57
Views
0
CrossRef citations to date
0
Altmetric
Review

Future prospects of transplantation therapy for neurological diseases using adult bone marrow stromal cells

Pages 215-226 | Published online: 02 Mar 2006

Bibliography

  • Strauer BE , BrehmM, ZeusTet al.: Repair of infarcted myocardium by autologous intracoronary mononuclear bone marrow cell transplantation in humans. Circulation106, 1913–1918 (2002).
  • Tateishi-Yuyama E , MatsubaraH, Murohara Tet al.: Therapeutic angiogenesis for patients with limb ischaemia by autologous transplantation of bone-marrow cells: a pilot study and a randomized controlled trial. Lancet360, 427–435 (2002).
  • Stamm C , WestphalB, Kleine H-Det al.: Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet361, 45–46 (2003).
  • Derubeis AR , CanceddaR: Bone marrow stromal cells (BMSCs) in bone engineering: limitations and recent advances.Ann. Biomed. Eng.32, 160–165 (2004).
  • Owen M , FriedensteinAJ: Stromal stem cells: marrow-derived osteogenic precursors.Ciba Found. Symp.136, 42–60 (1988).
  • Pittenger MF , MackayAM, BeckSCet al.: Multilineage potential of adult human mesenchymal stem cells. Science284, 143–147 (1999).
  • Reyes M , LundT, LenvikT, AguiarD, KoodieL, VerfaillieCM: Purification and ex vivo expansion of postnatal human marrow mesodermal progenitor cells.Blood98, 2615–2625 (2001).
  • Petersen BE , BowenWC, PatreneKDet al.: Bone marrow as a potential source of hepatic oval cells. Science284, 1168–1170 (1999).
  • Zhao LR , DuanWM, ReyesM, KeeneCD, VerfaillieCM, LowWC: Human bone marrow stem cells exhibit neuronal phenotypes and ameliorate neurological deficits after grafting into the ischemic brain of rats.Exp. Neurol.174, 11–20 (2002).
  • Schwartz RE , ReyesM, KoodieLet al.: Multipotent adult progenitor cells from bone marrow differentiate into functional hepatocyte-like cells. J. Clin. Invest.109, 1291–1302 (2002).
  • Prockop DJ : Marrow stromal cells as stem cells for nonhematopoietic tissue.Science276, 71–74 (1997).
  • Ferrari G , Cusella-De Angelis G, Coletta Met al.: Muscle regeneration by bone marrow-derived myogenic progenitors. Science279, 1528–1530 (1998).
  • Pittenger MF , MackayAM, BeckSCet al.: Multilineage potential of adult human mesenchymal stem cells. Science284, 143–147 (1999).
  • Kopen GC , ProckopDJ, PhinneyDG: Marrow stromal cells migrate throughout the forebrain and cerebellum, and they differentiate into astrocytes after injection into neonatal mouse brain.Proc. Natl Acad. Sci. USA96, 10711–10716 (1999).
  • Munoz-Elias G , WoodburyD, BlackIB: Marrow stromal cells, mitosis, and neuronal differentiation: stem cell and precursor functions.Stem Cells21, 437–448 (2003).
  • Woodbury D , SchwarzEJ, ProckopDJ, Black IB: Adult rat and human bone marrow stromal cells differentiate into neurons. J. Neurosci. Res.61, 364–370 (2000).
  • Krause DS : Plasticity of marrow-derived stem cells.Gene Ther.9, 754–758 (2002).
  • Herzog EL , ChaiL, KrauseDS: Plasticity of marrow-derived stem cells.Blood102, 3483–3493 (2003).
  • Eglitis MA , MezeyE: Hematopoietic cells differentiate into microglia and macroglia in the brains of adult mice.Proc. Natl Acad. Sci. USA94, 4080–4085 (1997).
  • Azizi SA , StokesD, AugelliBJ, Di Girolamo C, Prockop DJ: Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats – similarities to astrocyte grafts. Proc. Natl Acad. Sci. USA95, 3908–3913 (1998).
