615
Views
2
CrossRef citations to date
0
Altmetric
Review

Nutrigenomics: Concepts and Applications to Pharmacogenomics and Clinical Medicine

, , , &
Pages 369-390 | Published online: 29 Mar 2007

Bibliography

  • Kolonel LN , AltshulerD, HendersonBE: The multiethnic cohort study: exploring genes, lifestyle and cancer risk.Nat. Rev. Cancer4(7) , 519–527 (2004).
  • Kaput J , RodriguezRL: Nutritional genomics: the next frontier in the postgenomic era.Physiol. Genomics16(2) , 166–177 (2004).
  • Nutritional Genomics. Discovering the Path to Personalized Nutrition.Kaput J, Rodriguez RL (Eds). John Wiley and Sons, NJ, USA, 469 (2006).
  • Nebert DW : Pharmacogenetics and pharmacogenomics: why is this relevant to the clinical geneticist?Clin. Genet.56(4) , 247–258 (1999).
  • Mutch DM , WahliW, WilliamsonG: Nutrigenomics and nutrigenetics: the emerging faces of nutrition.FASEB J.19(12) , 1602–1616 (2005).
  • Jorde LB , WoodingSP: Genetic variation, classification and ‘race‘.Nat. Genet.36(Suppl. 1) , S28–S33 (2004).
  • Hinds DA , StuveLL, NilsenGB et al.: Whole-genome patterns of common DNA variation in three human populations. Science307(5712) , 1072–1079 (2005).
  • Burchard EG , AvilaPC, NazarioS et al.: Lower bronchodilator responsiveness in Puerto Rican than in Mexican subjects with asthma. Am. J. Respir. Crit. Care Med.169(3) , 386–392 (2004).
  • Rosskopf D , MantheyI, SiffertW: Identification and ethnic distribution of major haplotypes in the gene GNB3 encoding the G-protein β3 subunit.Pharmacogenetics12(3) , 209–220 (2002).
  • Xie HG , KimRB, WoodAJ, SteinCM: Molecular basis of ethnic differences in drug disposition and response.Annu. Rev. Pharmacol. Toxicol.41 , 815–850 (2001).
  • Chiu S , DiamentAL, FislerJS, WardenCH: Gene–gene epistasis and gene environment interactions influence diabetes and obesity. In: Nutritional Genomics. Discovering the Path to Personalized Nutrition. Kaput J, Rodriguez RL (Eds). John Wiley and Sons, NJ, USA. 135–152 (2006).
  • Cooney CA : Maternal nutrition: nutrients and control of expression. In: Nutritional Genomics. Discovering the Path to Personalized Nutrition. Kaput J, Rodriguez RL (Eds). John Wiley and Sons, NJ, USA 219–254 (2006).
  • Enattah NS , SahiT, SavilahtiE, Terwilliger JD, Peltonen L, Jarvela I: Identification of a variant associated with adult-type hypolactasia. Nat. Genet.30(2) , 233–237 (2002).
  • Hollox EJ , PoulterM, WangY, KrauseA, SwallowDM: Common polymorphism in a highly variable region upstream of the human lactase gene affects DNA–protein interactions.Eur. J. Hum. Genet.7(7) , 791–800 (1999).
  • Tishkoff SA , ReedFA, RanciaroA et al.: Convergent adaptation of human lactase persistence in Africa and Europe. Nat. Genet.39(1) , 31–40 (2007).
  • Swallow DM : Genetics of lactase persistence and lactose intolerance.Annu. Rev. Genet37 , 197–219 (2003).
  • Ekins S , NikolskyY, NikolskayaT: Techniques: application of systems biology to absorption, distribution, metabolism, excretion and toxicity.Trends Pharmacol. Sci.26(4) , 202–209 (2005).
  • Kaput J : Diet–disease gene interactions.Nutrition20(1) , 26–31 (2004).
  • Hartman JL , GarvikB, HartwellL: Principles for the buffering of genetic variation.Science291(5506) , 1001–1004 (2001).
  • Carlborg O , HaleyCS: Epistasis: too often neglected in complex trait studies?Nat. Rev. Genet.5(8) , 618–625 (2004).
  • Moore JH : The ubiquitous nature of epistasis in determining susceptibility to common human diseases.Hum. Hered.56(1–3) , 73–82 (2003).
  • van Ommen B , StierumR: Nutrigenomics: exploiting systems biology in the nutrition and health arena.Curr. Opin. Biotechnol.13(5) , 517–521 (2002).
  • Ordovas JM : The quest for cardiovascular health in the genomic era: nutrigenetics and plasma lipoproteins.Proc. Nutr. Soc.63(1) , 145–152 (2004).
  • Corella D , OrdovasJM: The metabolic syndrome: a crossroad for genotype–phenotype associations in atherosclerosis.Curr. Atheroscler. Rep.6(3) , 186–196 (2004).
  • Togawa K , MoritaniM, YaguchiH, Itakura M: Multidimensional genome scans identify the combinations of genetic loci linked to diabetes-related phenotypes in mice. Hum. Mol. Genet.15(1) , 113–128 (2006).
  • Klos KLE , KardiaSLR, HixsonJE et al.: Linkage analysis of plasma ApoE in three ethnic groups: multiple genes with context-dependent effects. Ann. Hum. Genet.69 , 157–167 (2005).
  • Suarez-Kurtz G , PenaSD: Pharmacogenomics in the Americas: the impact of genetic admixture.Curr. Drug Targets7(12) , 1649–1658 (2006).
  • Helgadottir A , ManolescuA, HelgasonA et al.: A variant of the gene encoding leukotriene A4 hydrolase confers ethnicity-specific risk of myocardial infarction. Nat. Genet.38(1) , 68–74 (2006).
