86
Views
0
CrossRef citations to date
0
Altmetric
Review

Manganese: A Unique Neuroimaging Contrast Agent

&
Pages 297-305 | Published online: 19 Apr 2007

Bibliography

  • Jasanoff A : Functional MRI using molecular imaging agents.Trends Neurosci.28(3), 120–126 (2005).
  • Koretsky AP , SilvaAC: Manganese-enhanced magnetic resonance imaging (MEMRI).NMR Biomed.17(8), 527–531 (2004).
  • Lauterbur PC : Image formation by induced local interactions – examples employing nuclear magnetic-resonance.Nature242(5394), 190–191 (1973).
  • Aschner M , EriksonKM, DormanDC: Manganese dosimetry: species differences and implications for neurotoxicity.Crit. Rev.Toxicol.35(1), 1–32 (2005).
  • Wedler FC , DenmanRB: Glutamine synthetase: the major MnII enzyme in mammalian brain.Curr. Top. Cell. Regul.24, 153–169 (1984).
  • Dobson AW , EriksonKM, AschnerM: Manganese neurotoxicity.Ann. NY Acad. Sci.1012, 115–128 (2004).
  • Antonini JM , SantamariaAB, JenkinsNT, AlbiniE, LucchiniR: Fate of manganese associated with the inhalation of welding fumes: potential neurological effects.Neurotoxicology27(3), 304–310 (2006).
  • Yu IJ , ParkJD, ParkESet al.: Manganese distribution in brains of Sprague–Dawley rats after 60 days of stainless steel welding-fume exposure.Neurotoxicology24(6), 777–785 (2003).
  • Cersosimo MG , KollerWC: The diagnosis of manganese-induced parkinsonism.Neurotoxicology27(3), 340–346 (2006).
  • Erikson KM , ThompsonK, AschnerJ, AschnerM: Manganese neurotoxicity: a focus on the neonate.Pharmacol. Ther.113(2), 369–377 (2007).
  • Pal PK , SamiiA, CalneDB: Manganese neurotoxicity: a review of clinical features, imaging and pathology.Neurotoxicology20(2–3), 227–238 (1999).
  • Jiang Y , ZhengW, LongLet al.: Brain magnetic resonance imaging and manganese concentrations in red blood cells of smelting workers: search for biomarkers of manganese exposure.Neurotoxicology28(1), 126–135 (2007).
  • Herrero HE , ValentiniMC, DiscalziG: T1-weighted hyperintensity in basal ganglia at brain magnetic resonance imaging: are different pathologies sharing a common mechanism?Neurotoxicology23(6), 669–674 (2002).
  • Silva AC , LeeJH, AokiI, KoretskyAP: Manganese-enhanced magnetic resonance imaging (MEMRI): methodological and practical considerations.NMR Biomed.17(8), 532–543 (2004).
  • Aoki I , WuYJ, SilvaAC, LynchRM, Koretsky AP: In vivo detection of neuroarchitecture in the rodent brain using manganese-enhanced MRI. Neuroimage22(3), 1046–1059 (2004).
  • Liu CH , D‘ArceuilHE, de Crespigny AJ: Direct CSF injection of MnCl2 for dynamic manganese-enhanced MRI. Magn. Reson. Med.51(5), 978–987 (2004).
  • Gunter TE , GavinCE, AschnerM, Gunter KK: Speciation of manganese in cells and mitochondria: a search for the proximal cause of manganese neurotoxicity. Neurotoxicology27(5), 765–776 (2006).
  • Takeda A , SawashitaJ, OkadaS: Biological half-lives of zinc and manganese in rat brain.Brain Res.695(1), 53–58 (1995).
  • Sloot WN , GramsbergenJB: Axonal transport of manganese and its relevance to selective neurotoxicity in the rat basal ganglia.Brain Res.657(1–2), 124–132 (1994).
  • Pautler RG , MongeauR, JacobsRE: In vivo trans-synaptic tract tracing from the murine striatum and amygdala utilizing manganese enhanced MRI (MEMRI).Magn. Reson. Med.50(1), 33–39 (2003).
  • Pautler RG , SilvaAC, KoretskyAP: In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging.Magn. Reson. Med.40(5), 740–748 (1998).
  • Lee JH , SilvaAC, MerkleH, KoretskyAP: Manganese-enhanced magnetic resonance imaging of mouse brain after systemic administration of MnCl2: dose-dependent and temporal evolution of T1 contrast.Magn. Reson. Med.53(3), 640–648 (2005).
  • Tindemans I , BoumansT, VerhoyeM, Van der Linden A: IR-SE and IR-MEMRI allow in vivo visualization of oscine neuroarchitecture including the main forebrain regions of the song control system. NMR Biomed.19(1), 18–29 (2006).
  • Bock NA , KovacevicN, LipinaTV, Roder JC, Ackerman SL, Henkelman RM: In vivo magnetic resonance imaging and semiautomated image analysis extend the brain phenotype for cdf/cdf mice. J. Neurosci.26(17), 4455–4459 (2006).
  • Aoki I , NaruseS, TanakaC: Manganese-enhanced magnetic resonance imaging (MEMRI) of brain activity and applications to early detection of brain ischemia.NMR Biomed.17(8), 569–580 (2004).
  • Henning EC , MengX, FisherM, SotakCH: Visualization of cortical spreading depression using manganese-enhanced magnetic resonance imaging.Magn. Reson. Med.53(4), 851–857 (2005).
  • Wei Q , ClarkeL, ScheidenhelmDKet al.: High-grade glioma formation results from postnatal PTEN loss or mutant epidermal growth factor receptor expression in a transgenic mouse glioma model.Cancer Res.66(15), 7429–7437 (2006).