  • Terada N , HamazakiT, OkaMet al.: Bone marrow cells adopt the phenotype of other cells by spontaneous cell fusion. Nature416, 542–545 (2002).
  • Wang X , WillenbringH, AkkariYet al.: Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature422, 897–901 (2003).
  • Alvarez-Dolado M , PardalR, Garcia-Verdugo JMet al.: Fusion of bone marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature425, 968–973 (2003).
  • Harris RG , HerzogEL, BrusciaEMet al.: Lack of a fusion requirement for development of bone marrow-derived epithelia. Science305, 90–93 (2004).
  • Hofstetter CP , SchwarzEJ, HessDet al.: Marrow stromal cells form guiding strands in the injured spinal cord and promote recovery. Proc. Natl Acad. Sci. USA99, 2199–2204 (2002).
  • Borlongan CV , LindJG, Dillon-CarterOet al.: Bone marrow grafts restore cerebral blood flow and blood–brain barrier in stroke rats. Brain Res.1010, 108–116 (2004).
  • Mori K , IwataJ, MiyazakiM, NakaoY, MaedaM: Functional recovery of neuronal activity in rat whisker-barrel cortex sensory pathway from freezing injury after transplantation of adult bone marrow stromal cells.J. Cereb. Blood Flow Metab. 25, 887–898 (2005).
  • Mori K , MiyazakiM, IwataJ, MaedaM: Functional recovery of injured neuronal pathway by transplantation of adult bone marrow stromal cells: study of local cerebral glucose utilization and relationship between cell migration and brain edema.Progress in Research on Brain Edema and ICP18, 11–17 (2005)(Japanese with English abstract).
  • Sanchez-Ramos J , SongS, Cardozo-PelaezFet al.: Adult bone marrow stromal cells differentiate into neural cells in vivo. Exp. Neurol.164, 247–256 (2000).
  • Kohyama J , AbeH, ShimazakiTet al.: Brain from bone: efficient ‘meta-differentiation‘ of marrow stroma-derived mature osteoblasts to neurons with Noggin or a demethylating agent. Differentiation68, 235–244 (2001).
  • Lu P , BleschA, TuszynskiMH: Induction of bone marrow stromal cells to neurons: differentiation, transdifferentiation, or artifact?J. Neurosci. Res.77, 174–191 (2004).
  • Neuhuber B , GalloG, HowardLet al.: Re-evalution of in vitro diffentiation protocols for bone marrow stromal cells: disruption of actin cytoskeleton induces rapid morphological changes and mimics neuronal phenotype. J. Neurosci. Res.77, 192–204 (2004).
  • Dezawa M , KannoH, HoshinoMet al.: Specific induction of neuronal cells from bone marrow stromal cells and application for autologous transplantation. J. Clin. Invest.113, 1701–1710 (2004).
  • Dezawa M , TakahashiI, EsakiM, Takano M, Sawada H: Sciatic nerve regeneration in rats induced by transplantation of in vitro differentiated bone-marrow stromal cells. Eur. J. Neurosci.14, 1771–1776 (2001).
  • Kamada T , KodaM, DezawaMet al.: Transplantation of bone marrow stromal cell-derived Schwann cells promotes axonal regeneration and functional recovery after complete transaction of adult rat spinal cord. J. Neuropathol. Exp. Neurol.64, 37–45 (2005).
  • Suzuki H , TaguchiT, TanakaHet al.: Neurospheres induced from bone marrow stromal cells are multipotent for differentiation into neuron, astrocyte, and oligodendrocyte phenotypes. Biochem. Biophys. Res. Commun.322, 918–922 (2004).
  • Hermann A , GastlR, LiebauSet al.: Efficient generation of neural stem cell-like cells from adult human bone marrow stromal cells. J. Cell Sci.117, 4411–4422 (2004).
  • Eaves CJ , CashmanJD, KayRJet al.: Mechanisms that regulate the cell cycle status of very primitive hematopoietic cells in long-term human marrow cultures. II. Analysis of positive and negative regulators produced by stromal cells within the adherent layer. Blood78, 110–117 (1991).
