41
Views
0
CrossRef citations to date
0
Altmetric
Review

Contribution of Disturbed Iron Metabolism to the Pathogenesis of Parkinson‘s Disease

, &
Pages 447-461 | Published online: 12 Jun 2008

Bibliography

  • Tan EK : The role of common genetic risk variants in Parkinson disease.Clin. Genet.72(5), 387–393 (2007).
  • Edwards TM , MyersJP: Environmental exposures and gene regulation in disease etiology.Environ. Health Perspect.115(9), 1264–1270 (2007).
  • Elbaz A , TranchantC: Epidemiologic studies of environmental exposures in Parkinson‘s disease.J. Neurol. Sci.262(1–2), 37–44 (2007).
  • Elbaz A , DufouilC, AlperovitchA: Interaction between genes and environment in neurodegenerative diseases.C R Biol.330(4), 318–328 (2007).
  • Riederer P , RauschWD, SchmidtBet al.: Biochemical fundamentals of Parkinson‘s disease. Mt Sinai J. Med.55(1), 21–28 (1988).
  • Riederer P , SoficE, RauschWDet al.: Transition metals, ferritin, glutathione, and ascorbic acid in parkinsonian brains. J. Neurochem.52(2), 515–520 (1989).
  • Sofic E , RiedererP, HeinsenHet al.: Increased iron (III) and total iron content in post mortem substantia nigra of parkinsonian brain. J. Neural Transm.74(3), 199–205 (1988).
  • Sofic E , PaulusW, JellingerK, RiedererP, YoudimMB: Selective increase of iron in substantia nigra zona compacta of parkinsonian brains.J. Neurochem.56(3), 978–982 (1991).
  • Gerlach M , Ben-ShacharD, RiedererP, YoudimMB: Altered brain metabolism of iron as a cause of neurodegenerative diseases?J. Neurochem.63(3), 793–807 (1994).
  • Berg D , GerlachM, YoudimMBet al.: Brain iron pathways and their relevance to Parkinson‘s disease. J. Neurochem.79(2), 225–236 (2001).
  • Gotz ME , DoubleK, GerlachM, Youdim MB, Riederer P: The relevance of iron in the pathogenesis of Parkinson‘s disease. Ann. NY Acad. Sci.1012, 193–208 (2004).
  • Gerlach M , DoubleKL, YoudimMB, RiedererP: Potential sources of increased iron in the substantia nigra of parkinsonian patients.J. Neural Transm. Suppl.70, 133–142 (2006).
  • Morawski M , MeineckeC, ReinertTet al.: Determination of trace elements in the human substantia nigra. Nucl. Instrum. Methods Phys. Res. B.231, 224–228 (2005).
  • Oakley AE , CollingwoodJF, DobsonJet al.: Individual dopaminergic neurons show raised iron levels in Parkinson disease. Neurology68(21), 1820–1825 (2007).
  • Jellinger K , PaulusW, Grundke-IqbalI, RiedererP, YoudimMB: Brain iron and ferritin in Parkinson‘s and Alzheimer‘s diseases.J. Neural Transm. Park. Dis. Dement. Sect.2(4), 327–340 (1990).
  • Jellinger K , KienzlE, RumpelmairGet al.: Iron–melanin complex in substantia nigra of parkinsonian brains: an x-ray microanalysis. J. Neurochem.59(3), 1168–1171 (1992).
  • Yoshida T , TanakaM, SotomatsuA, HiraiS, OkamotoK: Activated microglia cause iron-dependent lipid peroxidation in the presence of ferritin.Neuroreport9(9), 1929–1933 (1998).
  • Schipper HM , VininskyR, BrullR, SmallL, BrawerJR: Astrocyte mitochondria: a substrate for iron deposition in the aging rat substantia nigra.Exp. Neurol.152(2), 188–196 (1998).
  • Warmuth-Metz M , NaumannM, CsotiI, SolymosiL: Measurement of the midbrain diameter on routine magnetic resonance imaging: a simple and accurate method of differentiating between Parkinson disease and progressive supranuclear palsy.Arch. Neurol.58(7), 1076–1079 (2001).
  • Schenck JF : Magnetic resonance imaging of brain iron.J. Neurol. Sci.207(1–2), 99–102 (2003).
  • Drayer BP , OlanowW, BurgerP, Johnson GA, Herfkens R, Riederer S: Parkinson plus syndrome: diagnosis using high field MR imaging of brain iron. Radiology159(2), 493–498 (1986).
