290
Views
0
CrossRef citations to date
0
Altmetric
Review

Update on the Pharmacogenetics of NATs: Structural Considerations

&
Pages 1673-1693 | Published online: 20 Nov 2008

Bibliography

  • Hein DW : Molecular genetics and function of NAT1 and NAT2: role in aromatic amine metabolism and carcinogenesis.Mutat. Res.506–507, 65–77 (2002).
  • Butcher NJ , BoukouvalaS, SimE, MinchinRF: Pharmacogenetics of the arylamine N-acetyltransferases.Pharmacogenomics J.2, 30–42 (2002).
  • Westwood IM , KawamuraA, FullamE, RussellAJ, DaviesSG, SimE: Structure and mechanism of arylamine N-acetyltransferases.Curr. Top. Med. Chem.6, 1641–1654 (2006).
  • Westwood IM , HoltonSJ, Rodrigues-LimaF et al.: Expression, purification, characterization and structure of Pseudomonas aeruginosa arylamine N-acetyltransferase.Biochem. J.385, 605–612 (2005).
  • Sim E , WestwoodI, FullamE: Arylamine N-acetyltransferases.Expert Opin. Drug Metab. Toxicol.3, 169–184 (2007).
  • Minchin RF , HannaPE, DupretJM, WagnerCR, Rodrigues-LimaF, ButcherNJ: Arylamine N-acetyltransferase I.Int. J. Biochem. Cell Biol.39, 1999–2005 (2007).
  • Boukouvala S , FakisG: Arylamine N-acetyltransferases: what we learn from genes and genomes.Drug Metab. Rev.37, 511–564 (2005).
  • Hein DW , BoukouvalaS, GrantDM, MinchinRF, SimE: Changes in consensus arylamine N-acetyltransferase gene nomenclature.Pharmacogenet. Genomics18, 367–368 (2008).
  • Hein DW , DollMA, FretlandAJ et al.: Molecular genetics and epidemiology of the NAT1 and NAT2 acetylation polymorphisms.Cancer Epidemiol. Biomarkers Prev.9, 29–42 (2000).
  • Boukouvala S , SimE: Structural analysis of the genes for human arylamine N-acetyltransferases and characterisation of alternative transcripts.Basic Clin. Pharmacol. Toxicol.96, 343–351 (2005).
  • Zhu Y , HeinDW, DollMA et al.: Simultaneous determination of 7 N-acetyltransferase-2 single-nucleotide variations by allele-specific primer extension assay.Clin. Chem.52, 1033–1039 (2006).
  • Doll MA , HeinDW: Comprehensive human NAT2 genotype method using single nucleotide polymorphism-specific polymerase chain reaction primers and fluorogenic probes.Anal. Biochem.288, 106–108 (2001).
  • Doll MA , HeinDW: Rapid genotype method to distinguish frequent and/or functional polymorphisms in human N-acetyltransferase-1.Anal. Biochem.301, 328–332 (2002).
  • Yuliwulandari R , SachrowardiQ, NishidaN et al.: Polymorphisms of promoter and coding regions of the arylamine N-acetyltransferase 2 (NAT2) gene in the Indonesian population: proposal for a new nomenclature.J. Hum. Genet.53, 201–209 (2008).
  • Zhangwei X , JianmingX, QiaoM, XinhuaX: N-acetyltransferase-1 gene polymorphisms and correlation between genotype and its activity in a central Chinese Han population.Clin. Chim. Acta.371, 85–91 (2006).
  • Goodfellow GH , DupretJM, GrantDM: Identification of amino acids imparting acceptor substrate selectivity to human arylamine acetyltransferases NAT1 and NAT2.Biochem. J.348(Pt 1), 159–166 (2000).
  • Sinclair JC , SandyJ, DelgodaR, SimE, NobleME: Structure of arylamine N-acetyltransferase reveals a catalytic triad.Nat. Struct. Biol.7, 560–564 (2000).
