57
Views
0
CrossRef citations to date
0
Altmetric
Review

Dopamine System Genes and ADHD: A Review of the Evidence

&
Pages 705-728 | Published online: 28 Oct 2008

Bibliography

  • Szatmari P , OffordDR, BoyleMH: Ontario Child Health Study: prevalence of attention deficit disorder with hyperactivity.J. Child Psychol. Psychiatry30, 219–230 (1989).
  • American Psychiatric Association: Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition. American Psychiatric Association. Washington DC, USA (1994).
  • Biederman J , MickE, FaraoneSV: Age-dependent decline of symptoms of attention deficit hyperactivity disorder: impact of remission definition and symptom type.Am. J. Psychiatry157, 816–818 (2000).
  • Hart EL , LaheyBB, LoeberR, ApplegateB, FrickPJ: Developmental change in attention-deficit hyperactivity disorder in boys: a four-year longitudinal study.J. Abnorm. Child Psychol.23, 729–749 (1995).
  • Barkley RA , FischerM, SmallishL, FletcherK: The persistence of attention-deficit/hyperactivity disorder into young adulthood as a function of reporting source and definition of disorder.J. Abnorm. Psychol.111, 279–289 (2002).
  • Stein MA , McGoughJJ: The pharmacogenomic era: promise for personalizing attention deficit hyperactivity disorder therapy.Child Adolesc. Psychiatr. Clin. N. Am.17, 475–490 (2008).
  • Polanczyk G , ZeniC, GenroJP, RomanT, HutzMH, RohdeLA: Attention-deficit/hyperactivity disorder: advancing on Pharmacogenomics.Pharmacogenomics6, 225–234 (2005).
  • Levy F : What do dopamine transporter and catechol-O-methyltransferase tell us about attention deficit–hyperactivity disorder? Pharmacogenomic implications.Aust. NZ J. Psychiatry41, 10–16 (2007).
  • Thapar A , HervasA, McGuffinP: Childhood hyperactivity scores are highly heritable and show sibling competition effects: twin study evidence.Behav. Genet.25, 537–544 (1995).
  • Gjone H , StevensonJ, SundetJM: Genetic influence on parent-reported attention-related problems in a Norwegian general population twin sample.J. Am. Acad. Child. Adolesc. Psychiatry35, 588–596; discussion 596–598 (1996).
  • Levy F , HayDA, McStephenM, WoodC, WaldmanI: Attention-deficit hyperactivity disorder: a category or a continuum? Genetic analysis of a large-scale twin study.J. Am. Acad. Child. Adolesc. Psychiatry36, 737–744 (1997).
  • Sherman DK , IaconoWG, McGueMK: Attention-deficit hyperactivity disorder dimensions: a twin study of inattention and impulsivity–hyperactivity.J. Am. Acad. Child. Adolesc. Psychiatry36, 745–753 (1997).
  • Eaves LJ , SilbergJL, MeyerJMet al.: Genetics and developmental psychopathology: 2. The main effects of genes and environment on behavioral problems in the Virginia Twin Study of Adolescent Behavioral Development.J. Child Psychol. Psychiatry38, 965–980 (1997).
  • Thapar A , HarringtonR, RossK, McGuffinP: Does the definition of ADHD affect heritability?J. Am. Acad. Child. Adolesc. Psychiatry39, 1528–1536 (2000).
  • Levy F , McStephenM, HayDA: The diagnostic genetics of ADHD symptoms and subtypes. In: Attention, Genes and ADHD. LevyF, HayD (Eds). Brunner-Routledge, Hove, UK, 35–57 (2001).
  • Rasmussen ER , NeumanRJ, HeathAC, LevyF, HayDA, ToddRD: Replication of the latent class structure of attention-deficit/hyperactivity disorder (ADHD) subtypes in a sample of Australian twins.J. Child Psychol. Psychiatry43, 1018–1028 (2002).