  • Norfray JF , ChiaradonnaNL, HeiserWJet al.: Brain iron in patients with Parkinson disease: MR visualization using gradient modification. Am. J. Neuroradiol.9(2), 237–240 (1988).
  • Brooks DJ , LuthertP, GadianD, Marsden CD: Does signal-attenuation on high-field T2-weighted MRI of the brain reflect regional cerebral iron deposition? Observations on the relationship between regional cerebral water proton T2 values and iron levels. J. Neurol. Neurosurg. Psychiatr.52(1), 108–111 (1989).
  • Bartzokis G , CummingsJL, MarkhamCHet al.: MRI evaluation of brain iron in earlier- and later-onset Parkinson‘s disease and normal subjects. Magn. Reson. Imaging17(2), 213–222 (1999).
  • Antonini A , LeendersKL, MeierD, Oertel WH, Boesiger P, Anliker M: T2 relaxation time in patients with Parkinson‘s disease. Neurology43(4), 697–700 (1993).
  • Atasoy HT , NuyanO, TuncT, Yorubulut M, Unal AE, Inan LE: T2-weighted MRI in Parkinson‘s disease; substantia nigra pars compacta hypointensity correlates with the clinical scores. Neurol. India52(3), 332–337 (2004).
  • Ordidge RJ , GorellJM, DeniauJC, Knight RA, Helpern JA: Assessment of relative brain iron concentrations using T2-weighted and T2*-weighted MRI at 3 Tesla. Magn. Reson. Med.32(3), 335–341 (1994).
  • Gorell JM , OrdidgeRJ, BrownGG, Deniau JC, Buderer NM, Helpern JA: Increased iron-related MRI contrast in the substantia nigra in Parkinson‘s disease. Neurology45(6), 1138–1143 (1995).
  • Oikawa H , SasakiM, TamakawaY, EharaS, TohyamaK: The substantia nigra in Parkinson disease: proton density-weighted spin-echo and fast short inversion time inversion-recovery MR findings.Am. J. Neuroradiol.23(10), 1747–1756 (2002).
  • Hutchinson M , RaffU, LebedevS: MRI correlates of pathology in parkinsonism: segmented inversion recovery ratio imaging (SIRRIM).Neuroimage20(3), 1899–1902 (2003).
  • Graham JM , PaleyMN, GrunewaldRA, HoggardN, GriffithsPD: Brain iron deposition in Parkinson‘s disease imaged using the PRIME magnetic resonance sequence.Brain123(Pt 12), 2423–2431 (2000).
  • Michaeli S , OzG, SorceDJet al.: Assessment of brain iron and neuronal integrity in patients with Parkinson‘s disease using novel MRI contrasts. Mov. Disord.22(3), 334–340 (2007).
  • Bartzokis G , CummingsJ, PerlmanS, HanceDB, MintzJ: Increased basal ganglia iron levels in Huntington disease.Arch. Neurol.56(5), 569–574 (1999).
  • Haacke EM , AyazM, KhanAet al.: Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs abnormal iron content in the brain. J. Magn. Reson. Imaging26(2), 256–264 (2007).
  • Brass SD , ChenNK, MulkernRV, Bakshi R: Magnetic resonance imaging of iron deposition in neurological disorders. Top. Magn. Reson. Imaging17(1), 31–40 (2006).
  • Kosta P , ArgyropoulouMI, MarkoulaS, KonitsiotisS: MRI evaluation of the basal ganglia size and iron content in patients with Parkinson‘s disease.J. Neurol.253(1), 26–32 (2006).
  • Stankiewicz J , PanterSS, NeemaM, Arora A, Batt CE, Bakshi R: Iron in chronic brain disorders: imaging and neurotherapeutic implications. Neurotherapeutics4(3), 371–386 (2007).
  • Berg D , SiefkerC, BeckerG: Echogenicity of the substantia nigra in Parkinson‘s disease and its relation to clinical findings.J. Neurol.248(8), 684–689 (2001).
  • Walter U , WittstockM, BeneckeR, Dressler D: Substantia nigra echogenicity is normal in non-extrapyramidal cerebral disorders but increased in Parkinson‘s disease. J. Neural Transm.109(2), 191–196 (2002).
  • Becker G , SeufertJ, BogdahnU, ReichmannH, ReinersK: Degeneration of substantia nigra in chronic Parkinson‘s disease visualized by transcranial color-coded real-time sonography.Neurology45(1), 182–184 (1995).