  • Zhang N , LiuL, LiuF, WagnerCR, HannaPE, WaltersKJ: NMR-based model reveals the structural determinants of mammalian arylamine N-acetyltransferase substrate specificity.J. Mol. Biol.363, 188–200 (2006).
  • Wu H , DombrovskyL, TempelW et al.: Structural basis of substrate-binding specificity of human arylamine N-acetyltransferases.J. Biol. Chem.282, 30189–30197 (2007).
  • Kawamura A , GrahamJ, MushtaqA et al.: Eukaryotic arylamine N-acetyltransferase. Investigation of substrate specificity by high-throughput screening.Biochem. Pharmacol.69, 347–359 (2005).
  • Cornish VA , PinterK, BoukouvalaS et al.: Generation and analysis of mice with a targeted disruption of the arylamine N-acetyltransferase type 2 gene.Pharmacogenomics J.3, 169–177 (2003).
  • Stanley LA , CoppAJ, PopeJ et al.: Immunochemical detection of arylamine N-acetyltransferase during mouse embryonic development and in adult mouse brain.Teratology58, 174–182 (1998).
  • Jensen LE , HoessK, MitchellLE, WhiteheadAS: Loss of function polymorphisms in NAT1 protect against spina bifida.Hum. Genet.120, 52–57 (2006).
  • Jensen LE , HoessK, WhiteheadAS, MitchellLE: The NAT1 C1095A polymorphism, maternal multivitamin use and smoking, and the risk of spina bifida.Birth Defects Res. A Clin. Mol. Teratol.73, 512–516 (2005).
  • Sim E , WaltersK, BoukouvalaS: Arylamine N-acetyltransferases: from structure to function.Drug Metab. Rev.40, 479–510 (2008).
  • Sim E , SandyJ, EvangelopoulosD et al.: Arylamine N-acetyltransferases in mycobacteria.Curr. Drug Metab.9, 510–519 (2008).
  • Agundez JA : Polymorphisms of human N-acetyltransferases and cancer risk.Curr. Drug Metab.9, 520–531 (2008).
  • Butcher NJ , TiangJ, MinchinRF: Regulation of arylamine N-acetyltransferases.Curr. Drug Metab.9, 498–504 (2008).
  • Agundez JA : N-acetyltransferases: lessons learned from eighty years of research.Curr. Drug Metab.9, 463–464 (2008).
  • Grant DM : Structures of human arylamine N-acetyltransferases.Curr. Drug Metab.9, 465–470 (2008).
  • Fakis G , BoukouvalaS, BuckleV, PaytonM, DenningC, SimE: Chromosome mapping of the genes for murine arylamine N-acetyltransferases (NATs), enzymes involved in the metabolism of carcinogens: identification of a novel upstream noncoding exon for murine Nat2.Cytogenet. Cell Genet.90, 134–138 (2000).
  • Boukouvala S , PriceN, PlantKE, SimE: Structure and transcriptional regulation of the Nat2 gene encoding for the drug-metabolizing enzyme arylamine N-acetyltransferase type 2 in mice.Biochem. J.375, 593–602 (2003).
  • Butcher NJ , ArulpragasamA, GohHL, DaveyT, MinchinRF: Genomic organization of human arylamine N-acetyltransferase Type I reveals alternative promoters that generate different 5´-UTR splice variants with altered translational activities.Biochem. J.387, 119–127 (2005).
  • Butcher NJ , ArulpragasamA, PopeC, MinchinRF: Identification of a minimal promoter sequence for the human N-acetyltransferase type I gene that binds AP-1 (activator protein 1) and YY-1 (Yin and Yang 1).Biochem. J.376, 441–448 (2003).
  • Husain A , BarkerDF, StatesJC, DollMA, HeinDW: Identification of the major promoter and non-coding exons of the human arylamine N-acetyltransferase 1 gene (NAT1).Pharmacogenetics14, 397–406 (2004).
  • Husain A , ZhangX, DollMA, StatesJC, BarkerDF, HeinDW: Functional analysis of the human N-acetyltransferase 1 major promoter: quantitation of tissue expression and identification of critical sequence elements.Drug Metab. Dispos.35, 1649–1656 (2007).
