37
Views
0
CrossRef citations to date
0
Altmetric
Review

Interleukin-1 As a Therapeutic Target in Acute Brain Injury

, , &
Pages 417-427 | Published online: 25 Jul 2006

Bibliography

  • Oppenheim JJ : Cytokines: past, present, and future.Int. J. Hematol.74,3–8 (2001).
  • Dinarello CA : Biologic basis for interleukin-1 in disease.Blood87,2095–2147 (1996).
  • Gabay C , SmithMF, EidlenD, ArendWP: Interleukin-1 receptor antagonist (IL-1RA) is an acute-phase protein.J. Clin. Invest.99,2930–2940 (1997).
  • Boutin H , KimberI, RothwellNJ, Pinteaux E: The expanding interleukin-1 family and its receptors: do alternative IL-1 receptor/signaling pathways exist in the brain? Mol. Neurobiol.27,239–248 (2003).
  • Vitkovic L , BockaertJ, JacqueC: ‘Inflammatory‘ cytokines: neuromodulators in normal brain?J. Neurochem.74,457–471 (2000).
  • Allan SM , TyrrellPJ, RothwellNJ: Interleukin-1 and neuronal injury.Nat. Rev. Immunol.5,629–640 (2005).
  • Allan SM , RothwellNJ: Cytokines and acute neurodegeneration.Nat. Rev. Neurosci.2,734–744 (2001).
  • Buttini M , SauterA, BoddekeHW: Induction of interleukin-1β mRNA after focal cerebral ischemia in the rat.Brain Res. Mol. Brain Res.23,126–134 (1994).
  • Davies CA , LoddickSA, ToulmondS, StroemerRP, HuntJ, RothwellNJ: The progression and topographic distribution of interleukin-1β expression after permanent middle cerebral artery occlusion in the rat.J. Cereb. Blood Flow Metab.19,87–98 (1999).
  • Stroemer RP , RothwellNJ: Exacerbation of ischemic brain damage by localized striatal injection of interleukin-1β in the rat.J. Cereb. Blood Flow Metab.18,833–839 (1998).
  • Friedlander RM , GagliardiniV, HaraH et al.: Expression of a dominant negative mutant of interleukin-1β converting enzyme in transgenic mice prevents neuronal cell death induced by trophic factor withdrawal and ischemic brain injury. J. Exp. Med.185,933–940 (1997).
  • Loddick SA , MacKenzieA, RothwellNJ: An ICE inhibitor, z-VAD-DCB attenuates ischemic brain damage in the rat.Neuroreport7,1465–1468 (1996).
  • Relton JK , RothwellNJ: Interleukin-1 receptor antagonist inhibits ischemic and excitotoxic neuronal damage in the rat.Brain Res. Bull.29,243–246 (1992).
  • Relton JK , BeckeyVE, HansonWL, WhalleyET: CP-0597, a selective bradykinin B2 receptor antagonist, inhibits brain injury in a rat model of reversible middle cerebral artery occlusion.Stroke28,1430–1436 (1997).
  • Betz AL , YangGY, DavidsonBL: Attenuation of stroke size in rats using an adenoviral vector to induce overexpression of interleukin-1 receptor antagonist in brain.J. Cereb. Blood Flow Metab.15,547–551 (1995).
  • Loddick SA , WongML, BongiornoPB, Gold PW, Licinio J, Rothwell NJ: Endogenous interleukin-1 receptor antagonist is neuroprotective. Biochem. Bioph. Res. Co.234(1) 211–215 (1997).
  • Boutin H , LeFeuvreRA, HoraiR, AsanoM, IwakuraY, RothwellNJ: Role of IL-1α and IL-1β in ischemic brain damage.J. Neurosci.21,5528–5534 (2001).
  • Yamasaki Y , MatsuuraN, ShozuharaH, OnoderaH, ItoyamaY, KogureK: Interleukin-1 as a pathogenetic mediator of ischemic brain damage in rats.Stroke26,676–680 (1995).