  • Spiegel J , HellwigD, MollersMOet al.: Transcranial sonography and 123IFP-CIT SPECT disclose complementary aspects of Parkinson‘s disease. Brain129(Pt 5), 1188–1193 (2006).
  • Ressner P , SkoloudikD, HlustikP, Kanovsky P: Hyperechogenicity of the substantia nigra in Parkinson‘s disease. J. Neuroimaging17(2), 164–167 (2007).
  • Okawa M , MiwaH, KajimotoYet al.: Transcranial sonography of the substantia nigra in Japanese patients with Parkinson‘s disease or atypical parkinsonism: clinical potential and limitations. Intern. Med.46(18), 1527–1531 (2007).
  • Huang YW , JengJS, TsaiCF, ChenLL, Wu RM: Transcranial imaging of substantia nigra hyperechogenicity in a Taiwanese cohort of Parkinson‘s disease. Mov. Disord.22(4), 550–555 (2007).
  • Tsai CF , WuRM, HuangYW, ChenLL, Yip PK, Jeng JS: Transcranial color-coded sonography helps differentiation between idiopathic Parkinson‘s disease and vascular parkinsonism. J. Neurol.254(4), 501–507 (2007).
  • Gaenslen A , UnmuthB, GodauJ, LiepeltI, Di Santo A, Schweitzer KJ: Prospective evaluation of the specificity and sensitivity of transcranial ultrasound in the differential diagnosis of Parkinson‘s disease. Lancet Neurol. (2008) (In Press).
  • Berg D , GroteC, RauschWDet al.: Iron accumulation in the substantia nigra in rats visualized by ultrasound. Ultrasound Med. Biol.25(6), 901–904 (1999).
  • Berg D , BeckerG, ZeilerBet al.: Vulnerability of the nigrostriatal system as detected by transcranial ultrasound. Neurology53(5), 1026–1031 (1999).
  • Berg D , RoggendorfW, SchroderUet al.: Echogenicity of the substantia nigra: association with increased iron content and marker for susceptibility to nigrostriatal injury. Arch. Neurol.59(6), 999–1005 (2002).
  • Zecca L , BergD, ArzbergerTet al.: In vivo detection of iron and neuromelanin by transcranial sonography: a new approach for early detection of substantia nigra damage. Mov. Disord.20(10), 1278–1285 (2005).
  • Berg D , SiefkerC, Ruprecht-DorflerP, BeckerG: Relationship of substantia nigra echogenicity and motor function in elderly subjects.Neurology56(1), 13–17 (2001).
  • Berg D , JabsB, MerschdorfU, Beckmann H, Becker G: Echogenicity of substantia nigra determined by transcranial ultrasound correlates with severity of parkinsonian symptoms induced by neuroleptic therapy. Biol. Psychiatry50(6), 463–467 (2001).
  • Thomas M , HayflickSJ, JankovicJ: Clinical heterogeneity of neurodegeneration with brain iron accumulation (Hallervorden–Spatz syndrome) and pantothenate kinase-associated neurodegeneration.Mov. Disord.19(1), 36–42 (2004).
  • Kaur D , YantiriF, RajagopalanSet al.: Genetic or pharmacological iron chelation prevents MPTP-induced neurotoxicity in vivo: a novel therapy for Parkinson‘s disease. Neuron37(6), 899–909 (2003).
  • Ruprecht-Dorfler P , BergD, TuchaOet al.: Echogenicity of the substantia nigra in relatives of patients with sporadic Parkinson‘s disease. Neuroimage18(2), 416–422 (2003).
  • Felletschin B , BauerP, WalterUet al.: Screening for mutations of the ferritin light and heavy genes in Parkinson‘s disease patients with hyperechogenicity of the substantia nigra. Neurosci. Lett.352(1), 53–56 (2003).
  • Deplazes J , SchobelK, HochstrasserHet al.: Screening for mutations of the IRP2 gene in Parkinson‘s disease patients with hyperechogenicity of the substantia nigra. J. Neural Transm.111(4), 515–521 (2004).
  • Hochstrasser H , BauerP, WalterUet al.: Ceruloplasmin gene variations and substantia nigra hyperechogenicity in Parkinson disease. Neurology63(10), 1912–1917 (2004).
  • Akbas N , HochstrasserH, DeplazesJet al.: Screening for mutations of the HFE gene in Parkinson‘s disease patients with hyperechogenicity of the substantia nigra. Neurosci. Lett.407(1), 16–19 (2006).
  • Berg D , HochstrasserH, SchweitzerKJ, RiessO: Disturbance of iron metabolism in Parkinson‘s disease – ultrasonography as a biomarker.Neurotox. Res.9(1), 1–13 (2006).