  • Kelley DS : Modulation of human immune and inflammatory responses by dietary fatty acids.Nutrition17(7–8) , 669–673 (2001).
  • Campbell CD , OgburnEL, LunettaKL et al.: Demonstrating stratification in a European American population. Nat. Genet.37(8) , 868–872 (2005).
  • Sladek R , RocheleauG, RungJ et al.: A genome-wide association study identifies novel risk loci for Type 2 diabetes. Nature445(7130) , 881–885 (2007).
  • Helgason A , YngvadottirB, HrafnkelssonB, GulcherJ, StefanssonK: An Icelandic example of the impact of population structure on association studies.Nat. Genet.37(1) , 90–95 (2005).
  • Tsai HJ , KhoJY, ShaikhN et al.: Admixture-matched case–control study: a practical approach for genetic association studies in admixed populations. Hum. Genet.118(5) , 626–639 (2006).
  • Tang H , CoramM, WangP, ZhuX, Risch N: Reconstructing genetic ancestry blocks in admixed individuals. Am. J. Hum. Genet.79(1) , 1–12 (2006).
  • Choudhry S , CoyleNE, TangH et al.: Population stratification confounds genetic association studies among Latinos. Hum. Genet.118(5) , 652–664 (2006).
  • Yang N , LiH, CriswellLA et al.: Examination of ancestry and ethnic affiliation using highly informative diallelic DNA markers: application to diverse and admixed populations and implications for clinical epidemiology and forensic medicine. Hum. Genet.118(3–4) , 382–392 (2005).
  • Tsai HJ , ChoudhryS, NaqviM, Rodriguez-CintronW, BurchardEG, ZivE: Comparison of three methods to estimate genetic ancestry and control for stratification in genetic association studies among admixed populations.Hum. Genet.118(3–4) , 424–433 (2005).
  • Fowler AM , AlaridET: Dynamic control of nuclear receptor transcription.Sci. STKE 2004(256) , PE51 (2004).
  • Morgan HD , SantosF, GreenK, DeanW, ReikW: Epigenetic reprogramming in mammals.Hum. Mol. Genet.14(1) , R47–R58 (2005).
  • Jiang YH , BresslerJ, Beaud ALet al.: Epigenetics and human disease. Annu. Rev. Genomics Hum. Genet.5 , 479–510 (2004).
  • Delaval K , FeilR: Epigenetic regulation of mammalian genomic imprinting.Curr. Opin. Genet. Dev.14(2) , 188–195 (2004).
  • Fenech M : The Genome Health Clinic and Genome Health Nutrigenomics concepts: diagnosis and nutritional treatment of genome and epigenome damage on an individual basis.Mutagenesis20(4) , 255–269 (2005).
  • Dolinoy DC , WeidmanJR, WaterlandRA, JirtleRL: Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome.Environ. Health Perspect.114(4) , 567–572 (2006).
  • Picard F , KurtevM, ChungN et al.: Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature429(6993) , 771–776 (2004).
  • Gallou-Kabani C , JunienC: Nutritional epigenomics of metabolic syndrome: new perspective against the epidemic.Diabetes54(7) , 1899–1906 (2005).
  • Sneider TW , TeagueWM, Rogachevsky LM: S-adenosylmethionine: DNA-cytosine 5-methyltransferase from a Novikoff rat hepatoma cell line. Nucleic Acids Res.2(10) , 1685–1700 (1975).
  • Mason JB : Biomarkers of nutrient exposure and status in one-carbon (methyl) metabolism.J. Nutr.133(Suppl. 3) , S941–S947 (2003).
  • Stover PJ , GarzaC: Bringing individuality to public health recommendations.J. Nutr.132(8 Suppl.) , S2476–S2480 (2002).
  • Blander G , GuarenteL: The Sir2 family of protein deacetylases.Annu. Rev. Biochem.73 , 417–435 (2004).
  • Hsiao PW , DerooBJ, ArcherTK: Chromatin remodeling and tissue-selective responses of nuclear hormone receptors.Biochem. Cell Biol.80(3) , 343–351 (2002).
  • Eberharter A , BeckerPB: Histone acetylation: a switch between repressive and permissive chromatin. Second in review series on chromatin dynamics.EMBO Rep.3(3) , 224–229 (2002).
  • Cho KS , ElizondoLI, BoerkoelCF: Advances in chromatin remodeling and human disease.Curr. Opin. Genet. Dev.14(3) , 308–315 (2004).
  • Geiman TM , RobertsonKD: Chromatin remodeling, histone modifications, and DNA methylation – how does it all fit together?J. Cell Biochem.87(2) , 117–125 (2002).
  • McMillen IC , RobinsonJS: Developmental origins of the metabolic syndrome: prediction, plasticity, and programming.Physiol. Rev.85(2) , 571–633 (2005).
  • Nestel P : Nutritional aspects in the causation and management of the metabolic syndrome.Endocrinol. Metab. Clin. North Am.33(3) , 483–492 (2004).
  • Bonnefont-Rousselot D : The role of antioxidant micronutrients in the prevention of diabetic complications.Treat. Endocrinol.3(1) , 41–52 (2004).
  • Biesalski HK : Diabetes preventive components in the Mediterranean diet.Eur. J. Nutr.43(Suppl. 1) , I26–I30 (2004).
  • Neff LM : Evidence-based dietary recommendations for patients with Type 2 diabetes mellitus.Nutr. Clin. Care6(2) , 51–61 (2003).