  • Barker DF , HusainA, NealeJR et al.: Functional properties of an alternative, tissue-specific promoter for human arylamine N-acetyltransferase 1.Pharmacogenet. Genomics16, 515–525 (2006).
  • Husain A , ZhangX, DollMA, StatesJC, BarkerDF, HeinDW: Identification of N-acetyltransferase 2 (NAT2) transcription start sites and quantitation of NAT2-specific mRNA in human tissues.Drug Metab. Dispos.35, 721–727 (2007).
  • Mitchell KR , WarshawskyD: Xenobiotic inducible regions of the human arylamine N-acetyltransferase 1 and 2 genes.Toxicol. Lett.139, 11–23 (2003).
  • Kim SJ , KangHS, ChangHL et al.: Promoter hypomethylation of the N-acetyltransferase 1 gene in breast cancer.Oncol. Rep.19, 663–668 (2008).
  • Adam PJ , BerryJ, LoaderJA et al.: Arylamine N-acetyltransferase-1 is highly expressed in breast cancers and conveys enhanced growth and resistance to etoposide in vitro.Mol. Cancer Res.1, 826–835 (2003).
  • Perou CM , SorlieT, EisenMB et al.: Molecular portraits of human breast tumours.Nature406, 747–752 (2000).
  • Simard E , NaudJ, MichaudJ et al.: Downregulation of hepatic acetylation of drugs in chronic renal failure.J. Am. Soc. Nephrol.19, 1352–1359 (2008).
  • Sandy J , MushtaqA, KawamuraA, SinclairJ, SimE, NobleM: The structure of arylamine N-acetyltransferase from Mycobacterium smegmatis – an enzyme which inactivates the anti-tubercular drug, isoniazid.J. Mol. Biol.318, 1071–1083 (2002).
  • Sandy J , MushtaqA, HoltonSJ, SchartauP, NobleME, SimE: Investigation of the catalytic triad of arylamine N-acetyltransferases: essential residues required for acetyl transfer to arylamines.Biochem. J.390, 115–123 (2005).
  • Mushtaq A , PaytonM, SimE: The COOH terminus of arylamine N-acetyltransferase from Salmonella typhimurium controls enzymic activity.J. Biol. Chem.277, 12175–12181 (2002).
  • Fullam E , WestwoodIM, AndertonMC, LoweED, SimE, NobleME: Divergence of cofactor recognition across evolution: coenzyme A binding in a prokaryotic arylamine N-acetyltransferase.J. Mol. Biol.375, 178–191 (2008).
  • Delgoda R , LianLY, SandyJ, SimE: NMR investigation of the catalytic mechanism of arylamine N-acetyltransferase from Salmonella typhimurium.Biochim. Biophys. Acta.1620, 8–14 (2003).
  • Sim E , PinterK, MushtaqA et al.: Arylamine N-acetyltransferases: a pharmacogenomic approach to drug metabolism and endogenous function.Biochem. Soc. Trans.31, 615–619 (2003).
  • Payton M , MushtaqA, YuTW, WuLJ, SinclairJ, SimE: Eubacterial arylamine N-acetyltransferases – identification and comparison of 18 members of the protein family with conserved active site cysteine, histidine and aspartate residues.Microbiology147, 1137–1147 (2001).
  • Walraven JM , TrentJO, HeinDW: Computational and experimental analyses of mammalian arylamine N-acetyltransferase structure and function.Drug Metab. Dispos.35, 1001–1007 (2007).
  • Walraven JM , TrentJO, HeinDW: Structure-function analyses of single nucleotide polymorphisms in human N-acetyltransferase 1.Drug Metab. Rev.40, 169–184 (2008).
  • Zang Y , ZhaoS, DollMA, StatesJC, HeinDW: The T341C (Ile114Thr) polymorphism of N-acetyltransferase 2 yields slow acetylator phenotype by enhanced protein degradation.Pharmacogenetics14, 717–723 (2004).