  • Klomp LW , GitlinJD: Expression of the ceruloplasmin gene in the human retina and brain: implications for a pathogenic model in aceruloplasminemia.Hum. Mol. Genet.5(12), 1989–1996 (1996).
  • Curtis AR , FeyC, MorrisCMet al.: Mutation in the gene encoding ferritin light polypeptide causes dominant adult-onset basal ganglia disease. Nat. Genet.28(4), 350–354 (2001).
  • Kohno S , MiyajimaH, TakahashiY, Inoue Y: Aceruloplasminemia with a novel mutation associated with parkinsonism. Neurogenetics2(4), 237–238 (2000).
  • Bosio S , De Gobbi M, Roetto Aet al.: Anemia and iron overload due to compound heterozygosity for novel ceruloplasmin mutations. Blood100(6), 2246–2248 (2002).
  • Thompson K , MenziesS, MuckenthalerMet al.: Mouse brains deficient in H-ferritin have normal iron concentration but a protein profile of iron deficiency and increased evidence of oxidative stress. J. Neurosci. Res.71(1), 46–63 (2003).
  • LaVaute T , SmithS, CoopermanSet al.: Targeted deletion of the gene encoding iron regulatory protein-2 causes misregulation of iron metabolism and neurodegenerative disease in mice. Nat. Genet.27(2), 209–214 (2001).
  • Borie C , GaspariniF, VerpillatPet al.: Association study between iron-related genes polymorphisms and Parkinson‘s disease. J. Neurol.249(7), 801–804 (2002).
  • Costa-Mallen P , CheckowayH, ZabetiAet al.: The functional polymorphism of the hemoglobin-binding protein haptoglobin influences susceptibility to idiopathic Parkinson‘s disease. Am. J. Med. Genet. B. Neuropsychiatr. Genet.147B(2), 216–222 (2007).
  • Haaxma CA , BloemBR, BormGFet al.: Gender differences in Parkinson‘s disease. J. Neurol. Neurosurg. Psychiatr.78(8), 819–824 (2007).
  • Bartzokis G , TishlerTA, LuPHet al.: Brain ferritin iron may influence age- and gender-related risks of neurodegeneration. Neurobiol. Aging28(3), 414–423 (2007).
  • Xu X , WangQ, ZhangM: Age, gender, and hemispheric differences in iron deposition in the human brain: an in vivo MRI study.Neuroimage40(1), 35–42 (2008).
  • Oestreicher E , SengstockGJ, RiedererP, OlanowCW, DunnAJ, ArendashGW: Degeneration of nigrostriatal dopaminergic neurons increases iron within the substantia nigra: a histochemical and neurochemical study.Brain Res.660(1), 8–18 (1994).
  • Kortekaas R , LeendersKL, van Oostrom JCet al.: Blood–brain barrier dysfunction in parkinsonian midbrain in vivo.Ann. Neurol.57(2), 176–179 (2005).
  • Tanner CM , OttmanR, GoldmanSMet al.: Parkinson disease in twins: an etiologic study. JAMA281(4), 341–346 (1999).
  • Lan J , JiangDH: Excessive iron accumulation in the brain: a possible potential risk of neurodegeneration in Parkinson‘s disease.J. Neural Transm.104(6–7), 649–660 (1997).
  • Kaur D , PengJ, ChintaSJet al.: Increased murine neonatal iron intake results in Parkinson-like neurodegeneration with age. Neurobiol. Aging28(6), 907–913 (2007).
  • Peng IF , BerkeBA, ZhuY, LeeWH, Chen W, Wu CF: Temperature-dependent developmental plasticity of Drosophila neurons: cell-autonomous roles of membrane excitability, Ca2+ influx, and cAMP signaling. J. Neurosci.27(46), 12611–12622 (2007).
  • Dick FD , De Palma G, Ahmadi Aet al.: Environmental risk factors for Parkinson‘s disease and parkinsonism: the Geoparkinson study. Occup. Environ. Med.64(10), 666–672 (2007).
  • Dick FD , De Palma G, Ahmadi Aet al.: Gene–environment interactions in parkinsonism and Parkinson‘s disease: the Geoparkinson study. Occup. Environ. Med.64(10), 673–680 (2007).
  • Faucheux BA , NillesseN, DamierPet al.: Expression of lactoferrin receptors is increased in the mesencephalon of patients with Parkinson disease. Proc. Natl Acad. Sci. USA92(21), 9603–9607 (1995).
