41
Views
0
CrossRef citations to date
0
Altmetric
Review

Antiapoptotic therapies in the treatment of spinal cord injury

&
Pages 425-434 | Published online: 20 Jun 2007

Bibliography

  • Thuret S , MoonLDF, GageFH: Therapeutic interventions after spinal cord injury.Nat. Rev. Neurosci.7(8), 628–643 (2006).
  • Fisher CG , NoonanVK, DvorakMF: Changing face of spine trauma care in North America.Spine31(Suppl. 11), S2–S8 (2006).
  • Dumont AS , DumontRJ, OskouianRJ: Will improved understanding of the pathophysiological mechanisms involved in acute spinal cord injury improve the potential for therapeutic intervention?Curr. Opin. Neurol.15(6), 713–720 (2002).
  • Hulsebosch CE : Recent advances in pathophysiology and treatment of spinal cord injury.Adv. Physiol. Educ.26(1–4), 238–255 (2002).
  • Beattie MS , FarooquiAA, BresnahanJC: Review of current evidence for apoptosis after spinal cord injury.J. Neurotrauma17(10), 915–925 (2000).
  • Ahn YH , Bae Yeon Y, Lee G, Kang Mee K, Kang SK: Molecular insights of the injured lesions of rat spinal cords: inflammation, apoptosis, and cell survival. Biochem. Biophys. Res. Commun.348(2), 560–570 (2006).
  • Bunge RP , PuckettWR, BecerraJL, MarcilloA, QuencerRM: Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination.Adv. Neurol.5975–5989 (1993).
  • Baptiste DC , FehlingsMG: Pharmacological approaches to repair the injured spinal cord.J. Neurotrauma23(3–4), 318–334 (2006).
  • Schwab JM , BrechtelK, MuellerCAet al.: Experimental strategies to promote spinal cord regeneration – an integrative perspective. Prog. Neurobiol.78(2), 91–116 (2006).
  • Beattie MS , LiQ, BresnahanJC: Cell death and plasticity after experimental spinal cord injury.Prog. Brain Res.128, 9–21 (2000).
  • Hall ED , BraughlerJM: Free radicals in CNS injury.Res. Publ. Assoc. Res. Nerv. Ment. Dis.71, 81–85 (1993).
  • Popovich PG , GuanZ, WeiPet al.: Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp. Neurol.158(2), 351–365 (1999).
  • Fleming JC , NorenbergMD, RamsayDAet al.: The cellular inflammatory response in human spinal cords after injury. Brain129(Pt 12), 3249–3269 (2006).
  • Stokes BT , JakemanLB: Experimental modelling of human spinal cord injury: a model that crosses the species barrier and mimics the spectrum of human cytopathology.Spinal Cord40(3), 101–109 (2002).
  • Liu XZ , XuXM, HuRet al.: Neuronal and glial apoptosis after traumatic spinal cord injury. J. Neurosci.17(14), 5395–5406 (1997).
  • Kerschensteiner M , SchwabME, Lichtman JW, Misgeld T: In vivo imaging of axonal degeneration and regeneration in the injured spinal cord. Nat. Med.11(5), 572–577 (2005).
  • Zhang Z , GuthL: Experimental spinal cord injury: Wallerian degeneration in the dorsal column is followed by revascularization, glial proliferation, and nerve regeneration.Exp. Neurol.147(1), 159–171 (1997).
  • Silver J , MillerJH: Regeneration beyond the glial scar.Nat. Rev. Neurosci.5(2), 146–156 (2004).
  • Rosenberg LJ , ZaiLJ, WrathallJR: Chronic alterations in the cellular composition of spinal cord white matter following contusion injury.Glia49(1), 107–120 (2005).
  • Zai LJ , WrathallJR: Cell proliferation and replacement following contusive spinal cord injury.Glia50(3), 247–257 (2005).
  • Gomes-Leal W , CorkillDJ, FreireMA, Picanco-DinizCW, PerryVH: Astrocytosis, microglia activation, oligodendrocyte degeneration, and pyknosis following acute spinal cord injury.Exp. Neurol.190(2), 456–467 (2004).