  • Mulcahy NJ , RossJ, RothwellNJ, Loddick SA: Delayed administration of interleukin-1 receptor antagonist protects against transient cerebral ischemia in the rat. Br. J. Pharmacol.140,471–476 (2003).
  • Pinteaux E , RothwellNJ, BoutinH: Neuroprotective actions of endogenous interleukin-1 receptor antagonist (IL-1RA) are mediated by glia.Glia53(5),551–556 (2006).
  • Hagberg H , GillandE, BonaEet al.: Enhanced expression of interleukin (IL)-1 and IL-6 messenger RNA and bioactive protein after hypoxia–ischemia in neonatal rats.Pediatr. Res.40,603–609 (1996).
  • Hedtjarn M , LeverinAL, ErikssonK, BlomgrenK, MallardC, HagbergH: Interleukin-18 involvement in hypoxic–ischemic brain injury.J. Neurosci.22,5910–5919 (2002).
  • Hu X , Nesic-TaylorO, QiuJet al.: Activation of nuclear factor-κB signaling pathway by interleukin-1 after hypoxia/ischemia in neonatal rat hippocampus and cortex.J. Neurochem.93(1),26–37 (2005).
  • Martin D , ChinookoswongN, MillerG: The interleukin-1 receptor antagonist (rh-IL-1ra) protects against cerebral infarction in a rat model of hypoxia-ischemia.Exp. Neurol.130,362–367 (1994).
  • Lazovic J , BasuA, LinHWet al.: Neuroinflammation and both cytotoxic and vasogenic edema are reduced in interleukin-1 type 1 receptor-deficient mice conferring neuroprotection.Stroke36(10),2226–2231 (2005).
  • Basu A , LazovicJ, KradyJK et al.: Interleukin-1 and the interleukin-1 type 1 receptor are essential for the progressive neurodegeneration that ensues subsequent to a mild hypoxic/ischemic injury. J. Cereb. Blood Flow Metab.25,17–29 (2005).
  • Touzani O , BoutinH, LeFeuvreRet al.: Interleukin-1 influences ischemic brain damage in the mouse independently of the interleukin-1 type 1 receptor.J. Neurosci.22,38–43 (2002).
  • Ginsberg MD , BustoR: Combating hyperthermia in acute stroke: a significant clinical concern.Stroke29,529–534 (1998).
  • Grohn OHJ , KettunenMI, MakelaHI et al.: Early detection of irreversible cerebral ischemia in the rat using dispersion of the magnetic resonance imaging relaxation time, T1rho. J. Cereb. Blood Flow Metab.20,1457–1466 (2000).
  • Hasegawa Y , LatourLL, SotakCH, DardzinskiBJ, FisherM: Temperature dependent change of apparent diffusion coefficient of water in normal and ischemic brain of rats.J. Cereb. Blood Flow Metab.14,383–390 (1994).
  • Bernard SA , GrayTW, BuistMDet al.: Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia.N. Engl. J. Med.346,557–563 (2002).
  • Hypothermia After Cardiac Arrest Study Group: Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N. Engl. J. Med.346,549–556 (2002).
  • Shankaran S , LaptookAR, EhrenkranzRA et al.: Whole-body hypothermia for neonates with hypoxic–ischemic encephalopathy. N. Engl. J. Med.353,1574–1584 (2005).
  • Sutcliffe IT , SmithHA, StanimirovicD, HutchisonJS: Effects of moderate hypothermia on IL-1β-induced leukocyte rolling and adhesion in pial microcirculation of mice and on proinflammatory gene expression in human cerebral endothelial cells.J. Cereb. Blood Flow Metab.21,1310–1319 (2001).
  • Maher CO , AndersonRE, MartinHS, McClellandRL, MeyerFB: Interleukin-1β and adverse effects on cerebral blood flow during long-term global hypoperfusion.J. Neurosurg.99,907–912 (2003).
  • Emerich DF , DeanRL III, Bartus RT: The role of leukocytes following cerebral ischemia: pathogenic variable or bystander reaction to emerging infarct? Exp. Neurol.173,168–181 (2002).