  • Zang Y , DollMA, ZhaoS, StatesJC, HeinDW: Functional characterization of single-nucleotide polymorphisms and haplotypes of human N-acetyltransferase 2.Carcinogenesis28, 1665–1671 (2007).
  • Zang Y , ZhaoS, DollMA, Christopher States J, Hein DW: Functional characterization of the A411T (L137F) and G364A (D122N) genetic polymorphisms in human N-acetyltransferase 2. Pharmacogenet. Genomics17, 37–45 (2007).
  • Zhu Y , HeinDW: Functional effects of single nucleotide polymorphisms in the coding region of human N-acetyltransferase 1.Pharmagenomics J.8(5), 339–348 (2007).
  • Liu F , ZhangN, ZhouX et al.: Arylamine N-acetyltransferase aggregation and constitutive ubiquitylation.J. Mol. Biol.361, 482–492 (2006).
  • Butcher NJ , ArulpragasamA, MinchinRF: Proteasomal degradation of N-acetyltransferase 1 is prevented by acetylation of the active site cysteine: a mechanism for the slow acetylator phenotype and substrate-dependent down-regulation.J. Biol. Chem.279, 22131–22137 (2004).
  • Martell KJ , LevyGN, WeberWW: Cloned mouse N-acetyltransferases: enzymatic properties of expressed Nat-1 and Nat-2 gene products.Mol. Pharmacol.42, 265–272 (1992).
  • Boukouvala S , PriceN, SimE: Identification and functional characterization of novel polymorphisms associated with the genes for arylamine N-acetyltransferases in mice.Pharmacogenetics12, 385–394 (2002).
  • Patin E , BarreiroLB, SabetiPC et al.: Deciphering the ancient and complex evolutionary history of human arylamine N-acetyltransferase genes.Am. J. Hum. Genet.78, 423–436 (2006).
  • Magalon H , PatinE, AusterlitzF et al.: Population genetic diversity of the NAT2 gene supports a role of acetylation in human adaptation to farming in Central Asia.Eur. J. Hum. Genet.16, 243–251 (2008).
  • Patin E , HarmantC, KiddKK et al.: Sub-Saharan African coding sequence variation and haplotype diversity at the NAT2 gene.Hum. Mutat.27, 720 (2006).
  • Sabbagh A , LanganeyA, DarluP, GerardN, KrishnamoorthyR, PoloniES: Worldwide distribution of NAT2 diversity: implications for NAT2 evolutionary history.BMC Genet.9, 21 (2008).
  • Frazer KA , BallingerDG, CoxDR et al.: A second generation human haplotype map of over 3.1 million SNPs.Nature449, 851–861 (2007).
  • Spielberg SP : N-acetyltransferases: pharmacogenetics and clinical consequences of polymorphic drug metabolism.J. Pharmacokinet. Biopharm.24, 509–519 (1996).
  • Cartwright RA , GlashanRW, RogersHJ et al.: Role of N-acetyltransferase phenotypes in bladder carcinogenesis: a pharmacogenetic epidemiological approach to bladder cancer.Lancet2, 842–845 (1982).
  • Lower J r GM, Nilsson T, Nelson CE, Wolf H, Gamsky TE, Bryan GT: N-acetyltransferase phenotype and risk in urinary bladder cancer: approaches in molecular epidemiology. Preliminary results in Sweden and Denmark. Environ. Health Perspect.29, 71–79 (1979).
  • Risch A , WallaceDM, BathersS, SimE: Slow N-acetylation genotype is a susceptibility factor in occupational and smoking related bladder cancer.Hum. Mol. Genet.4, 231–236 (1995).
  • Garcia-Closas M , MalatsN, SilvermanD et al.: NAT2 slow acetylation, GSTM1 null genotype, and risk of bladder cancer: results from the Spanish Bladder Cancer Study and meta-analyses.Lancet366, 649–659 (2005).