  • Todd RD , RasmussenER, NeumanRJet al.: Familiality and heritability of subtypes of attention deficit hyperactivity disorder in a population sample of adolescent female twins.Am. J. Psychiatry158, 1891–1898 (2001).
  • Larsson JO , LarssonH, LichtensteinP: Genetic and environmental contributions to stability and change of ADHD symptoms between 8 and 13 years of age: a longitudinal twin study.J. Am. Acad. Child. Adolesc. Psychiatry43, 1267–1275 (2004).
  • Pick LH , HalperinJM, SchwartzST, NewcornJH: A longitudinal study of neurobiological mechanisms in boys with attention-deficit hyperactivity disorder: preliminary findings.Biol. Psychiatry45, 371–373 (1999).
  • Biegon A , GreunerN: Age-related changes in serotonin 5HT2 receptors on human blood platelets.Psychopharmacology (Berl.)108, 210–212 (1992).
  • Meng SZ , OzawaY, ItohM, TakashimaS: Developmental and age-related changes of dopamine transporter, and dopamine D1 and D2 receptors in human basal ganglia.Brain Res.843, 136–144 (1999).
  • Levy F , HayDA, BennettKS, McStephenM: Gender differences in ADHD subtype comorbidity.J. Am. Acad. Child. Adolesc. Psychiatry.44, 368–376 (2005).
  • Biederman J , FaraoneSV, MonuteauxMC: Differential effect of environmental adversity by gender: Rutter‘s index of adversity in a group of boys and girls with and without ADHD.Am. J. Psychiatry159, 1556–1562 (2002).
  • Price TS , SimonoffE, WaldmanI, AshersonP, PlominR: Hyperactivity in preschool children is highly heritable.J. Am. Acad. Child. Adolesc. Psychiatry40, 1362–1364 (2001).
  • Hudziak JJ , DerksEM, AlthoffRR, RettewDC, BoomsmaDI: The genetic and environmental contributions to attention deficit hyperactivity disorder as measured by the Conners‘ Rating Scales – Revised.Am. J. Psychiatry162, 1614–1620 (2005).
  • Rietveld MJ , HudziakJJ, BartelsM, van Beijsterveldt CE, Boomsma DI: Heritability of attention problems in children: longitudinal results from a study of twins, age 3 to 12. J. Child Psychol. Psychiatry45, 577–588 (2004).
  • Kuntsi J , RijsdijkF, RonaldA, AshersonP, PlominR: Genetic influences on the stability of attention-deficit/hyperactivity disorder symptoms from early to middle childhood.Biol. Psychiatry57, 647–654 (2005).
  • McLoughlin G , RonaldA, KuntsiJ, AshersonP, PlominR: Genetic support for the dual nature of attention deficit hyperactivity disorder: substantial genetic overlap between the inattentive and hyperactive-impulsive components.J. Abnorm. Child Psychol.35, 999–1008 (2007).
  • Dluzen DE : Neuroprotective effects of estrogen upon the nigrostriatal dopaminergic system.J. Neurocytol.29, 387–399 (2000).
  • Zhou W , CunninghamKA, ThomasML: Estrogen regulation of gene expression in the brain: a possible mechanism altering the response to psychostimulants in female rats.Brain Res. Mol. Brain Res.100, 75–83 (2002).
  • McEwen BS , AlvesSE: Estrogen actions in the central nervous system.Endocr. Rev.20, 279–307 (1999).
  • Lee SH , MouradianMM: Up-regulation of D1A dopamine receptor gene transcription by estrogen.Mol. Cell. Endocrinol.156, 151–157 (1999).
  • Wender PH : Minimal brain dysfunction in children. Wiley-Liss, NY, USA (1971).
  • Levy F , SwansonJM: Timing, space and ADHD: the dopamine theory revisited.Aust. NZ J. Psychiatry35, 504–511 (2001).