  • Faucheux BA , HauwJJ, AgidY, HirschEC: The density of 125I-transferrin binding sites on perikarya of melanized neurons of the substantia nigra is decreased in Parkinson‘s disease.Brain Res.749(1), 170–174 (1997).
  • Morris CM , CandyJM, OmarS, Bloxham CA, Edwardson JA: Transferrin receptors in the parkinsonian midbrain. Neuropathol. Appl. Neurobiol.20(5), 468–472 (1994).
  • Dexter DT , CarayonA, VidailhetMet al.: Decreased ferritin levels in brain in Parkinson‘s disease. J. Neurochem.55(1), 16–20 (1990).
  • Logroscino G , MarderK, GrazianoJet al.: Dietary iron, animal fats, and risk of Parkinson‘s disease. Mov. Disord.13(Suppl. 1), 13–16 (1998).
  • Torsdottir G , KristinssonJ, SveinbjornsdottirS, SnaedalJ, Johannesson T: Copper, ceruloplasmin, superoxide dismutase and iron parameters in Parkinson‘s disease. Pharmacol. Toxicol.85(5), 239–243 (1999).
  • Leveugle B , FaucheuxBA, BourasCet al.: Cellular distribution of the iron-binding protein lactotransferrin in the mesencephalon of Parkinson‘s disease cases. Acta Neuropathol.91(6), 566–572 (1996).
  • Hallgren B , SouranderP: The effect of age on the non-haem iron in the human brain.J. Neurochem.3(1), 41–51 (1958).
  • Dwork AJ , LawlerG, ZybertPAet al.: An autoradiographic study of the uptake and distribution of iron by the brain of the young rat. Brain Res.518(1–2), 31–39 (1990).
  • Mann VM , CooperJM, DanielSEet al.: Complex I, iron, and ferritin in Parkinson‘s disease substantia nigra. Ann. Neurol.36(6), 876–881 (1994).
  • Connor JR , SnyderBS, BeardJL, FineRE, MufsonEJ: Regional distribution of iron and iron-regulatory proteins in the brain in aging and Alzheimer‘s disease.J. Neurosci. Res.31(2), 327–335 (1992).
  • Connor JR , SnyderBS, ArosioP, Loeffler DA, LeWitt P: A quantitative analysis of isoferritins in select regions of aged, parkinsonian, and Alzheimer‘s diseased brains. J. Neurochem.65(2), 717–724 (1995).
  • Griffiths PD , DobsonBR, JonesGR, ClarkeDT: Iron in the basal ganglia in Parkinson‘s disease. An in vitro study using extended x-ray absorption fine structure and cryo-electron microscopy.Brain122(Pt 4), 667–673 (1999).
  • Meneghini R : Iron homeostasis, oxidative stress, and DNA damage.Free Radic. Biol. Med.23(5), 783–792 (1997).
  • Hu J , ConnorJR: Demonstration and characterization of the iron regulatory protein in human brain.J. Neurochem.67(2), 838–844 (1996).
  • Smith MA , WehrK, HarrisPL, SiedlakSL, ConnorJR, PerryG: Abnormal localization of iron regulatory protein in Alzheimer‘s disease.Brain Res.788(1–2), 232–236 (1998).
  • Boyer RF , GrabillTW, PetrovichRM: Reductive release of ferritin iron: a kinetic assay.Anal. Biochem.174(1), 17–22 (1988).
  • Monteiro HP , WinterbournCC: 6-hydroxydopamine releases iron from ferritin and promotes ferritin-dependent lipid peroxidation.Biochem. Pharmacol.38(23), 4177–4182 (1989).
  • Lapenna D , DegioiaS, CiofaniG, CuccurulloF: Captopril induces iron release from ferritin and oxidative stress.J. Pharm. Pharmacol.47, 59–61 (1995).
  • Double KL , MaywaldM, SchmittelM, RiedererP, GerlachM: In vitro studies of ferritin iron release and neurotoxicity.J. Neurochem.70(6), 2492–2499 (1998).
  • Biemond P , van Eijk HG, Swaak AJ, Koster JF: Iron mobilization from ferritin by superoxide derived from stimulated polymorphonuclear leukocytes. Possible mechanism in inflammation diseases. J. Clin. Invest.73(6), 1576–1579 (1984).
  • Reif DW , SimmonsRD: Nitric oxide mediates iron release from ferritin.Arch. Biochem. Biophys.283(2), 537–541 (1990).
