linkage disequilibrium: mapping of genes and nucleotides conferring insecticide resistance in insect disease vectors.Adv. Exp. Med. Biol.627 , 71–83 (2008).
  • Kelly-Hope L , RansonH, HemingwayJ: Lessons from the past: managing insecticide resistance in malaria control and eradication programmes.Lancet Infect. Dis.8(6) , 387–389 (2008).
  • Catteruccia F : Malaria vector control in the third millennium: progress and perspectives of molecular approaches.Pest Manag. Sci.63(7) , 634–640 (2007).
  • Speranca MA , CapurroML: Perspectives in the control of infectious diseases by transgenic mosquitoes in the post-genomic era – a review.Mem. Inst. Oswaldo Cruz.102(4) , 425–433 (2007).
  • Ntoumi F , KwiatkowskiDP, DiakiteM, MutabingwaTK, DuffyPE: New interventions for malaria: mining the human and parasite genomes.Am. J. Trop. Med. Hyg.77(Suppl. 6) , 270–275 (2007).
  • Kwiatkowski DP : How malaria has affected the human genome and what human genetics can teach us about malaria.Am. J. Hum. Genet.77(2) , 171–192 (2005).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.