  • Kigerl KA , McGaughyVM, PopovichPG: Comparative analysis of lesion development and intraspinal inflammation in four strains of mice following spinal contusion injury.J. Comp. Neurol.494(4), 578–594 (2006).
  • Popovich PG , WeiP, StokesBT: Cellular inflammatory response after spinal cord injury in Sprague–Dawley and Lewis rats.J. Comp. Neurol.377(3), 443–464 (1997).
  • Schnell L , FearnS, SchwabME, PerryVH, AnthonyDC: Cytokine-induced acute inflammation in the brain and spinal cord.J. Neuropathol. Exp. Neurol.58(3), 245–254 (1999).
  • Zhang Z , KrebsCJ, GuthL: Experimental analysis of progressive necrosis after spinal cord trauma in the rat: etiological role of the inflammatory response.Exp. Neurol.143(1), 141–152 (1997).
  • Popovich PG , van Roojen RN, Hickey WF, Preidis G, McGaughy V: Hematogenous macrophages express CD8 and distribute to regions of lesion cavitation after spinal cord injury. Exp. Neurol.182(2), 275–287 (2003).
  • Jones TB , McDanielEE, PopovichPG: Inflammatory-mediated injury and repair in the traumatically injured spinal cord.Curr. Pharm. Des.11(10), 1223–1236 (2005).
  • Casha S , YuWR, FehlingsMG: Oligodendroglial apoptosis occurs along degenerating axons and is associated with Fas and p75 expression following spinal cord injury in the rat.Neuroscience103(1), 203–218 (2001).
  • Popovich PG , GuanZ, McGaughyVet al.: The neuropathological and behavioral consequences of intraspinal microglial/macrophage activation. J. Neuropathol. Exp. Neurol.61(7), 623–633 (2002).
  • Yuan J , LipinskiM, DegterevA: Diversity in the mechanisms of neuronal cell death.Neuron40(2), 401–413 (2003).
  • Beattie MS , HermannGE, RogersRC, BresnahanJC: Cell death in models of spinal cord injury.Prog. Brain Res.137, 37–47 (2002).
  • Keane RW , DavisAR, DietrichWD: Inflammatory and apoptotic signaling after spinal cord injury.J. Neurotrauma23(3–4), 335–344 (2006).
  • Yakovlev AG , FadenAI: Mechanisms of neural cell death: implications for development of neuroprotective treatment strategies.NeuroRx1(1), 5–16 (2004).
  • Degterev A , HuangZ, BoyceMet al.: Chemical inhibitor of nonapoptotic cell death with therapeutic potential for ischemic brain injury. Nat. Chem. Biol.1(2), 112–119(2005).
  • Bredesen DE , RaoRV, MehlenP: Cell death in the nervous system.Nature443(7113), 796–802 (2006).
  • Bano D , NicoteraP: Ca2+ signals and neuronal death in brain ischemia.Stroke38(Suppl. 2), 674–676 (2007).
  • Artal-Sanz M , TavernarakisN: Proteolytic mechanisms in necrotic cell death and neurodegeneration.FEBS Lett.579(15), 3287–3296 (2005).
  • Broker LE , KruytFA, GiacconeG: Cell death independent of caspases: a review.Clin. Cancer Res.11(9), 3155–3162 (2005).
  • Golstein P , KroemerG: Cell death by necrosis: towards a molecular definition.Trends Biochem. Sci.32(1), 37–43 (2007).
  • Lu J , AshwellKW, WaiteP: Advances in secondary spinal cord injury: role of apoptosis.Spine25(14), 1859–1866 (2000).
  • Hengartner MO : The biochemistry of apoptosis.Nature407(6805), 770–776 (2000).
  • Yuan J , LipinskiM, DegterevA: Diversity in the mechanisms of neuronal cell death.Neuron40(2), 401–413 (2003).
  • Chen M , WangJ: Initiator caspases in apoptosis signaling pathways.Apoptosis7(4), 313–319 (2002).
  • Putcha GV , HarrisCA, MoulderKLet al.: Intrinsic and extrinsic pathway signaling during neuronal apoptosis: lessons from the analysis of mutant mice. J. Cell Biol.157(3), 441–453 (2002).