  • Masada T , HuaY, XiG, YangGY, HoffJT, KeepRF: Attenuation of intracerebral hemorrhage and thrombin-induced brain edema by overexpression of interleukin-1 receptor antagonist.J. Neurosurg.95,680–686 (2001).
  • Szymanska A , BiernaskieJ, Laidley D, Granter-Button S, Corbett D: Minocycline and intracerebral hemorrhage: influence of injury severity and delay to treatment. Exp. Neurol.197(1),189–196 (2006).
  • Um JY , JeongHJ, ParkRK, HongSH, Kim HM: Aspects of gene polymorphisms in cerebral infarction: inflammatory cytokines. Cell Mol. Life Sci.62,824–833 (2005).
  • Tarkowski E , RosengrenL, BlomstrandC et al: Early intrathecal production of interleukin-6 predicts the size of brain lesion in stroke. Stroke26,1393–1398 (1995).
  • Tarkowski E , RosengrenL, BlomstrandC, JensenC, EkholmS, TarkowskiA: Intrathecal expression of proteins regulating apoptosis in acute stroke.Stroke30,321–327 (1999).
  • Zaremba J , SkrobanskiP, LosyJ: Tumor necrosis factor-α is increased in the cerebrospinal fluid and serum of ischemic stroke patients and correlates with the volume of evolving brain infarct.Biomed. Pharmacother.55,258–263 (2001).
  • Kostulas N , PelidouSH, KivisakkP, Kostulas V, Link H: Increased IL-1β, IL-8, and IL-17 mRNA expression in blood mononuclear cells observed in a prospective ischemic stroke study. Stroke30,2174–2179 (1999).
  • Beamer NB , CoullBM, ClarkWM, Hazel JS, Silberger JR: Interleukin-6 and interleukin-1 receptor antagonist in acute stroke. Ann. Neurol.37,800–805 (1995).
  • Beamer NB , CoullBM, ClarkWM, Briley DP, Wynn M, Sexton G: Persistent inflammatory response in stroke survivors. Neurology50,1722–1728 (1998).
  • Leira R , DavalosA, SilvaY et al.: Early neurologic deterioration in intracerebral hemorrhage: predictors and associated factors. Neurology63,461–467 (2004).
  • Pawlikowska L , TranMN, AchrolAS et al.: Polymorphisms in genes involved in inflammatory and angiogenic pathways and the risk of hemorrhagic presentation of brain arteriovenous malformations. Stroke35,2294–2300 (2004).
  • Emsley HC , SmithCJ, GeorgiouRF et al.: A randomised Phase II study of interleukin-1 receptor antagonist in acute stroke patients. J. Neurol. Neurosurg. Psychiatry76,1366–1372 (2005).
  • De Simoni MG , PeregoC, RavizzaT et al.: Inflammatory cytokines and related genes are induced in the rat hippocampus by limbic status epilepticus. Eur. J. Neurosci.12,2623–2633 (2000).
  • Eriksson C , Van Dam AM, Lucassen PJ, Bol JG, Winblad B, Schultzberg M: Immunohistochemical localization of interleukin-1β, interleukin-1 receptor antagonist and interleukin-1β converting enzyme/caspase-1 in the rat brain after peripheral administration of kainic acid. Neuroscience93,915–930 (1999).
  • Nishiyori A , MinamiM, TakamiS, Satoh M: Type 2 interleukin-1 receptor mRNA is induced by kainic acid in the rat brain. Brain Res. Mol. Brain Res.50(1-2),237–245 (1997).
  • Ravizza T , VezzaniA: Status epilepticus induces time-dependent neuronal and astrocytic expression of interleukin-1 receptor type 1 in the rat limbic system.Neuroscience137,301–308 (2006).
  • Vezzani A , ContiM, DeLA et al.: Interleukin-1β immunoreactivity and microglia are enhanced in the rat hippocampus by focal kainate application: functional evidence for enhancement of electrographic seizures. J. Neurosci.19,5054–5065 (1999).