  • Lubin JH , KogevinasM, SilvermanD et al.: Evidence for an intensity-dependent interaction of NAT2 acetylation genotype and cigarette smoking in the Spanish Bladder Cancer Study.Int. J. Epidemiol.36, 236–241 (2007).
  • Murta-Nascimento C , SilvermanDT, KogevinasM et al.: Risk of bladder cancer associated with family history of cancer: do low-penetrance polymorphisms account for the increase in risk?Cancer Epidemiol. Biomarkers Prev.16, 1595–1600 (2007).
  • Rothman N , Garcia-ClosasM, HeinDW: Commentary: Reflections on G. M. Lower and colleagues‘ 1979 study associating slow acetylator phenotype with urinary bladder cancer: meta-analysis, historical refinements of the hypothesis, and lessons learned.Int. J. Epidemiol.36, 23–28 (2007).
  • Carreon T , RuderAM, SchultePA et al.: NAT2 slow acetylation and bladder cancer in workers exposed to benzidine.Int. J. Cancer118, 161–168 (2006).
  • Hein DW : N-acetyltransferase 2 genetic polymorphism: effects of carcinogen and haplotype on urinary bladder cancer risk.Oncogene25, 1649–1658 (2006).
  • Rothman N , BhatnagarVK, HayesRB et al.: The impact of interindividual variation in NAT2 activity on benzidine urinary metabolites and urothelial DNA adducts in exposed workers.Proc. Natl. Acad. Sci. USA93, 5084–5089 (1996).
  • Zhang X , LambertJC, DollMA, WalravenJM, ArteelGE, HeinDW: 4,4‘-methylenedianiline-induced hepatotoxicity is modified by N-acetyltransferase 2 (NAT2) acetylator polymorphism in the rat.J. Pharmacol. Exp. Ther.316, 289–294 (2006).
  • Butler LM , MillikanRC, SinhaR et al.: Modification by N-acetyltransferase 1 genotype on the association between dietary heterocyclic amines and colon cancer in a multiethnic study.Mutat. Res.638, 162–174 (2008).
  • Mahid SS , ColliverDW, CrawfordNP et al.: Characterization of N-acetyltransferase 1 and 2 polymorphisms and haplotype analysis for inflammatory bowel disease and sporadic colorectal carcinoma.BMC Med. Genet.8, 28 (2007).
  • Olden K : Commentary: from phenotype, to genotype, to gene–environment interaction and risk for complex diseases.Int. J. Epidemiol.36, 18–20 (2007).
  • Sanderson S , SalantiG, HigginsJ: Joint effects of the N-acetyltransferase 1 and 2 (NAT1 and NAT2) genes and smoking on bladder carcinogenesis: a literature-based systematic HuGE review and evidence synthesis.Am. J. Epidemiol.166, 741–751 (2007).
  • Wilke RA , ReifDM, MooreJH: Combinatorial pharmacogenetics.Nat. Rev. Drug Discov.4, 911–918 (2005).
  • Jiao L , DollMA, HeinDW et al.: Haplotype of N-acetyltransferase 1 and 2 and risk of pancreatic cancer.Cancer Epidemiol. Biomarkers Prev.16, 2379–2386 (2007).
  • Li D , JiaoL, LiY et al.: Polymorphisms of cytochrome P4501A2 and N-acetyltransferase genes, smoking, and risk of pancreatic cancer.Carcinogenesis27, 103–111 (2006).
  • Alberg AJ , DaudtA, HuangHY et al.: N-acetyltransferase 2 (NAT2) genotypes, cigarette smoking, and the risk of breast cancer.Cancer Detect. Prev.28, 187–193 (2004).
  • Lissowska J , BrintonLA, ZatonskiW et al.: Tobacco smoking, NAT2 acetylation genotype and breast cancer risk.Int. J. Cancer119, 1961–1969 (2006).
  • Terry PD , GoodmanM: Is the association between cigarette smoking and breast cancer modified by genotype? A review of epidemiologic studies and meta-analysis.Cancer Epidemiol. Biomarkers Prev.15, 602–611 (2006).