  • Spierings D , McStayG, SalehMet al.: Connected to death: the (unexpurgated) mitochondrial pathway of apoptosis. Science310(5745), 66–67 (2005).
  • Green DR , KroemerG: The pathophysiology of mitochondrial cell death.Science305(5684), 626–629 (2004).
  • Chipuk JE , Bouchier-HayesL, GreenDR: Mitochondrial outer membrane permeabilization during apoptosis: the innocent bystander scenario.Cell Death. Differ.13(8), 1396–1402 (2006).
  • Andrabi SA , KimNS, YuSWet al.: Poly(ADP-ribose) (PAR) polymer is a death signal. Proc. Natl Acad. Sci. USA103(48), 18308–18313 (2006).
  • Wang H , YuSW, KohDWet al.: Apoptosis-inducing factor substitutes for caspase executioners in NMDA-triggered excitotoxic neuronal death. J. Neurosci.24(48), 10963–10973 (2004).
  • Meli E , PangalloM, PiccaRet al.: Differential role of poly(ADP-ribose) polymerase-1 in apoptotic and necrotic neuronal death induced by mild or intense NMDA exposure in vitro. Mol. Cell Neurosci.25(1), 172–180 (2004).
  • Emery E , AldanaP, BungeMBet al.: Apoptosis after traumatic human spinal cord injury. J. Neurosurg.89(6), 911–920 (1998).
  • Crowe MJ , BresnahanJC, ShumanSL, MastersJN, BeattieMS: Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys.Nat. Med.3(1), 73–76 (1997).
  • Springer JE , AzbillRD, KnappPE: Activation of the caspase-3 apoptotic cascade in traumatic spinal cord injury.Nat. Med.5(8), 943–946 (1999).
  • Knoblach SM , HuangX, VanGelderenJ, Calva-CerqueiraD, FadenAI: Selective caspase activation may contribute to neurological dysfunction after experimental spinal cord trauma.J. Neurosci. Res.80(3), 369–380 (2005).
  • McEwen ML , SpringerJE: A mapping study of caspase-3 activation following acute spinal cord contusion in rats.J. Histochem. Cytochem.53(7), 809–819 (2005).
  • Citron BA , ArnoldPM, SebastianCet al.: Rapid upregulation of caspase-3 in rat spinal cord after injury: mRNA, protein, and cellular localization correlates with apoptotic cell death. Exp. Neurol.166(2), 213–226 (2000).
  • Warden P , BamberNI, LiHet al.: Delayed glial cell death following wallerian degeneration in white matter tracts after spinal cord dorsal column cordotomy in adult rats. Exp. Neurol.168(2), 213–224 (2001).
  • Li M , OnaVO, ChenMet al.: Functional role and therapeutic implications of neuronal caspase-1 and -3 in a mouse model of traumatic spinal cord injury. Neurosscience99(2), 333–342 (2000).
  • Springer JE , AzbillRD, NottinghamSA, KennedySE: Calcineurin-mediated BAD dephosphorylation activates the caspase-3 apoptotic cascade in traumatic spinal cord injury.J. Neurosci.20(19), 7246–7251 (2000).
  • Barut S , UnluYA, KaraoglanAet al.: The neuroprotective effects of z-DEVD-fmk, a caspase-3 inhibitor, on traumatic spinal cord injury in rats. Surg. Neurol.64(3), 213–220 (2005).
  • Colak A , KaraoglanA, BarutSet al.: Neuroprotection and functional recovery after application of the caspase-9 inhibitor z-LEHD-fmk in a rat model of traumatic spinal cord injury. J. Neurosurg. Spine2(3), 327–334 (2005).
  • Ozawa H , KeaneRW, MarcilloAE, Diaz PH, Dietrich WD: Therapeutic strategies targeting caspase inhibition following spinal cord injury in rats. Exp. Neurol.177(1), 306–313 (2002).
  • Li M , OnaVO, ChenMet al.: Functional role and therapeutic implications of neuronal caspase-1 and -3 in a mouse model of traumatic spinal cord injury. Neuroscience99(2), 333–342 (2000).