  • Vezzani A , MonetaD, ContiM et al.: Powerful anticonvulsant action of IL-1 receptor antagonist on intracerebral injection and astrocytic overexpression in mice. Proc. Natl Acad. Sci. USA97,11534–11539 (2000).
  • Ravizza T , BalossoS, LucasSM, AllanS, VezzaniA: Pharmacological inhibition of caspase-1 or p38 MAP kinase phosphorylation potently inhibit seizures in rodents. Presented at:Society for Neuroscience, CA, USA, 906.17 (2004).
  • Dube C , VezzaniA, BehrensM, BartfaiT, BaramTZ: Interleukin-1β contributes to the generation of experimental febrile seizures.Ann. Neurol.57(1),152–155 (2005).
  • Benveniste EN : Cytokine actions in the central nervous system.Cytokine Growth F. R.9(3/4),259–275 (1998).
  • Vezzani A , MonetaD, RichichiC, Perego C, De Simoni MG: Functional role of proinflammatory and anti-inflammatory cytokines in seizures. In: Recent Advances in Epilepsy Research. Binder DK, Scharfman HE (Eds). Kluwer Academic/Plenum Publishers place, NY, USA (2004).
  • Allan SM , ParkerLC, CollinsB, DaviesR, LuheshiGN, RothwellNJ: Cortical cell death induced by IL-1 is mediated via actions in the hypothalamus of the rat.Proc. Natl Acad. Sci. USA97,5580–5585 (2000).
  • Patel HC , RossFM, HeenanLE, Davies RE, Rothwell NJ, Allan SM: Neurodegenerative actions of interleukin-1 in the rat brain are mediated through increases in seizure activity. J. Neurosci. Res.83(3),385–391 (2006).
  • Virta M , HurmeM, HelminenM: Increased frequency of interleukin-1β (-511) allele 2 in febrile seizures.Pediatr. Neurol.26,192–195 (2002).
  • Kanemoto K , KawasakiJ, YuasaS et al.: Increased frequency of interleukin-1β-511T allele in patients with temporal lobe epilepsy, hippocampal sclerosis, and prolonged febrile convulsion. Epilepsia44,796–799 (2003).
  • Lahat E , LivneM, BarrJ, KatzY: Interleukin-1β levels in serum and cerebrospinal fluid of children with febrile seizures.Pediatr. Neurol.17,34–36 (1997).
  • Tutuncuoglu S , KutukculerN, KepeL, CokerC, BerdeliA, TekgulH: Proinflammatory cytokines, prostaglandins and zinc in febrile convulsions.Pediatr. Int.43,235–239 (2001).
  • Virta M , HurmeM, HelminenM: Increased plasma levels of pro- and anti-inflammatory cytokines in patients with febrile seizures.Epilepsia43,920–923 (2003).
  • Ichiyama T , NishikawaM, YoshitomiT, HayashiT, FurukawaS: Tumor necrosis factor-α, interleukin-1β, and interleukin-6 in cerebrospinal fluid from children with prolonged febrile seizures. Comparison with acute encephalitis/encephalopathy.Neurology50,407–411 (1998).
  • Peltola J , PalmioJ, KorhonenLet al.: Interleukin-6 and interleukin-1 receptor antagonist in cerebrospinal fluid from patients with recent tonic–clonic seizures.Epilepsy Res.41,205–211 (2000).
  • Peltola J , LaaksonenJ, HaapalaAM, Hurme M, Rainesalo S, Keranen T: Indicators of inflammation after recent tonic–clonic epileptic seizures correlate with plasma interleukin-6 levels. Seizure11,44–46 (2002).
  • Lehtimaki KA , KeranenT, HuhtalaH et al.: Regulation of IL-6 system in cerebrospinal fluid and serum compartments by seizures: the effect of seizure type and duration.J. Neuroimmunol.152,121–125 (2004).
  • Hulkkonen J , KoskikallioE, RainesaloS, KeranenT, HurmeM, PeltolaJ: The balance of inhibitory and excitatory cytokines is differently regulated in vivo and in vitro among therapy resistant epilepsy patients.Epilepsy Res.59,199–205 (2004).