  • Ochs-Balcom HM , WiesnerG, ElstonRC: A meta-analysis of the association of N-acetyltransferase 2 gene (NAT2) variants with breast cancer.Am. J. Epidemiol.166, 246–254 (2007).
  • Ambrosone CB , KroppS, YangJ, YaoS, ShieldsPG, Chang-ClaudeJ: Cigarette smoking, N-acetyltransferase 2 genotypes, and breast cancer risk: pooled analysis and meta-analysis.Cancer Epidemiol. Biomarkers Prev.17, 15–26 (2008).
  • Egeberg R , OlsenA, AutrupH et al.: Meat consumption, N-acetyl transferase 1 and 2 polymorphism and risk of breast cancer in Danish postmenopausal women.Eur. J. Cancer Prev.17, 39–47 (2008).
  • Bieche I , GiraultI, UrbainE, TozluS, LidereauR: Relationship between intratumoral expression of genes coding for xenobiotic-metabolizing enzymes and benefit from adjuvant tamoxifen in estrogen receptor a-positive postmenopausal breast carcinoma.Breast Cancer Res.6, R252–R263 (2004).
  • Ring BZ , SeitzRS, BeckR et al.: Novel prognostic immunohistochemical biomarker panel for estrogen receptor-positive breast cancer.J. Clin. Oncol.24, 3039–3047 (2006).
  • Dolled-Filhart M , RydenL, CreggerM et al.: Classification of breast cancer using genetic algorithms and tissue microarrays.Clin. Cancer Res.12, 6459–6468 (2006).
  • Wakefield L , RobinsonJ, LongH et al.: Arylamine N-acetyltransferase 1 expression in breast cancer cell lines: a potential marker in estrogen receptor-positive tumors.Genes Chromosomes Cancer47, 118–126 (2008).
  • Kawamura A , WestwoodI, WakefieldL et al.: Mouse N-acetyltransferase type 2, the homologue of human N-acetyltransferase type 1.Biochem. Pharmacol.75, 1550–1560 (2008).
  • Ragunathan N , DairouJ, PluvinageB et al.: Identification of the xenobiotic-metabolizing enzyme arylamine N-acetyltransferase 1 as a new target of cisplatin in breast cancer cells: molecular and cellular mechanisms of inhibition.Mol. Pharmacol.73, 1761–1768 (2008).
  • Butcher NJ , TetlowNL, CheungC, BroadhurstGM, MinchinRF: Induction of human arylamine N-acetyltransferase Type I by androgens in human prostate cancer cells.Cancer Res.67, 85–92 (2007).
  • Norton JT , WitschiMA, LuongL et al.: Synthesis and anticancer activities of 6-amino amonafide derivatives.Anticancer Drugs19, 23–36 (2008).
  • Smelt VA , UptonA, AdjayeJ et al.: Expression of arylamine N-acetyltransferases in pre-term placentas and in human pre-implantation embryos.Hum. Mol. Genet.9, 1101–1107 (2000).
  • Wakefield L , LongH, LackN, SimE: Ocular defects associated with a null mutation in the mouse arylamine N-acetyltransferase 2 gene.Mamm. Genome18, 270–276 (2007).
  • Sugamori KS , WongS, GaedigkA et al.: Generation and functional characterization of arylamine N-acetyltransferase Nat1/Nat2 double-knockout mice.Mol. Pharmacol.64, 170–179 (2003).
  • Sugamori KS , BrennemanD, WongS et al.: Effect of arylamine acetyltransferase Nat3 gene knockout on N-acetylation in the mouse.Drug Metab. Dispos.35, 1064–1070 (2007).
  • Wakefield L , CornishV, Broackes-CarterF, SimE: Arylamine N-acetyltransferase 2 expression in the developing heart.J. Histochem. Cytochem.53, 583–592 (2005).
  • Wakefield L , CornishV, LongH et al.: Mouse arylamine N-acetyltransferase 2 (Nat2) expression during embryogenesis: a potential marker for the developing neuroendocrine system.Biomarkers13, 106–118 (2008).