  • Hung T , SievenpiperJL, MarchieA, Kendall CW, Jenkins DJ: Fat versus carbohydrate in insulin resistance, obesity, diabetes and cardiovascular disease. Curr. Opin. Clin. Nutr. Metab. Care6(2) , 165–176 (2003).
  • Schuster GU : Nutrients and gene expression. In: Nutritional Genomics. Discovering the Path to Personalized Nutrition. Kaput J, Rodriguez RL (Eds). John Wiley and Sons, NJ, USA, 153–176 (2006).
  • Pike AC , BrzozowskiAM, HubbardRE et al.: Structure of the ligand-binding domain of oestrogen receptor β in the presence of a partial agonist and a full antagonist. EMBO J.18(17) , 4608–4618 (1999).
  • Kuiper GG , CarlssonB, GrandienK et al.: Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors α and β. Endocrinology138(3) , 863–870 (1997).
  • Naciff JM , JumpML, TorontaliSM et al.: Gene expression profile induced by 17α-ethynyl estradiol, bisphenol A, and genistein in the developing female reproductive system of the rat. Toxicol. Sci.68(1) , 184–199 (2002).
  • Brandenberger AW , TeeMK, LeeJY, Chao V, Jaffe RB: Tissue distribution of estrogen receptors α (ER-α) and β (ER-β) mRNA in the midgestational human fetus. J. Clin. Endocrinol. Metab.82(10) , 3509–3512 (1997).
  • Kuiper GG , ShughruePJ, MerchenthalerI, GustafssonJA: The estrogen receptor β subtype: a novel mediator of estrogen action in neuroendocrine systems.Front. Neuroendocrinol.19(4) , 253–286 (1998).
  • Kousidou O , TzanakakisGN, Karamanos NK: Effects of the natural isoflavonoid genistein on growth, signaling pathways and gene expression of matrix macromolecules by breast cancer cells. Mini Rev. Med. Chem.6(3) , 331–337 (2006).
  • Moore LB , GoodwinB, JonesSA et al.: St. John‘s wort induces hepatic drug metabolism through activation of the pregnane X receptor. Proc. Natl Acad. Sci. USA97(13) , 7500–7502 (2000).
  • Watkins RE , MaglichJM, MooreLB et al.: 2.1 A crystal structure of human PXR in complex with the St. John‘s wort compound hyperforin. Biochemistry42(6) , 1430–1438 (2003).
  • Tirona RG , LeakeBF, PodustLM, KimRB: Identification of amino acids in rat pregnane X receptor that determine species-specific activation.Mol. Pharmacol.65(1) , 36–44 (2004).
  • Rebbeck TR , SpitzM, WuX: Assessing the function of genetic variants in candidate gene association studies.Nat. Rev. Genet.5(8) , 589–597 (2004).
  • Jones SA , MooreLB, ShenkJL et al.: The pregnane X receptor: a promiscuous xenobiotic receptor that has diverged during evolution. Mol. Endocrinol.14(1) , 27–39 (2000).
  • Chambrier C , BastardJP, RieussetJ et al.: Eicosapentaenoic acid induces mRNA expression of peroxisome proliferator-activated receptor γ. Obes. Res.10(6) , 518–525 (2002).
  • Nosjean O , BoutinJA: Natural ligands of PPARγ: are prostaglandin J2 derivatives really playing the part?Cell Signal.14(7) , 573–583 (2002).
  • Fyffe SA , AlpheyMS, BuetowL et al.: Recombinant human PPAR-β/δ ligand-binding domain is locked in an activated conformation by endogenous fatty acids. J. Mol. Biol.356(4) , 1005–1013 (2006).
  • Stumvoll M , GoldsteinBJ, van Haeften TW: Type 2 diabetes: principles of pathogenesis and therapy. Lancet365(9467) , 1333–1346 (2005).
  • Rosenzweig JL , WeingerK, Poirier-Solomon L, Rushton M: Use of a disease severity index for evaluation of healthcare costs and management of comorbidities of patients with diabetes mellitus. Am. J. Manag. Care8(11) , 950–958 (2002).
  • Koro CE , BowlinSJ, BourgeoisN, Fedder DO: Glycemic control from 1988 to 2000 among U.S. adults diagnosed with Type 2 diabetes: a preliminary report. Diabetes Care27(1) , 17–20 (2004).
  • Kwon G , MarshallCA, PappanKL, Remedi MS, McDaniel ML: Signaling elements involved in the metabolic regulation of mTOR by nutrients, incretins, and growth factors in islets. Diabetes53(Suppl. 3) , S225–S232 (2004).
  • Nauck MA , MeierJJ: Glucagon-like peptide 1 and its derivatives in the treatment of diabetes.Regul. Pept.128(2) , 135–148 (2005).
  • Babenko AP , PolakM, CaveH et al.: Activating mutations in the ABCC8 gene in neonatal diabetes mellitus. N. Engl. J. Med.355(5) , 456–466 (2006).
  • Sperling MA : ATP-sensitive potassium channels – neonatal diabetes mellitus and beyond.N. Engl. J. Med.355(5) , 507–510 (2006).
  • Proks P , LippiatJD: Membrane ion channels and diabetes.Curr. Pharm. Des.12(4) , 485–501 (2006).
  • Tsukahara T , TsukaharaR, YasudaS et al.: Different residues mediate recognition of 1-O-oleyllysophosphatidic acid and rosiglitazone in the ligand binding domain of peroxisome proliferator-activated receptor γ. J. Biol. Chem.281(6) , 3398–3407 (2006).
  • Nolte RT , WiselyGB, WestinS et al.: Ligand binding and co-activator assembly of the peroxisome proliferator-activated receptor-γ. Nature395(6698) , 137–143 (1998).