  • Zhang X , ChenJ, GrahamSHet al.: intranuclear localization of apoptosis-inducing factor (AIF) and large scale DNA fragmentation after traumatic brain injury in rats and in neuronal cultures exposed to peroxynitrite. J. Neurochem.82(1), 181–191 (2002).
  • Yu F , SugawaraT, NishiT, LiuJ, ChanPH: Overexpression of SOD1 in transgenic rats attenuates nuclear translocation of endonuclease γ and apoptosis after spinal cord injury.J. Neurotrauma23(5), 595–603 (2006).
  • Tsujimoto Y : Cell death regulation by the Bcl-2 protein family in the mitochondria.J. Cell. Physiol.195(2), 158–167 (2003).
  • Danial NN , KorsmeyerSJ: Cell death: critical control points.Cell116(2), 205–219 (2004).
  • Sharpe JC , ArnoultD, YouleRJ: Control of mitochondrial permeability by Bcl-2 family members.Biochim. Biophys. Acta1644(2–3), 107–113 (2004).
  • Alonso G , GuillemainI, DumoulinA, PrivatA, PateyG: Immunolocalization of Bcl-xL/S in the central nervous system of neonatal and adult rats.Cell Tissue Res.288(1), 59–68 (1997).
  • Gonzalez-Garcia M , GarciaI, DingLet al.: Bcl-x is expressed in embryonic and postnatal neural tissues and functions to prevent neuronal cell death. Proc. Natl Acad. Sci. USA92(10), 4304–4308 (1995).
  • Gonzalez-Garcia M , Perez-BallesteroR, DingLet al.: Bcl-xL is the major Bcl-x mRNA form expressed during murine development and its product localizes to mitochondria. Development120(10), 3033–3042 (1994).
  • Parsadanian AS , ChengY, Keller-PeckCR, HoltzmanDM, SniderWD: Bcl-xL is an antiapoptotic regulator for postnatal CNS neurons.J. Neurosci.18(3), 1009–1019 (1998).
  • Qiu J , NesicO, YeZet al.: Bcl-xL expression after contusion to the rat spinal cord. J. Neurotrauma18(11), 1267–1278 (2001).
  • Nesic-Taylor O , CittellyD, YeZet al.: Exogenous Bcl-xL fusion protein spares neurons after spinal cord injury. J. Neurosci. Res.79(5), 628–637 (2005).
  • Wen TC , SadamotoY, TanakaJet al.: Erythropoietin protects neurons against chemical hypoxia and cerebral ischemic injury by up-regulating Bcl-xL expression. J. Neurosci. Res.67(6), 795–803 (2002).
  • Matsuoka N , IshiiK, AkimotoMet al.: Overexpression of basic fibroblast growth factor and Bcl-xL with adenoviral vectors protects primarily cultured neurons against glutamate insult. Neurosurgery50(4), 857–862 (2002).
  • Shinoura N , SatouR, YoshidaYet al.: Adenovirus-mediated transfer of Bcl-x(L) protects neuronal cells from Bax-induced apoptosis. Exp. Cell Res.254(2), 221–231 (2000).
  • Xu L , KoumenisIL, TillyJL, GiffardRG: Overexpression of Bcl-xL protects astrocytes from glucose deprivation and is associated with higher glutathione, ferritin, and iron levels.Anesthesiology91(4), 1036–1046 (1999).
  • Panickar KS , NonnerD, BarrettJN: Overexpression of Bcl-xL protects septal neurons from prolonged hypoglycemia and from acute ischemia-like stress.Neuroscience135(1), 73–80 (2005).
  • Cao G , PeiW, GeHet al.: In vivo delivery of a Bcl-xL fusion protein containing the TAT protein transduction domain protects against ischemic brain injury and neuronal apoptosis. J. Neurosci.22(13), 5423–5431 (2002).
  • Asoh S , OhsawaI, MoriTet al.: Protection against ischemic brain injury by protein therapeutics. Proc. Natl Acad. Sci. USA99(26), 17107–17112 (2002).
  • Cherbonnel-Lasserre C , DosanjhMK: Suppression of apoptosis by overexpression of Bcl-2 or Bcl-xL promotes survival and mutagenesis after oxidative damage.Biochimie79(9–10), 613–617 (1997).