  • Youdim MB , Ben-ShacharD, RiedererP: The possible role of iron in the etiopathology of Parkinson‘s disease.Mov. Disord.8(1), 1–12 (1993).
  • Yoshida T , TanakaM, SotomatsuA, Hirai S: Activated microglia cause superoxide-mediated release of iron from ferritin. Neurosci. Lett.190(1), 21–24 (1995).
  • Napolitano A , CrescenziO, PezzellaA, ProtaG: Generation of the neurotoxin 6-hydroxydopamine by peroxidase/H2O2 oxidation of dopamine.J. Med. Chem.38(6), 917–922 (1995).
  • Jellinger K , LinertL, KienzlE, Herlinger E, Youdim MB: Chemical evidence for 6-hydroxydopamine to be an endogenous toxic factor in the pathogenesis of Parkinson‘s disease. J. Neural Transm. Suppl.46, 297–314 (1995).
  • Linert W , HerlingerE, JamesonRF, Kienzl E, Jellinger K, Youdim MB: Dopamine, 6-hydroxydopamine, iron, and dioxygen – their mutual interactions and possible implication in the development of Parkinson‘s disease. Biochim. Biophys. Acta1316(3), 160–168 (1996).
  • Andrew R , WatsonDG, BestSA, Midgley JM, Wenlong H, Petty RK: The determination of hydroxydopamines and other trace amines in the urine of parkinsonian patients and normal controls. Neurochem. Res.18(11), 1175–1177 (1993).
  • Connor JR , MenziesSL, St Martin SM, Mufson EJ: Cellular distribution of transferrin, ferritin, and iron in normal and aged human brains. J. Neurosci. Res.27(4), 595–611 (1990).
  • Double KL , GerlachM, YoudimMB, RiedererP: Impaired iron homeostasis in Parkinson‘s disease.J. Neural Transm. Suppl.60, 37–58 (2000).
  • Fedorow H , PickfordR, HookJMet al.: Dolichol is the major lipid component of human substantia nigra neuromelanin. J. Neurochem.92(4), 990–995 (2005).
  • Lopiano L , DigilioG, FasanoMet al.: Iron and neuromelanin in Parkinson‘s disease. J. Neural Transm.106, 24 (1999).
  • Gerlach M , TrautweinAX, ZeccaL, Youdim MB, Riederer P: Mossbauer spectroscopic studies of purified human neuromelanin isolated from the substantia nigra. J. Neurochem.65(2), 923–926 (1995).
  • Double KL , GerlachM, SchunemannVet al.: Iron-binding characteristics of neuromelanin of the human substantia nigra. Biochem. Pharmacol.66(3), 489–494 (2003).
  • Good PF , OlanowCW, PerlDP: Neuromelanin-containing neurons of the substantia nigra accumulate iron and aluminum in Parkinson‘s disease: a LAMMA study.Brain Res.593(2), 343–346 (1992).
  • Zecca L , ShimaT, StroppoloAet al.: Interaction of neuromelanin and iron in substantia nigra and other areas of human brain. Neuroscience73(2), 407–415 (1996).
  • Kienzl E , PuchingerL, JellingerK, Linert W, Stachelberger H, Jameson RF: The role of transition metals in the pathogenesis of Parkinson‘s disease. J. Neurol. Sci.134(Suppl.) 69–78 (1995).
  • Double KL , RiedererP, GerlachM: Significance of neuromelanin for neurodegeneration in Parkinson‘s disease.Drug News Perspect.12, 333–340 (1999).
  • Schipper HM : Heme oxygenase expression in human central nervous system disorders.Free Radic. Biol. Med.37(12), 1995–2011 (2004).
  • Polymeropoulos MH , LavedanC, LeroyEet al.: Mutation in the α-synuclein gene identified in families with Parkinson‘s disease. Science276(5321), 2045–2047 (1997).
  • Kruger R , KuhnW, MullerTet al.: Ala30Pro mutation in the gene encoding α-synuclein in Parkinson‘s disease. Nat. Genet.18(2), 106–108 (1998).
  • Singleton AB , FarrerM, JohnsonJet al.: α-synuclein locus triplication causes Parkinson‘s disease. Science302(5646), 841 (2003).
  • Golts N , SnyderH, FrasierM, TheislerC, ChoiP, WolozinB: Magnesium inhibits spontaneous and iron-induced aggregation of α-synuclein.J. Biol. Chem.277(18), 16116–16123 (2002).