  • Spiller HA , SawyerTS: Toxicology of oral antidiabetic medications.Am. J. Health Syst. Pharm.63(10) , 929–938 (2006).
  • Jain KK : Applications of AmpliChip CYP450.Mol. Diagn.9(3) , 119–127 (2005).
  • Kirchheiner J , RootsI, GoldammerM, RosenkranzB, BrockmollerJ: Effect of genetic polymorphisms in cytochrome p450 (CYP)2C9 and CYP2C8 on the pharmacokinetics of oral antidiabetic drugs: clinical relevance.Clin. Pharmacokinet.44(12) , 1209–1225 (2005).
  • Kirchheiner J , ThomasS, BauerS et al.: Pharmacokinetics and pharmacodynamics of rosiglitazone in relation to CYP2C8 genotype. Clin. Pharmacol. Ther.80(6) , 657–667 (2006).
  • Corella D , LaiCQ, DemissieS et al.: APOA5 gene variation modulates the effects of dietary fat intake on body mass index and obesity risk in the Framingham Heart Study. J. Mol. Med.85(2) , 119–128 (2007).
  • Ordovas JM , CorellaD: Genetic variation and lipid metabolism: modulation by dietary factors.Curr. Cardiol. Rep.7(6) , 480–486 (2005).
  • Florez JC , BurttN, de Bakker PI et al.: Haplotype structure and genotype–phenotype correlations of the sulfonylurea receptor and the islet ATP-sensitive potassium channel gene region. Diabetes53(5) , 1360–1368 (2004).
  • Ioannidis JP : Why most published research findings are false.PLoS Med2(8) , E124 (2005).
  • Ioannidis JPA , GwinnM, LittleJ et al.; The Human Genome Epidemiology Network and the Network of Investigator: a road map for efficient and reliable human genome epidemiology. Nat. Genet.38(1) , 3–5 (2006).
  • Corella D , OrdovasJM: Single nucleotide polymorphisms that influence lipid metabolism: interaction with dietary factors.Annu. Rev. Nutr.25 , 341–390 (2005).
  • Corella D , OrdovasJM: Integration of environment and disease into ‘omics‘ analysis.Curr. Opin. Mol. Ther.7(6) , 569–576 (2005).
  • Ordovas JM , CorellaD: Gene–environment interactions: defining the playfield. In: Nutritional Genomics. Discovering the Path to Personalized Nutrition. Kaput J, Rodriguez RL (Eds). John Wiley and Sons, NJ, USA, 57–76 (2006).
  • Forman BM , TontonozP, ChenJ, BrunRP, SpiegelmanBM, EvansRM: 15-Deoxy-Δ 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR γ.Cell83(5) , 803–812 (1995).
  • Kliewer SA , LenhardJM, WillsonTM, Patel I, Morris DC, Lehmann JM: A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor γ and promotes adipocyte differentiation. Cell83(5) , 813–819 (1995).
  • Barger PM , KellyDP: PPAR signaling in the control of cardiac energy metabolism.Trends Cardiovasc. Med.10(6) , 238–245 (2000).
  • Boitier E , GautierJC, RobertsR: Advances in understanding the regulation of apoptosis and mitosis by peroxisome-proliferator activated receptors in pre-clinical models: relevance for human health and disease.Comp. Hepatol.2(1) , 3 (2003).
  • Desvergne B , IJpenbergA, DevchandPR, WahliW: The peroxisome proliferator-activated receptors at the cross-road of diet and hormonal signalling.J. Steroid Biochem. Mol. Biol.65(1–6) , 65–74 (1998).
  • Escher P , WahliW: Peroxisome proliferator-activated receptors: insight into multiple cellular functions.Mutat. Res.448(2) , 121–138 (2000).
  • Kota BP , HuangTH, RoufogalisBD: An overview on biological mechanisms of PPARs.Pharmacol. Res.51(2) , 85–94 (2005).
  • Schoonjans K , StaelsB, AuwerxJ: Role of the peroxisome proliferator-activated receptor (PPAR) in mediating the effects of fibrates and fatty acids on gene expression.J. Lipid Res.37(5) , 907–925 (1996).
  • Smith SA : Peroxisome proliferator-activated receptors and the regulation of mammalian lipid metabolism.Biochem. Soc. Trans.30(Pt 6) , 1086–1090 (2002).
  • Clarke SD : Polyunsaturated fatty acid regulation of gene transcription: a molecular mechanism to improve the metabolic syndrome.J. Nutr.131(4) , 1129–1132 (2001).
  • Kaput J , NobleJ, HatipogluB, KohrsK, DawsonK, BartholomewA: Application of nutrigenomic concepts to Type 2 diabetes mellitus.Nutr. Metab. Cardiovasc. Dis.17(2) , 89–103 (2007).
  • Padmanabhan B , TongKI, OhtaT et al.: Structural basis for defects of KEAP1 activity provoked by its point mutations in lung cancer. Mol. Cell21(5) , 689–700 (2006).
  • Sampson MJ , HughesDA: Chromosomal telomere attrition as a mechanism for the increased risk of epithelial cancers and senescent phenotypes in Type 2 diabetes.Diabetologia49(8) , 1726–1731 (2006).
  • Frisard M , RavussinE: Energy metabolism and oxidative stress: impact on the metabolic syndrome and the aging process.Endocrine29(1) , 27–32 (2006).
  • Schrauwen P , HesselinkMK: Oxidative capacity, lipotoxicity, and mitochondrial damage in Type 2 diabetes.Diabetes53(6) , 1412–1417 (2004).
  • Evans JL , GoldfineID, MadduxBA, GrodskyGM: Are oxidative stress-activated signaling pathways mediators of insulin resistance and β-cell dysfunction?Diabetes52(1) , 1–8 (2003).