  • Slowik A , BorratynskaA, TurajW et al.: Interleukin 1β-511 C/T polymorphism and risk of aneurismal subarachnoid hemorrhage.J. Neurol. Neurosurg. Psychiatry77(2),279–280 (2006).
  • Kikuchi T , OkudaY, KaitoN, AbeT: Cytokine production in cerebrospinal fluid after subarachnoid hemorrhage.Neurol. Res.17,106–108 (1995).
  • Takizawa T , TadaT, KitazawaK et al.: Inflammatory cytokine cascade released by leukocytes in cerebrospinal fluid after subarachnoid hemorrhage. Neurol. Res.23,724–730 (2001).
  • Mathiesen T , EdnerG, UlfarssonE, AnderssonB: Cerebrospinal fluid interleukin-1 receptor antagonist and tumor necrosis factor-α following subarachnoid hemorrhage.J. Neurosurg.87,215–220 (1997).
  • Fassbender K , HodappB, RossolS et al.: Inflammatory cytokines in subarachnoid hemorrhage: association with abnormal blood flow velocities in basal cerebral arteries. J. Neurol. Neurosurg. Psychiatry70,534–537 (2001).
  • Kwon KY , JeonBC: Cytokine levels in cerebrospinal fluid and delayed ischemic deficits in patients with aneurysmal subarachnoid hemorrhage.J. Korean Med. Sci.16,774–780 (2001).
  • Osuka K , SuzukiY, TanazawaT et al.: Interleukin-6 and development of vasospasm after subarachnoid hemorrhage. Acta Neurochir. Suppl. (Wien)140,943–951 (1998).
  • Hirashima Y , NakamuraS, EndoS, KuwayamaN, NaruseY, TakakuA: Elevation of platelet activating factor, inflammatory cytokines, and coagulation factors in the internal jugular vein of patients with subarachnoid hemorrhage.Neurochem. Res.22,1249–1255 (1997).
  • Klemm P , WarnerTD, CorderR, VaneJR: Endothelin-1 mediates coronary vasoconstriction caused by exogenous and endogenous cytokines.J. Cardiovasc. Pharmacol.26(Suppl. 3),S419–S421 (1995).
  • White LR , JuulR, SkaanesKO, AaslyJ: Cytokine enhancement of endothelin ET(B) receptor-mediated contraction in human temporal artery.Eur. J. Pharmacol.406,117–122 (2000).
  • Bramlett HM , DietrichWD: Pathophysiology of cerebral ischemia and brain trauma: similarities and differences.J. Cereb. Blood Flow Metab.24,133–150 (2004).
  • Herx LM , RivestS, YongVW: Central nervous system-initiated inflammation and neurotrophism in trauma: IL-1β is required for the production of ciliary neurotrophic factor.J. Immunol.165,2232–2239 (2000).
  • Lu KT , WangYW, YangJT, YangYL, Chen HI: Effect of interleukin-1 on traumatic brain injury-induced damage to hippocampal neurons. J. Neurotrauma22,885–895 (2005).
  • Knoblach SM , FadenAI: Cortical interleukin-1β elevation after traumatic brain injury in the rat: no effect of two selective antagonists on motor recovery.Neuroci. Lett.289,5–8 (2000).
  • Toulmond S , RothwellNJ: Interleukin-1 receptor antagonist inhibits neuronal damage caused by fluid percussion injury in the rat.Brain Res.671,261–266 (1995).
  • Jones NC , PriorMJ, Burden-TehE, MarsdenCA, MorrisPG, MurphyS: Antagonism of the interleukin-1 receptor following traumatic brain injury in the mouse reduces the number of nitric oxide synthase-2-positive cells and improves anatomical and functional outcomes.Eur. J. Neurosci.22,72–78 (2005).
  • Tehranian R , Andell-JonssonS, BeniSM et al.: Improved recovery and delayed cytokine induction after closed head injury in mice with central overexpression of the secreted isoform of the interleukin-1 receptor antagonist. J. Neurotrauma19,939–951 (2002).