  • Cao W , ChauB, HunterR, StrnatkaD, McQueenCA, EricksonRP: Only low levels of exogenous N-acetyltransferase can be achieved in transgenic mice.Pharmacogenomics J.5, 255–261 (2005).
  • Wakefield L , CornishV, LongH, GriffithsWJ, SimE: Deletion of a xenobiotic metabolizing gene in mice affects folate metabolism.Biochem. Biophys. Res. Commun.364, 556–560 (2007).
  • Erickson RP , CaoW, AcunaDK et al.: Confirmation of the role of N-acetyltransferase 2 in teratogen-induced cleft palate using transgenics and knockouts.Mol. Reprod. Dev.75, 1071–1076 (2008).
  • Lammer EJ , ShawGM, IovannisciDM, FinnellRH: Periconceptional multivitamin intake during early pregnancy, genetic variation of acetyl-N-transferase 1 (NAT1), and risk for orofacial clefts.Birth Defects Res. A Clin. Mol. Teratol.70, 846–852 (2004).
  • Lammer EJ , ShawGM, IovannisciDM, FinnellRH: Maternal smoking, genetic variation of glutathione S-transferases, and risk for orofacial clefts.Epidemiology16, 698–701 (2005).
  • Carmichael SL , ShawGM, YangW, IovannisciDM, LammerE: Risk of limb deficiency defects associated with NAT1, NAT2, GSTT1, GSTM1, and NOS3 genetic variants, maternal smoking, and vitamin supplement intake.Am. J. Med. Genet. A.140, 1915–1922 (2006).
  • Shi M , ChristensenK, WeinbergCR et al.: Orofacial cleft risk is increased with maternal smoking and specific detoxification-gene variants.Am. J. Hum. Genet.80, 76–90 (2007).
  • Stanislawska-Sachadyn A , JensenLE, KealeyC et al.: Association between the NAT11095C > A polymorphism and homocysteine concentration.Am. J. Med. Genet. A.140, 2374–2377 (2006).
  • Sim E , PaytonM, NobleM, MinchinR: An update on genetic, structural and functional studies of arylamine N-acetyltransferases in eucaryotes and procaryotes.Hum. Mol. Genet.9, 2435–2441 (2000).
  • Pluvinage B , de la Sierra-Gallay IL, Martins M, Ragunathan N, Dupret JM, Rodrigues-Lima F: Crystallization and preliminary x-ray characterization of arylamine N-acetyltransferase C (BanatC) from Bacillus anthracis. Acta Crystallogr. Sect. F. Struct. Biol. Cryst. Commun.63, 862–864 (2007).
  • Pluvinage B , DairouJ, PossotOM et al.: Cloning and molecular characterization of three arylamine N-acetyltransferase genes from Bacillus anthracis: identification of unusual enzymatic properties and their contribution to sulfamethoxazole resistance.Biochemistry46, 7069–7078 (2007).
  • Brooke EW , DaviesSG, MulvaneyAW et al.: Synthesis and in vitro evaluation of novel small molecule inhibitors of bacterial arylamine N-acetyltransferases (NATs).Bioorg. Med. Chem. Lett.13, 2527–2530 (2003).
  • Bhakta S , BesraGS, UptonAM et al.: Arylamine N-acetyltransferase is required for synthesis of mycolic acids and complex lipids in Mycobacterium bovis BCG and represents a novel drug target.J. Exp. Med.199, 1191–1199 (2004).
  • Hein DW , DollMA, FretlandAJ et al.: Rodent models of the human acetylation polymorphism: comparisons of recombinant acetyltransferases.Mutat. Res.376, 101–106 (1997).
  • Walraven JM , BarkerDF, DollMA, HeinDW: Tissue expression and genomic sequences of rat N-acetyltransferases rNat1, rNat2, rNat3, and functional characterization of a novel rNat3*2 genetic variant.Toxicol. Sci.99, 413–421 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.