  • Kaput J , KleinKG, ReyesEJ et al.: Identification of genes contributing to the obese yellow Avy phenotype: caloric restriction, genotype, diet × genotype interactions. Physiol. Genomics18(3) , 316–324 (2004).
  • Swartz DA , ParkEI, VisekWJ, KaputJ: The ε subunit gene of murine F1F0-ATP synthase. Genomic sequence, chromosomal mapping, and diet regulation.J. Biol. Chem.271(34) , 20942–20948 (1996).
  • Kaput J , SwartzD, PaisleyE, MangianH, DanielWL, VisekWJ: Diet–disease interactions at the molecular level: an experimental paradigm.J. Nutr.124(8 Suppl.) , S1296–S1305 (1994).
  • Kaput J , OrdovasJM, FergusonL et al.: The case for strategic international alliances to harness nutritional genomics for public and personal health. Br. J. Nutr.94(5) , 623–632 (2005).
  • Roweis ST , SaulLK: Nonlinear dimensionality reduction by locally linear embedding.Science290(5500) , 2323–2326 (2000).
  • Tenenbaum JB , de Silva V, Langford JC: A global geometric framework for nonlinear dimensionality reduction. Science290(5500) , 2319–2323 (2000).
  • Azuaje F , WangH, ChesneauA: Non-linear mapping for exploratory data analysis in functional genomics.BMC Bioinformatics6 , 13 (2005).
  • Priami C , QuagliaP: Modelling the dynamics of biosystems.Brief Bioinform.5(3) , 259–269 (2004).
  • Kaput J , aDK: Dimensionality reduction of nutrigenomic data sets in the study of Type 2 diabetes mellitus.Mutat. Res. (2007) (In Press).
  • Dawson K , RodriguezRL, MalyjW: Sample phenotype clusters in high-density oligonucleotide microarray data sets are revealed using Isomap, a nonlinear algorithm.BMC Bioinformatics6 , 195 (2005).
  • Dawson K , RodrigueezRL, HawkesWC, MalyjW: Biocomputation and the analysis of complex data sets in nutritional genomics. In: Nutritional Genomics. Discovering the Path to Personalized Nutrition. Kaput J, Rodriguez RL (Eds). John Wiley and Sons, NJ, USA, 375–402 (2006).
  • Motsinger AA , RitchieMD: Multifactor dimensionality reduction: an analysis strategy for modelling and detecting gene–gene interactions in human genetics and pharmacogenomics studies.Hum. Genomics2(5) , 318–328 (2006).
  • Bishop-Bailey D : Peroxisome proliferator-activated receptors in the cardiovascular system.Br. J. Pharmacol.129(5) , 823–834 (2000).
  • Desvergne B , WahliW: Peroxisome proliferator-activated receptors: nuclear control of metabolism.Endocr. Rev.20(5) , 649–688 (1999).
  • Yamamoto J , KageyamaS, NemotoM et al.: PPARγ2 pro12Ala polymorphism and insulin resistance in Japanese hypertensive patients. Hypertens. Res.25(1) , 25–29 (2002).
  • Ylitalo K , NuotioI, ViikariJ, AuwerxJ, VidalH, TaskinenMR: C3, hormone-sensitive lipase, and peroxisome proliferator-activated receptor γ expression in adipose tissue of familial combined hyperlipidemia patients.Metabolism51(5) , 664–670 (2002).
  • Auwerx J , MartinG, Guerre-MilloM, Staels B: Transcription, adipocyte differentiation, and obesity. J. Mol. Med.74(7) , 347–352 (1996).
  • Redonnet A , BonillaS, Noel-SubervilleC et al.: Relationship between peroxisome proliferator-activated receptor γ and retinoic acid receptor α gene expression in obese human adipose tissue. Int. J. Obes. Relat. Metab. Disord.26(7) , 920–977 (2002).
  • Muller YL , BogardusC, BeamerBA, ShuldinerAR, BaierLJ: A functional variant in the peroxisome proliferator-activated receptor γ2 promoter is associated with predictors of obesity and Type 2 diabetes in Pima Indians.Diabetes52(7) , 1864–1871 (2003).
  • Orio F , Jr, Matarese G, Di Biase S et al.: Exon 6 and 2 peroxisome proliferator-activated receptor-γ polymorphisms in polycystic ovary syndrome. J. Clin. Endocrinol. Metab.88(12) , 5887–5892 (2003).
  • Damcott CM , MoffettSP, FeingoldE et al.: Genetic variation in fatty acid-binding protein-4 and peroxisome proliferator-activated receptor γ interactively influence insulin sensitivity and body composition in males. Metabolism53(3) , 303–309 (2004).
  • Buzzetti R , PetroneA, CaiazzoAM et al.: PPAR-γ2 Pro12Ala variant is associated with greater insulin sensitivity in childhood obesity. Pediatr. Res.57(1) , 138–140 (2005).
  • Zouari Bouassida K , ChouchaneL, Jellouli K et al.: The peroxisome proliferator activated receptorγ2 (PPARγ2) Pro12Ala variant: lack of association with Type 2 diabetes in obese and non obese Tunisian patients. Diabetes Metab.31(2) , 119–123 (2005).
  • Farrow B , EversBM: Activation of PPARγ increases PTEN expression in pancreatic cancer cells.Biochem. Biophys. Res. Commun.301(1) , 50–53 (2003).
  • Eibl G , WenteMN, ReberHA, HinesOJ: Peroxisome proliferator-activated receptor γ induces pancreatic cancer cell apoptosis.Biochem. Biophys. Res. Commun.287(2) , 522–529 (2001).