  • Hashimoto M , RockensteinE, CrewsL, MasliahE: Role of protein aggregation in mitochondrial dysfunction and neurodegeneration in Alzheimer‘s and Parkinson‘s diseases.Neuromolecular Med.4(1–2), 21–36 (2003).
  • Giasson BI , DudaJE, MurrayIVet al.: Oxidative damage linked to neurodegeneration by selective α-synuclein nitration in synucleinopathy lesions. Science290(5493), 985–989 (2000).
  • Munch G , LuthHJ, WongAet al.: Crosslinking of α-synuclein by advanced glycation endproducts – an early pathophysiological step in Lewy body formation?J. Chem. Neuroanat.20(3–4), 253–257 (2000).
  • Lee EN , LeeSY, LeeD, KimJ, PaikSR: Lipid interaction of α-synuclein during the metal-catalyzed oxidation in the presence of Cu2+ and H2O2.J. Neurochem.84(5), 1128–1142 (2003).
  • Bharathi , IndiSS, RaoKS: Copper- and iron-induced differential fibril formation in α-synuclein: TEM study.Neurosci. Lett.424(2), 78–82 (2007).
  • Uversky VN : Neuropathology, biochemistry, and biophysics of α-synuclein aggregation.J. Neurochem.103(1), 17–37 (2007).
  • Cole NB , MurphyDD, LebowitzJ, Di NotoL, LevineRL, NussbaumRL: Metal-catalyzed oxidation of α-synuclein: helping to define the relationship between oligomers, protofibrils, and filaments.J. Biol. Chem.280(10), 9678–9690 (2005).
  • Jenner P , OlanowCW: Understanding cell death in Parkinson‘s disease.Ann. Neurol.44(3 Suppl. 1), S72–S84 (1998).
  • Gaeta A , HiderRC: The crucial role of metal ions in neurodegeneration: the basis for a promising therapeutic strategy.Br. J. Pharmacol.146(8), 1041–1059 (2005).
  • Castellani RJ , SiedlakSL, PerryG, Smith MA: Sequestration of iron by Lewy bodies in Parkinson‘s disease. Acta Neuropathol. (Berl.)100(2), 111–114 (2000).
  • Turnbull S , TabnerBJ, El-AgnafOM, Moore S, Davies Y, Allsop D: α-synuclein implicated in Parkinson‘s disease catalyses the formation of hydrogen peroxide in vitro. Free Radic. Biol. Med.30(10), 1163–1170 (2001).
  • Junn E , MouradianMM: Human α-synuclein over-expression increases intracellular reactive oxygen species levels and susceptibility to dopamine.Neurosci. Lett.320(3), 146–150 (2002).
  • Wang C , KoHS, ThomasBet al.: Stress-induced alterations in parkin solubility promote parkin aggregation and compromise parkin‘s protective function. Hum. Mol. Genet.14(24), 3885–3897 (2005).
  • Jimenez Del Rio M , MorenoS, Garcia-OspinaGet al.: Autosomal recessive juvenile parkinsonism Cys212Tyr mutation in parkin renders lymphocytes susceptible to dopamine- and iron-mediated apoptosis. Mov. Disord.19(3), 324–330 (2004).
  • Yao D , GuZ, NakamuraTet al.: Nitrosative stress linked to sporadic Parkinson‘s disease: S-nitrosylation of parkin regulates its E3 ubiquitin ligase activity. Proc. Natl Acad. Sci. USA101(29), 10810–10814 (2004).
  • Lipton SA , NakamuraT, YaoD, ShiZQ, UeharaT, GuZ: Comment on ‘S-nitrosylation of parkin regulates ubiquitination and compromises parkin‘s protective function‘.Science308(5730), 1870; author reply 1870 (2005).
  • Pawlyk AC , GiassonBI, SampathuDMet al.: Novel monoclonal antibodies demonstrate biochemical variation of brain parkin with age. J. Biol. Chem.278(48), 48120–48128 (2003).
  • Nishikawa K , LiH, KawamuraRet al.: Alterations of structure and hydrolase activity of parkinsonism-associated human ubiquitin carboxyl-terminal hydrolase L1 variants. Biochem. Biophys. Res. Commun.304(1), 176–183 (2003).
  • Choi J , LeveyAI, WeintraubSTet al.: Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson‘s and Alzheimer‘s diseases. J. Biol. Chem.279(13), 13256–13264 (2004).
  • Chung KK , ThomasB, LiXet al.: S-nitrosylation of parkin regulates ubiquitination and compromises parkin‘s protective function. Science304(5675), 1328–1331 (2004).