  • Chen X , KatakowskiM, LiYet al.: Human bone marrow stromal cell cultures conditioned by traumatic brain tissue extracts; growth factor production. J. Neurosci. Res.69, 687–691 (2002).
  • Mahmood A , LuD, WangL, ChoppM: Intracerebral transplantation of marrow stromal cells cultured with neurotrophic factors promotes functional recovery in adult rats subjected to traumatic brain injury.J. Neurotrauma19, 1609–1617 (2002).
  • Mori K , IwataJ, MiyazakiM, MaedaM: Therapy of injured neuronal pathway by transplantation of bone marrow stromal cells (study of local cerebral glucose utilization and basic fibroblastic growth factor).Neurotrauma Res.16, 1–5 (2004).
  • Chen J , LiY, WangL, LuM, ZhangX, ChoppM: Therapeutic benefit of intracerebral transplantation of bone marrow stromal cells after cerebral ischaemia in rats.J. Neurol. Sci.189, 49–57 (2001).
  • Lu D , MahmoodA, WangL, LiY, LuM, ChoppM: Adult bone marrow stromal cells administered intravenously to rats after traumatic brain injury migrate into brain and improve neurological outcome.Neuroreport12, 559–563 (2001).
  • Lu D , LiY, WangL, ChenJ, MahmoodA, ChoppM: Intra-arterial administration of marrow stromal cells in a rat model of traumatic brain injury.J. Neurotrauma18, 813–819 (2001).
  • Mahmood A , LuD, YiL, ChenJL, Chopp M: Intracranial bone marrow transplantation after traumatic brain injury improving functional outcome in adult rats. J. Neurosurg.94, 589–595 (2001).
  • Chopp M , LiY: Treatment of neural injury with marrow stromal cells.Lancet Neurol.1, 92–100 (2002).
  • Chen J , LiY, KatakowskiMet al.: Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat. J. Neurosci. Res.73, 778–786 (2003).
  • Lee JB , KurodaS, ShichinoheHet al.: Migration and differentiation of nuclear fluorescence-labeled bone marrow stromal cells after transplantation into cerebral infarct and spinal cord injury in mice. Neuropathology23, 169–180 (2003).
  • Iihoshi S , HonmouO, HoukinK, HashiK, KocsisJD: A therapeutic window for intravenous administration of autologous bone marrow after cerebral ischaemia in adult rats.Brain Res.1007, 1–9 (2004).
  • Kurozumi K , NakamuraK, TamiyaTet al.: Mesenchymal stem cells that produce neurotrophic factors reduce ischemic damage in the rat middle cerebral artery occlusion model. Mol. Ther.11, 96–104 (2005).
  • Lin LFH , DohertyDH, LileJD, BekteshS, CollinsF: GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons.Science260, 1130–1132 (1993).
  • Kokaia Z , AiraksinenMS, NanobashviliAet al.: GDNF family ligands and receptors are differentially regulated after brain insults in the rat. Eur. J. Neurosci.11, 1202–1216 (1999).
  • Miyazaki H , OkumaY, FujiiY, Nagashima K, Nomura Y: Glial cell line-derived neurotrophic factor protects against delayed neuronal death after transient forebrain ischaemia in rats. Neuroscience89, 643–647 (1999).
  • Wang W , RedeckerC, BidmonHJ, Witte OW: Delayed neuronal death and damage of GDNF family receptors in CA1 following focal cerebral ischaemia. Brain Res.1023, 92–101 (2004).
  • Hefti F : Nerve growth factor promotes survival of septal cholinergic neurons after fimbrial transaction.J. Neurosci.6, 2155–2162 (1986).
  • Hamanoue M , TakemotoN, MatsumotoK, NakamuraT, NakajimaK, KohsakaS: Neurotrophic effect of hematocyte growth factor on central nervous system neurons in vitro.J. Neurosci. Res.43, 554–564 (1996).
  • Nakatomi H , KuriuT, OkabeSet al.: Regeneration of hippocampal pyramidal neurons after ischemic brain injury by recruitment of endogenous neural progenitors. Cell110, 429–441 (2002).