  • Cittelly DM , Nesic-TaylorO, Perez-Polo JR: Phosphorylation of Bcl-xL after spinal cord injury. J. Neurosci. Res. (2007) (In Press).
  • Cittelly DM , Nesic-TaylorO, Perez-Polo JR: Detrimental effects of anti-apoptotic treatments in spinal cord injury. Exp. Neurol. (2007) (In Press).
  • Vander Heiden MG , ChandelNS, SchumackerPT, ThompsonCB: Bcl-xL prevents cell death following growth factor withdrawal by facilitating mitochondrial ATP/ADP exchange.Mol. Cell3(2), 159–167 (1999).
  • Ankarcrona M , DypbuktJM, BonfocoEet al.: Glutamate-induced neuronal death: a succession of necrosis or apoptosis depending on mitochondrial function. Neuron15(4), 961–973 (1995).
  • Nicotera P , AnkarcronaM, BonfocoE, OrreniusS, LiptonSA: Neuronal necrosis and apoptosis: two distinct events induced by exposure to glutamate or oxidative stress.Adv. Neurol.72, 95–101 (1997).
  • Volbracht C , LeistM, NicoteraP: ATP controls neuronal apoptosis triggered by microtubule breakdown or potassium deprivation.Mol. Med.5(7), 477–489 (1999).
  • Beattie MS : Inflammation and apoptosis: linked therapeutic targets in spinal cord injury.Trends Mol. Med.10(12), 580–583 (2004).
  • Norenberg MD , SmithJ, MarcilloA: The pathology of human spinal cord injury: defining the problems.J. Neurotrauma21(4), 429–440 (2004).
  • Gibbons HM , DragunowM: Microglia induce neural cell death via a proximity-dependent mechanism involving nitric oxide.Brain Res.1084(1), 1–15 (2006).
  • Skaper SD , FacciL, CulbertAAet al.: P2X(7) receptors on microglial cells mediate injury to cortical neurons in vitro. Glia54(3), 234–242 (2006).
  • Nesic O , XuGY, McAdooDet al.: IL-1 receptor antagonist prevents apoptosis and caspase-3 activation after spinal cord injury. J. Neurotrauma18(9), 947–956 (2001).
  • Wu KL , ChanSH, ChaoYM, ChanJY: Expression of pro-inflammatory cytokine and caspase genes promotes neuronal apoptosis in pontine reticular formation after spinal cord transection.Neurobiol. Dis.14(1), 19–31 (2003).
  • Klapka N , HermannsS, StratenGet al.: Suppression of fibrous scarring in spinal cord injury of rat promotes long-distance regeneration of corticospinal tract axons, rescue of primary motoneurons in somatosensory cortex and significant functional recovery. Eur. J. Neurosci.22(12), 3047–3058 (2005).
  • Friedlander RM , GagliardiniV, RotelloRJ, YuanJ: Functional role of interleukin 1β (IL-1β) in IL-1β-converting enzyme-mediated apoptosis.J. Exp. Med.184(2), 717–724 (1996).
  • Nhan TQ , LilesWC, SchwartzSM: Physiological functions of caspases beyond cell death.Am. J. Pathol.169(3), 729–737 (2006).
  • Festoff BW , AmeenuddinS, ArnoldPMet al.: Minocycline neuroprotects, reduces microgliosis, and inhibits caspase protease expression early after spinal cord injury. J. Neurochem.97(5), 1314–1326 (2006).
  • Brambilla R , Bracchi-RicardV, HuWHet al.: Inhibition of astroglial nuclear factor κb reduces inflammation and improves functional recovery after spinal cord injury. J. Exp. Med.202(1), 145–156 (2005).
  • Bethea JR , NagashimaH, AcostaMCet al.: Systemically administered interleukin-10 reduces tumor necrosis factor-α production and significantly improves functional recovery following traumatic spinal cord injury in rats. J. Neurotrauma16(10), 851–863 (1999).
  • Brewer KL , BetheaJR, YezierskiRP: Neuroprotective effects of interleukin-10 following excitotoxic spinal cord injury.Exp. Neurol.159(2), 484–493 (1999).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.