  • Ciechanover A , BrundinP: The ubiquitin proteasome system in neurodegenerative diseases: sometimes the chicken, sometimes the egg.Neuron40(2), 427–446 (2003).
  • Zhou W , ZhuM, WilsonMA, PetskoGA, FinkAL: The oxidation state of DJ-1 regulates its chaperone activity toward α-synuclein.J. Mol. Biol.356(4), 1036–1048 (2006).
  • Shendelman S , JonasonA, MartinatC, LeeteT, AbeliovichA: DJ-1 is a redox-dependent molecular chaperone that inhibits α-synuclein aggregate formation.PLoS Biol.2(11), E362 (2004).
  • Mizuno Y , OhtaS, TanakaMet al.: Deficiencies in complex I subunits of the respiratory chain in Parkinson‘s disease. Biochem. Biophys. Res. Commun.163(3), 1450–1455 (1989).
  • Reichmann H , JanetzkyB: Mitochondrial dysfunction – a pathogenetic factor in Parkinson‘s disease.J. Neurol.247(Suppl. 2), II63–II68 (2000).
  • Beal MF : Mitochondrial dysfunction and oxidative damage in Alzheimer‘s and Parkinson‘s diseases and coenzyme Q10 as a potential treatment.J. Bioenerg. Biomembr.36(4), 381–386 (2004).
  • Liu Y , FiskumG, SchubertD: Generation of reactive oxygen species by the mitochondrial electron transport chain.J. Neurochem.80(5), 780–787 (2002).
  • Liu B , GaoHM, WangJY, JeohnGH, CooperCL, HongJS: Role of nitric oxide in inflammation-mediated neurodegeneration.Ann. NY Acad. Sci.962, 318–331 (2002).
  • Shamoto-Nagai M , MaruyamaW, KatoYet al.: An inhibitor of mitochondrial complex I, rotenone, inactivates proteasome by oxidative modification and induces aggregation of oxidized proteins in SH–SY5Y cells. J. Neurosci. Res.74(4), 589–597 (2003).
  • Kotake Y , OhtaS: MPP+ analogs acting on mitochondria and inducing neuro-degeneration.Curr. Med. Chem.10(23), 2507–2516 (2003).
  • Gu M , CooperJM, TaanmanJW, Schapira AH: Mitochondrial DNA transmission of the mitochondrial defect in Parkinson‘s disease. Ann. Neurol.44(2), 177–186 (1998).
  • Carreras MC , FrancoMC, PeraltaJG, PoderosoJJ: Nitric oxide, complex I, and the modulation of mitochondrial reactive species in biology and disease.Mol. Aspects Med.25(1–2), 125–139 (2004).
  • Naoi M , MaruyamaW, AkaoY, ZhangJ, ParvezH: Apoptosis induced by an endogenous neurotoxin, N-methyl(R)salsolinol, in dopamine neurons.Toxicology153(1–3), 123–141 (2000).
  • Davis GC , WilliamsAC, MarkeySPet al.: Chronic parkinsonism secondary to intravenous injection of meperidine analogues. Psychiatry Res.1(3), 249–254 (1979).
  • Langston JW , BallardP, TetrudJW, IrwinI: Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis.Science219(4587), 979–980 (1983).
  • Chan TS , TengS, WilsonJX, GalatiG, Khan S, O‘Brien PJ: Coenzyme Q cytoprotective mechanisms for mitochondrial complex I cytopathies involves NAD(P)H: quinone oxidoreductase 1(NQO1). Free Radic. Res.36(4), 421–427 (2002).
  • Sherer TB , BetarbetR, StoutAKet al.: An in vitro model of Parkinson‘s disease: linking mitochondrial impairment to altered α-synuclein metabolism and oxidative damage. J. Neurosci.22(16), 7006–7015 (2002).
  • Fiskum G , StarkovA, PolsterBM, ChinopoulosC: Mitochondrial mechanisms of neural cell death and neuroprotective interventions in Parkinson‘s disease.Ann. NY Acad. Sci.991, 111–119 (2003).
  • Kanthasamy AG , KitazawaM, KaulSet al.: Proteolytic activation of proapoptotic kinase PKCδ is regulated by overexpression of Bcl-2: implications for oxidative stress and environmental factors in Parkinson‘s disease. Ann. NY Acad. Sci.1010, 683–686 (2003).
  • Rossi L , LombardoMF, CirioloMR, Rotilio G: Mitochondrial dysfunction in neurodegenerative diseases associated with copper imbalance. Neurochem. Res.29(3), 493–504 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.