  • Schabitz WR , SchwabS, SprangerM, Hacke W: Intraventricular brain-derived neurotrophic factor reduces infarct size after focal cerebral ischaemia in rats. J. Cereb. Blood Flow Metab. 17, 500–506 (1997).
  • Miyazawa T , MatsumotoK, OhmichiH, KatohH, YamashimaT, NakamuraT: Protection of hippocampal neurons from ischaemia-induced delayed neuronal death by hepatocyte growth factor: a novel neurotrophic factor.J. Cereb. Blood Flow Metab. 18, 345–348 (1998).
  • Ay I , SugimoriH, FinklesteinSP: Intravenous basic fibroblast growth factor (bFGF) decreases DNA fragmentation and prevents downregulation of Bcl-2 expression in the ischemic brain following middle cerebral artery occlusion in rats.Mol. Brain Res.87, 71–80 (2001).
  • Hall RD , LindholmEP: Organization of motor and somatosensory neocortex in the albino rat.Brain Res.66, 23–38 (1974).
  • Gonzalez MF , SharpFR: Vibrissae tactile stimulation: (14C)2-deoxyglucose uptake in rat brainstem, thalamus, and cortex.J. Comp. Neurol.231, 457–472 (1985).
  • Ginsberg MD , CastellaY, DietrichWD, WatsonBD, BustoR: Acute thrombotic infarction suppresses metabolic activation of ipsilateral somatosensory cortex: evidence for functional diaschisis.J. Cereb. Blood Flow Metab. 9, 329–341 (1989).
  • Yamada K , KinoshitaA, KohmuraEet al.: Basic fibroblast growth factor prevents thalamic degeneration after cortical infarction. J. Cereb. Blood Flow Metab. 11, 472–478 (1991).
  • Sokoloff L , ReivichM, KennedyCet al.: The [14C]deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J. Neurochem.28, 897–916 (1977).
  • Kurozumi K , NakamuraK, TamiyaTet al.: BDNF gene-modified mesenchymal stem cells promote functional recovery and reduce infarct size in the rat middle cerebral artery occlusion model. Mol. Ther.9, 189–197 (2004).
  • Rainov NG , RenH: Gene therapy for human malignant brain tumors.Cancer J.9, 180–188 (2003).
  • Lam PYP , BreakefieldXO: Potential of gene therapy for brain tumors.Hum. Mol. Genet.10, 777–787 (2001).
  • Moolten FL , WellsJM: Curability of tumors bearing herpes thymidine kinase gene transferred by retroviral vectors.J. Natl Cancer Inst.82, 297–300 (1990).
  • Rainov NG : A Phase III clinical evaluation of herpes simplex virus Type 1 thymidine kinase and ganciclovir gene therapy as an adjuvant to surgical resection and radiation in adults with previously untreated glioblastoma multiforme.Hum. Gene Ther.11, 2389–2401 (2000).
  • Dewey RA , MorrisseyG, CowsillSMet al.: Chronic brain inflammation and persistent herpes simplex virus 1 thymidine kinase expression in survivors of syngeneic glioma treated by adenovirus-mediated gene therapy: implications for clinical trials. Nature Med.5, 1256–1263 (1999).
  • Trask TW , TraskRP, Aguilar-CordovaEet al.: Phase I study of adenoviral delivery of the HSV-tk gene and ganciclovir administration in patients with current malignant brain tumors. Mol. Ther.1, 195–203 (2000).
  • Markert JM , ParkerJN, GillespieGY, WhitleyRJ: Genetically engineered human herpes simplex virus in the treatment of brain tumors.Herpes8, 17–22 (2001).
  • Chiocca EA : Oncolytic viruses.Nature Rev. Cancer2, 938–950 (2002).
  • Harrington KJ , LewanskiCR, StewartJS: Liposomes as vehicles for targeted therapy of cancer. Part 1: preclinical development.Clin. Oncol.12, 2–15 (2000).
  • Wang L , LiY, ChenXet al.: MCP-1, MIP-1, IL-8 and ischemic cerebral tissue enhance human bone marrow stromal cell migration in interface culture. Hematology7, 113–117 (2002).