  • Florez JC , HirschhornJ, AltshulerD: The inherited basis of diabetes mellitus: implications for the genetic analysis of complex traits.Annu. Rev. Genomics Hum. Genet.4 , 257–291 (2003).
  • Chiu YF , ChuangLM, HsiaoCF et al.: An autosomal genome-wide scan for loci linked to pre-diabetic phenotypes in nondiabetic Chinese subjects from the Stanford Asia–Pacific Program of Hypertension and Insulin Resistance Family Study. Diabetes54(4) , 1200–1206 (2005).
  • Foretz M , PacotC, DugailI et al.: ADD1/SREBP-1c is required in the activation of hepatic lipogenic gene expression by glucose. 19(5) , 3760–3768 (1999).
  • Pawlak DB , KushnerJA, LudwigDS: Effects of dietary glycaemic index on adiposity, glucose homoeostasis, and plasma lipids in animals.Lancet364(9436) , 778–785 (2004).
  • Mantzoros CS , WilliamsCJ, MansonJE, MeigsJB, HuFB: Adherence to the Mediterranean dietary pattern is positively associated with plasma adiponectin concentrations in diabetic women.Am. J. Clin. Nutr.84(2) , 328–235 (2006).
  • Cardillo S , SeshadriP, IqbalN: The effects of a low-carbohydrate versus low-fat diet on adipocytokines in severely obese adults: three-year follow-up of a randomized trial.Eur. Rev. Med. Pharmacol. Sci.10(3) , 99–106 (2006).
  • Butte NF , ComuzzieAG, CaiG, ColeSA, MehtaNR, BacinoCA: Genetic and environmental factors influencing fasting serum adiponectin in Hispanic children.J. Clin. Endocrinol. Metab.90(7) , 4170–4176 (2005).
  • Kadowaki T , YamauchiT: Adiponectin and adiponectin receptors.Endocr. Rev.26(3) , 439–451 (2005).
  • Eisenach JH , SchroederDR, PikeTL et al.: Dietary sodium restriction and β2-adrenergic receptor polymorphism modulate cardiovascular function in humans. J. Physiol.574(Pt 3) , 955–965 (2006).
  • Straus DS : Nutritional regulation of visceral markers in rat liver and cultured hepatoma cells.Clin. Chem. Lab. Med.40(12) , 1274–1280 (2002).
  • Showers D : Strategies to improve albumin in patients on peritoneal dialysis.Nephrol. Nurs. J.31(5) , 592–593 (2004).
  • Murray M : Altered CYP expression and function in response to dietary factors: potential roles in disease pathogenesis.Curr. Drug Metab.7(1) , 67–81 (2006).
  • Feierman DE , MelinkovZ, NanjiAA: Induction of CYP3A by ethanol in multiple in vitro and in vivo models.Alcohol Clin. Exp. Res.27(6) , 981–988 (2003).
  • Liu DY , YangM, ZhuHJ, ZhengYF, Zhu XQ: Human pregnane X receptor-mediated transcriptional regulation of cytochrome P450 3A4 by some phytochemicals. Zhejiang Da Xue Xue Bao Yi Xue Ban35(1) , 8–13 (2006).
  • Felder RA , JosePA: Mechanisms of disease: the role of GRK4 in the etiology of essential hypertension and salt sensitivity.Nat. Clin. Pract. Nephrol.2(11) , 637–650 (2006).
  • Kovar J , FejfarovaV, PelikanovaT, Poledne R: Hyperglycemia downregulates total lipoprotein lipase activity in humans. Physiol. Res.53(1) , 61–68 (2004).
  • Sanders TA : Dietary fat and postprandial lipids.Curr. Atheroscler. Rep.5(6) , 445–451 (2003).
  • Kudo T , NakayamaE, SuzukiS, Akiyama M, Shibata S: Cholesterol diet enhances daily rhythm of Pai-1 mRNA in the mouse liver. Am J. Physiol. Endocrinol. Metab.287(4) , E644–E651 (2004).
  • Takahara T , HaraK, YonezawaK, Sorimachi H, Maeda T: Nutrient-dependent multimerization of the mammalian target of rapamycin through the N-terminal HEAT repeat region. J. Biol. Chem.281(39) , 28605–28614 (2006).
  • Jump DB : Dietary polyunsaturated fatty acids and regulation of gene transcription.Curr. Opin. Lipidol.13(2) , 155–164 (2002).
  • Memisoglu A , HuFB, HankinsonSE et al.: Interaction between a peroxisome proliferator-activated receptor γ gene polymorphism and dietary fat intake in relation to body mass. Hum. Mol. Genet.12(22) , 2923–2929 (2003).
  • Roberts CK , LiangK, BarnardRJ, KimCH, VaziriND: HMG-CoA reductase, cholesterol 7α-hydroxylase LDL receptor SR-B1, and ACAT in diet-induced syndrome X.Kidney Int.66(4) , 1503–1511 (2004).
  • Spady DK , KearneyDM, HobbsHH: Polyunsaturated fatty acids up-regulate hepatic scavenger receptor B1 (SR-BI) expression and HDL cholesteryl ester uptake in the hamster.J. Lipid Res.40(8) , 1384–1394 (1999).
  • Miles EA , WallaceFA, CalderPC: Reduction of scavenger receptor expression and function by dietary fish oil is accompanied by a reduction in scavenger receptor mRNA.Lipids34(Suppl.) , S215–S216 (1999).
  • Ukkola O , TremblayA, SunG, Chagnon YC, Bouchard C: Genetic variation at the uncoupling protein 1, 2 and 3 loci and the response to long-term overfeeding. Eur. J. Clin. Nutr.55(11) , 1008–1015 (2001).