  • Mori S , ZhangJ: Principles of diffusion tensor imaging and its applications to basic neuroscience research.Neuron51(5), 527–539 (2006).
  • Pautler RG , KoretskyAP: Tracing odor-induced activation in the olfactory bulbs of mice using manganese-enhanced magnetic resonance imaging.Neuroimage16(2), 441–448 (2002).
  • Natt O , WatanabeT, BoretiusS, Radulovic J, Frahm J, Michaelis T: High-resolution 3D MRI of mouse brain reveals small cerebral structures in vivo. J. Neurosci. Methods120(2), 203–209 (2002).
  • Bilgen M , PengW, Al-HafezB, Dancause N, He YY, Cheney PD: Electrical stimulation of cortex improves corticospinal tract tracing in rat spinal cord using manganese-enhanced MRI. J. Neurosci. Methods156(1–2), 17–22 (2006).
  • Murayama Y , WeberB, SaleemKS, Augath M, LogothetisNK: Tracing neural circuits in vivo with Mn-enhanced MRI.Magn. Reson. Imaging24(4), 349–358 (2006).
  • Van der Linden A , Van Meir MV, Tindemans I, Verhoye M, Balthazart J: Applications of manganese-enhanced magnetic resonance imaging (MEMRI) to image brain plasticity in song birds. NMR Biomed.17(8), 602–612 (2004).
  • Whone AL , MooreRY, PicciniPP, Brooks DJ: Plasticity of the nigropallidal pathway in Parkinson‘s disease. Ann. Neurol.53(2), 206–213 (2003).
  • Morgante F , EspayAJ, GunrajC, LangAE, ChenR: Motor cortex plasticity in Parkinson‘s disease and levodopa-induced dyskinesias.Brain129(Pt 4), 1059–1069 (2006).
  • van der Zijden JP , WuO, van der Toom TA, Roeling TP, Bleys RL, Dijkhuizen RM: Changes in neuronal connectivity after stroke in rats as studied by serial manganese-enhanced MRI. Neuroimage34(4), 1650–1657 (2007).
  • Nairismagi J , PitkanenA, NarkilahtiS, HuttunenJ, KauppinenRA, GrohnOH: Manganese-enhanced magnetic resonance imaging of mossy fiber plasticity in vivo.Neuroimage30(1), 130–135 (2006).
  • Allegrini PR , WiessnerC: Three-dimensional MRI of cerebral projections in rat brain in vivo after intracortical injection of MnCl2.NMR Biomed.16(5), 252–256 (2003).
  • Thuen M , SingstadTE, PedersenTBet al.: Manganese-enhanced MRI of the optic visual pathway and optic nerve injury in adult rats.J. Magn. Reson. Imaging22(4), 492–500 (2005).
  • Bilgen M : Imaging corticospinal tract connectivity in injured rat spinal cord using manganese-enhanced MRI.BMC Med. Imaging6, 15 (2006).
  • Bilgen M , DancauseN, Al-HafezB, HeYY, MaloneTM: Manganese-enhanced MRI of rat spinal cord injury.Magn. Reson. Imaging23(7), 829–832 (2005).
  • Stieltjes B , KlussmannS, BockMet al.: Manganese-enhanced magnetic resonance imaging for in vivo assessment of damage and functional improvement following spinal cord injury in mice.Magn. Reson. Med.55(5), 1124–1131 (2006).
  • Lin YJ , KoretskyAP: Manganese ion enhances T1-weighted MRI during brain activation: an approach to direct imaging of brain function.Magn. Reson. Med.38(3), 378–388 (1997).
  • Aoki I , TanakaC, TakegamiTet al.: Dynamic activity-induced manganese-dependent contrast magnetic resonance imaging (DAIM MRI).Magn. Reson. Med.48(6), 927–933 (2002).
  • Duong TQ , SilvaAC, LeeSP, KimSG: Functional MRI of calcium-dependent synaptic activity: cross correlation with CBF and BOLD measurements.Magn. Reson. Med.43(3), 383–392 (2000).
  • Yu X , WadghiriYZ, SanesDH, Turnbull DH: In vivo auditory brain mapping in mice with Mn-enhanced MRI. Nat. Neurosci.8(7), 961–968 (2005).
  • Kuo YT , HerlihyAH, SoPW, BellJD: Manganese-enhanced magnetic resonance imaging (MEMRI) without compromise of the blood–brain barrier detects hypothalamic neuronal activity in vivo.NMR Biomed.19(8), 1028–1034 (2006).
  • Lim KO , StarkDD, LeesePT, Pfefferbaum A, Rocklage SM, Quay SC: Hepatobiliary MR imaging: first human experience with MnDPDP. Radiology178(1), 79–82 (1991).
  • Skjold A , VangbergTR, KristoffersenA, HaraldsethO, JyngeP, LarssonHB: Relaxation enhancing properties of MnDPDP in human myocardium.J. Magn. Reson. Imaging20(6), 948–952 (2004).
  • Chuang KH , KoretskyA: Improved neuronal tract tracing using manganese enhanced magnetic resonance imaging with fast T1 mapping.Magn. Reson. Med.55(3), 604–611 (2006).
  • Bellin MF : MR contrast agents, the old and the new.Eur. J. Radiol.60(3), 314–323 (2006).
  • Jander S , SchroeterM, SalehA: Imaging inflammation in acute brain ischemia.Stroke38(2), 642–645 (2007).
  • Enochs WS , HarshG, HochbergF, Weissleder R: Improved delineation of human brain tumors on MR images using a long-circulating, superparamagnetic iron oxide agent. J. Magn. Reson. Imaging9(2), 228–232 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.