  • Morita-Fujimura Y , FujimuraM, Kawase M, Murakami K, Kim GW, Chan PH: Inhibition of interleukin-1β converting enzyme family proteases (caspases) reduces cold injury-induced brain trauma and DNA fragmentation in mice. J. Cereb. Blood Flow Metab.19,634–642 (1999).
  • Holmin S , HojebergB: In situ detection of intracerebral cytokine expression after human brain contusion.Neurosci. Lett.369,108–114 (2004).
  • Hayakata T , ShiozakiT, TasakiO et al.: Changes in CSF S100B and cytokine concentrations in early-phase severe traumatic brain injury. Shock22,102–107 (2004).
  • Shiozaki T , HayakataT, TasakiO et al.: Cerebrospinal fluid concentrations of anti-inflammatory mediators in early-phase severe traumatic brain injury. Shock23,406–410 (2005).
  • Chiaretti A , GenoveseO, AloeL et al.: Interleukin 1β and interleukin 6 relationship with paediatric head trauma severity and outcome. Childs Nerv. Syst.21,185–193 (2005).
  • Rothwell NJ : Interleukin-1 and neuronal injury: mechanisms, modification and therapeutic potential.Brain Behav. Immun.17,152–157 (2003).
  • Cassatella MA : The neutrophil: one of the cellular targets of interleukin-10.Int. J. Clin. Lab. Res.28(3),148–161 (1998).
  • Curran NM , GriffinBD, O‘TooleD, Brady KJ, Fitzgerald SN, Moynagh PN: The synthetic cannabinoid R+WIN 55,212-2 inhibits the interleukin-1 signaling pathway in human astrocytes in a cannabinoid receptor-independent manner. J. Biol. Chem.280(43),35797–35806 (2005).
  • Molina-Holgado F , PinteauxE, MooreJD et al.: Endogenous interleukin-1 receptor antagonist mediates anti-inflammatory and neuroprotective actions of cannabinoids in neurons and glia.J. Neurosci.23(16),6470–6474 (2003).
  • Melcangi RC , Mensah-NyaganAG: Neuroprotective effects of neuroactive steroids in the spinal cord and peripheral nerves.J. Mol. Neurosci.28(1),1–2 (2006).
  • Allan SM : Pragmatic target discovery from novel gene to functionally defined drug target: the interleukin-1 story.Methods in Mol. Med.104,333–346 (2005).
  • Opal SM , FisherCJ Jr, Dhainaut JF et al: Confirmatory interleukin-1 receptor antagonist trial in severe sepsis: a Phase III, randomized, double-blind, placebo-controlled, multicenter trial. The interleukin-1 receptor antagonist sepsis investigator group. Crit. Care Med.25,1115–1124 (1997).
  • Furst DE , BreedveldFC, KaldenJR et al: Updated consensus statement on biological agents, specifically tumor necrosis factor-α (TNFα) blocking agents and interleukin-1 receptor antagonist (IL-1RA), for the treatment of rheumatic diseases. Ann. Rheum. Dis.63(2),II2–II12 (2004).
  • Gutierrez EG, Banks WA, Kastin AJ: Blood-borne interleukin-1 receptor antagonist crosses the blood–brain barrier. J. Neuroimmunol.55,153–160 (1994).
  • Perry VH : The influence of systemic inflammation on inflammation in the brain: implications for chronic neurodegenerative disease.Brain. Behav. Immun.18,407–413 (2004).
  • Quagliarello VJ , WispelweyB, LongWJ Jr, Scheld WM: Recombinant human interleukin-1 induces meningitis and blood–brain barrier injury in the rat. Characterization and comparison with tumor necrosis factor. J. Clin. Invest.87,1360–1366 (1991).
  • Mason JL , SuzukiK, ChaplinDD, MatsushimaGK: Interleukin-1β promotes repair of the CNS.J. Neurosci.21,7046–7052 (2001).
  • TNF neutralization in MS: results of a randomized, placebo-controlled multicenter study. The lenercept multiple sclerosis study group and the University of British Columbia MS/MRI analysis group. Neurology53,457–465 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.