  • Wang L , LiY, ChenJet al.: Ischemic cerebral tissue and MCP-1 enhance rat bone marrow stromal cell migration in interface culture. Exp. Hematol.30, 831–836 (2002).
  • Li Y , ChenJ, ChenXGet al.: Human marrow stromal cell therapy for stroke in rat: neurotrophins and functional recovery. Neurology59, 514–523 (2002).
  • Nakamura K , ItoY, KawanoYet al.: Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther.11, 1155–1164 (2004).
  • Hamada H , KobuneM, NakamuraKet al.: Mesenchymal stem cells (MSC) as therapeutic cytoreagents for gene therapy. Cancer Sci.96, 149–156 (2005).
  • Sato H , KuwashimaN, SakaidaTet al.: Epidermal growth factor receptor-transfected bone marrow stromal cells exhibit enhanced migratory response and therapeutic potential against murine brain tumors. Cancer Gene Ther.12, 757–768 (2005).
  • Li S , TokuyamaT, YamamotoJ, KoideM, YokotaN, NambaH: Bystander effect-mediated gene therapy of gliomas using genetically engineered neural stem cells.Cancer Gene Ther.12, 600–607 (2005).
  • Thomson JA , Itskovitz-EldorJ, ShapiroSSet al.: Embryonic stem cell lines derived from human blastocysts. Science282, 1145–1147 (1998).
  • Zhang SC , WernigM, DuncanID, Brustle O, Thomson JA: In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nature Biotechnol.19, 1129–1133 (2001).
  • Bjorklund LM , Sanchez-PernauteR, Chung Set al.: Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl Acad. Sci. USA99, 2344–2349 (2002).
  • McDonald JW , Lin X-Z, Qu Yet al.: Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nature Med.5, 1410–1412 (1999).
  • Stojkovic M , LakoM, StrachanT, Murdoch A: Derivation, growth and applications of human embryonic stem cells. Reproduction128, 259–267 (2004).
  • Lawrenz B , SchillerH, WillboldE, RuedigerM, MuhsA, EsserS: Highly sensitive biosafety model for stem-cell-derived grafts.Cytotherapy6, 212–222 (2004).
  • Rhind SM , TaylorJE, De Sousa PA, King TJ, McGarry M, Wilmut I: Human cloning: can it be made safe?Nature Rev. Genet.4, 855–864 (2003).
  • Daar AS , SheremetaL: The science of stem cells: ethical, legal and social issues.Exp. Clin. Transplant.1, 139–146 (2003).
  • Weiss S , DunneC, HewsonJet al.: Multipotent CNS stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J. Neurosci.16, 7599–7609 (1996).
  • Palmer TD , TakahashiJ, GageFH: The adult rat hippocampus contains primordial neural stem cells.Mol. Cell Neurosci.8, 389–404 (1997).
  • Wright LS , LiJ, CaldwellMA, WallaceK, JohnsonJA, SvendsenCN: Gene expression in human neural stem cells: effects of leukemia inhibitory factor.J. Neurochem.86, 179–195 (2003).
  • Lu P , JonesLL, SnyderEY, TuszynskiMH: Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury.Exp. Neurol.181, 115–129 (2003).
  • Alvarez-Buylla A , LimDA: For the long run; maintaining germinal niches in the adult brain.Neuron41, 683–686 (2004).
  • Wechsler -Reya R, Scott MP: The developmental biology of brain tumors. Ann. Rev. Neurosci.24, 385–428 (2001).
  • Uchida K , MukaiM, OkanoH, KawaseT: Possible oncogenicity of subventricular zone neural stem cells: case report.Neurosurgery55, 977–987 (2004).
  • Sanai N , Alvarez-BuyllaA, BergerMS: Neural stem cells and the origin of gliomas.N. Engl. J. Med.353, 811–822 (2005).
  • Serakinci N , GuldbergP, BurnsJSet al.: Adult human mesenchymal stem cell as a target for neoplastic transformation. Oncogene23, 5095–5098 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.