  • Darimont C , AvantiO, ZbindenI et al.: Liver X receptor preferentially activates de novo lipogenesis in human preadipocytes. Biochimie88(3–4) , 309–318 (2006).
  • Maeda N , TakahashiM, FunahashiT et al.: PPARγ ligands increase expression and plasma concentrations of adiponectin, an adipose-derived protein. Diabetes50(9) , 2094–2099 (2001).
  • Sun X , HanR, WangZ, ChenY: Regulation of adiponectin receptors in hepatocytes by the peroxisome proliferator-activated receptor-γ agonist rosiglitazone.Diabetologia49(6) , 1303–1310 (2006).
  • Chana RS , BrunskillNJ: Thiazolidinediones inhibit albumin uptake by proximal tubular cells through a mechanism independent of peroxisome proliferator activated receptor γ.Am. J. Nephrol.26(1) , 67–74 (2006).
  • Sahi J , BlackCB, HamiltonGA et al.: Comparative effects of thiazolidinediones on in vitro P450 enzyme induction and inhibition. Drug Metab. Dispos.31(4) , 439–446 (2003).
  • Arlt W , AuchusRJ, MillerWL: Thiazolidinediones but not metformin directly inhibit the steroidogenic enzymes P450c17 and 3β-hydroxysteroid dehydrogenase.J. Biol. Chem.276(20) , 16767–16771 (2001).
  • Trivedi M , LokhandwalaMF: Rosiglitazone restores renal D1A receptor-Gs protein coupling by reducing receptor hyperphosphorylation in obese rats.Am J. Physiol. Renal Physiol.289(2) , F298–F304 (2005).
  • Deng T , ShanS, LiPP et al.: Peroxisome proliferator-activated receptor-γ transcriptionally up-regulates hormone-sensitive lipase via the involvement of specificity protein-1. Endocrinology147(2) , 875–884 (2006).
  • Teruel T , HernandezR, RialE, Martin-HidalgoA, LorenzoM: Rosiglitazone up-regulates lipoprotein lipase, hormone-sensitive lipase and uncoupling protein-1, and down-regulates insulin-induced fatty acid synthase gene expression in brown adipocytes of Wistar rats.Diabetologia48(6) , 1180–1188 (2005).
  • Liu HB , HuYS, MedcalfRL, SimpsonRW, DearAE: Thiazolidinediones inhibit TNFα induction of PAI-1 independent of PPARγ activation.Biochem. Biophys. Res. Commun.334(1) , 30–37 (2005).
  • Cho DH , ChoiYJ, JoSA et al.: Troglitazone acutely inhibits protein synthesis in endothelial cells via a novel mechanism involving protein phosphatase 2A-dependent p70 S6 kinase inhibition. Am. J. Physiol. Cell Physiol291(2) , C317–C326 (2006).
  • Rival Y , StennevinA, PuechL et al.: Human adipocyte fatty acid-binding protein (aP2) gene promoter-driven reporter assay discriminates nonlipogenic peroxisome proliferator-activated receptor γ ligands. J. Pharmacol. Exp. Ther.311(2) , 467–475 (2004).
  • Wurch T , JunqueroD, DelhonA, PauwelsJ: Pharmacological analysis of wild-type α, γ and δ subtypes of the human peroxisome proliferator-activated receptor.Naunyn Schmiedebergs Arch. Pharmacol.365(2) , 133–140 (2002).
  • Aiello A , PandiniG, FrascaF et al.: Peroxisomal proliferator-activated receptor-γ agonists induce partial reversion of epithelial-mesenchymal transition in anaplastic thyroid cancer cells. Endocrinology147(9) , 4463–4475 (2006).
  • Lee SY , HurGY, JungKH et al.: PPAR-γ agonist increase gefitinib‘s antitumor activity through PTEN expression. Lung Cancer51(3) , 297–301 (2006).
  • Liu G , MoonTW, MetcalfeCD, LeeLE, TrudeauVL: A teleost in vitro reporter gene assay to screen for agonists of the peroxisome proliferator-activated receptors.Environ. Toxicol. Chem.24(9) , 2260–2266 (2005).
  • Rendell M : The role of sulphonylureas in the management of Type 2 diabetes mellitus.Drugs64(12) , 1339–1358 (2004).
  • Deplanque D : Cell protection through PPAR nuclear receptor activation.Therapie59(1) , 25–29 (2004).
  • Cuzzocrea S , PisanoB, DugoL et al.: Rosiglitazone and 15-deoxy-Δ12,14-prostaglandin J2, ligands of the peroxisome proliferator-activated receptor-γ (PPAR-γ), reduce ischaemia/reperfusion injury of the gut. Br. J. Pharmacol.140(2) , 366–376 (2003).
  • Davies GF , KhandelwalRL, WuL, Juurlink BH, Roesler WJ: Inhibition of phosphoenolpyruvate carboxykinase (PEPCK) gene expression by troglitazone: a peroxisome proliferator-activated receptor-γ (PPARγ)-independent, antioxidant-related mechanism. Biochem. Pharmacol.62(8) , 1071–1079 (2001).
  • Murphy GJ , HolderJC: PPAR-γ agonists: therapeutic role in diabetes, inflammation and cancer.Trends Pharmacol. Sci.21(12) , 469–474 (2000).
  • Kersten S , DesvergneB, WahliW: Roles of PPARs in health and disease.Nature405(6785) , 421–424 (2000).
  • Shao D , RangwalaSM, BaileyST, Krakow SL, Reginato MJ, Lazar MA: Interdomain communication regulating ligand binding by PPAR-γ. Nature396(6709) , 377–380 (1998).
  • Llaverias G , RebolloA, PouJ et al.: Effects of rosiglitazone and atorvastatin on the expression of genes that control cholesterol homeostasis in differentiating monocytes. Biochem. Pharmacol.71(5) , 605–614 (2006).
  • Lopez-Solache I , MarieV, VignaultE, CamirandA, SilvaJE: Regulation of uncoupling protein-2 mRNA in L6 myotubules: I: Thiazolidinediones stimulate uncoupling protein-2 gene expression by a mechanism requiring ongoing protein synthesis and an active mitogen-activated protein kinase.Endocrine19(2) , 197–208 (2002).
  • Digby JE , CrowleyVE, SewterCP, WhiteheadJP, PrinsJB, O‘RahillyS: Depot-related and thiazolidinedione-responsive expression of uncoupling protein 2 (UCP2) in human adipocytes.Int. J. Obes. Relat. Metab. Disord.24(5) , 585–592 (2000).
  • Emilsson V , O‘DowdJ, WangS et al.: The effects of rexinoids and rosiglitazone on body weight and uncoupling protein isoform expression in the Zucker fa/fa rat. Metabolism49(12) , 1610–1615 (2000).
  • Wielinga PR , van der Heijden I, Reid G, Beijnen JH, Wijnholds J, Borst P: Characterization of the MRP4- and MRP5-mediated transport of cyclic nucleotides from intact cells. J. Biol. Chem.278(20) , 17664–17671 (2003).
  • Reid G , WielingaP, ZelcerN et al.: The human multidrug resistance protein MRP4 functions as a prostaglandin efflux transporter and is inhibited by nonsteroidal antiinflammatory drugs. Proc. Natl Acad. Sci. USA100(16) , 9244–9249 (2003).
  • Taba Y , MiyagiM, MiwaY et al.: 15-Deoxy-Δ12,14-prostaglandin J2 and laminar fluid shear stress stabilize c-IAP1 in vascular endothelial cells. Am. J. Physiol. Heart Circ. Physiol.285(1) , H38–H46 (2003).
  • Hashimoto K , EthridgeRT, EversBM: Peroxisome proliferator-activated receptor γ ligand inhibits cell growth and invasion of human pancreatic cancer cells.Int. J. Gastrointest. Cancer32(1) , 7–22 (2002).
  • Wen Y , GuJ, KnausUG, ThomasL, GonzalesN, NadlerJL: Evidence that 12-lipoxygenase product 12-hydroxyeicosatetraenoic acid activates p21-activated kinase.Biochem. J.349(Pt 2) , 481–487 (2000).
  • Andrews WJ , WinnettG, RehmanF, ShanmugasundaramP, HagenD, Schrey MP: Aromatase inhibition by 15-deoxy-prostaglandin J2 (15-dPGJ2) and N-(4-hydroxyphenyl)-retinamide (4HPR) is associated with enhanced ceramide production. J. Steroid Biochem. Mol. Biol.94(1–3) , 159–165 (2005).
  • Winnett G , van Hagen D, Schrey M: Prostaglandin J2 metabolites inhibit aromatase activity by redox-sensitive mechanisms: potential implications for breast cancer therapy. Int. J. Cancer103(5) , 600–605 (2003).
  • Obinata H , HattoriT, NakaneS, TateiK, IzumiT: Identification of 9-hydroxyoctadecadienoic acid and other oxidized free fatty acids as ligands of the G protein-coupled receptor G2A.J. Biol. Chem.280(49) , 40676–40683 (2005).
  • Koizumi T , NegishiM, IchikawaA: Activation of heat shock transcription factors by Δ 12-prostaglandin J2 and its inhibition by intracellular glutathione.Biochem. Pharmacol.45(12) , 2457–2464 (1993).
  • Levonen AL , LandarA, RamachandranA et al.: Cellular mechanisms of redox cell signalling: role of cysteine modification in controlling antioxidant defences in response to electrophilic lipid oxidation products. Biochem. J.378(Pt 2) , 373–382 (2004).
  • Hosoya T , MaruyamaA, KangMI et al.: Differential responses of the Nrf2-Keap1 system to laminar and oscillatory shear stresses in endothelial cells. J. Biol. Chem.280(29) , 27244–27250 (2005).
  • Itoh K , MochizukiM, IshiiY et al.: Transcription factor Nrf2 regulates inflammation by mediating the effect of 15-deoxy-Δ12,14-prostaglandin J2. Mol. Cell Biol.24(1) , 36–45 (2004).
  • Mandal AK , ZhangZ, KimSJ, TsaiPC, MukherjeeAB: Yin-yang: balancing act of prostaglandins with opposing functions to regulate inflammation.J. Immunol.175(10) , 6271–6273 (2005).
  • Boller YC , BrandesLM, RussellRL, LinZP, PatiernoSR, KennedyKA: Prostaglandin A1 inhibits stress-induced NF-κB activation and reverses resistance to topoisomerase II inhibitors.Oncol. Res.12(9–10) , 383–395 (2000).
  • He JK , GuZL, FanPS: Inhibitory effects of prostaglandin A1 on apoptosis of rat cardiac microvascular endothelial cells was mediated by NF-κB.Acta Pharmacol. Sin.23(4) , 331–335 (2002).

Websites

  • The International HapMap Project www.hapmap.org
  • American Diabetes Association: other diabetes medications www.diabetes.org/type-2-diabetes/oral-medications.jsp
  • GeneGo Inc. www.genego.com
  • American Family Physician: treatment options for Type 2 diabetes www.aafp.org/PreBuilt/monograph_diabetestreatment.pdf

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.