  • Solanto MV : Dopamine dysfunction in AD/HD: integrating clinical and basic neuroscience research.Behav. Brain Res.130, 65–71 (2002).
  • Solanto MV : Neuropsychopharmacological mechanisms of stimulant drug action in attention-deficit hyperactivity disorder: a review and integration.Behav. Brain Res.94, 127–152 (1998).
  • Levy F : The dopamine theory of attention deficit hyperactivity disorder (ADHD).Aust. NZ J. Psychiatry25, 277–283 (1991).
  • van der Kooij MA , GlennonJC: Animal models concerning the role of dopamine in attention-deficit hyperactivity disorder.Neurosci. Biobehav. Rev.31, 597–618 (2007).
  • Volkow ND , WangGJ, FowlerJS, DingYS: Imaging the effects of methylphenidate on brain dopamine: new model on its therapeutic actions for attention-deficit/hyperactivity disorder.Biol. Psychiatry57, 1410–1415 (2005).
  • Swanson JM , KinsbourneM, NiggJet al.: Etiologic subtypes of attention-deficit/hyperactivity disorder: brain imaging, molecular genetic and environmental factors and the dopamine hypothesis.Neuropsychol. Rev.17, 39–59 (2007).
  • Seeman P , MadrasBK: Anti-hyperactivity medication: methylphenidate and amphetamine.Mol. Psychiatry3, 386–396 (1998).
  • Giros B , JaberM, JonesSR, WightmanRM, CaronMG: Hyperlocomotion and indifference to cocaine and amphetamine in mice lacking the dopamine transporter.Nature379, 606–612 (1996).
  • Clifford JJ , TigheO, CrokeDT, SibleyDR, DragoJ, WaddingtonJL: Topographical evaluation of the phenotype of spontaneous behaviour in mice with targeted gene deletion of the D1A dopamine receptor: paradoxical elevation of grooming syntax.Neuropharmacology37, 1595–1602 (1998).
  • Xu M , MoratallaR, GoldLHet al.: Dopamine D1 receptor mutant mice are deficient in striatal expression of dynorphin and in dopamine-mediated behavioral responses.Cell79, 729–742 (1994).
  • Xu M , HuXT, CooperDCet al.: Elimination of cocaine-induced hyperactivity and dopamine-mediated neurophysiological effects in dopamine D1 receptor mutant mice.Cell79, 945–955 (1994).
  • Avale ME , FalzoneTL, GelmanDM, LowMJ, GrandyDK, RubinsteinM: The dopamine D4 receptor is essential for hyperactivity and impaired behavioral inhibition in a mouse model of attention deficit/hyperactivity disorder.Mol. Psychiatry9, 718–726 (2004).
  • Mill J : Rodent models: utility for candidate gene studies in human attention-deficit hyperactivity disorder (ADHD).J. Neurosci. Methods166, 294–305 (2007).
  • Quist JF , KennedyJL: Genetics of childhood disorders: XXIII. ADHD, part 7: the serotonin system.J. Am. Acad. Child. Adolesc. Psychiatry40, 253–256 (2001).
  • Arnsten AF : Fundamentals of attention-deficit/hyperactivity disorder: circuits and pathways.J. Clin. Psychiatry8(Suppl. 67), 7–12 (2006).
  • Carlsson ML : On the role of prefrontal cortex glutamate for the antithetical phenomenology of obsessive compulsive disorder and attention deficit hyperactivity disorder.Prog. Neuropsychopharmacol. Biol. Psychiatry25, 5–26 (2001).
  • Oades RD : Dopamine may be ‘hyper‘ with respect to noradrenaline metabolism, but ‘hypo‘ with respect to serotonin metabolism in children with attention-deficit hyperactivity disorder.Behav. Brain Res.130, 97–102 (2002).
  • Sagvolden T , RussellVA, AaseH, JohansenEB, FarshbafM: Rodent models of attention-deficit/hyperactivity disorder.Biol. Psychiatry57, 1239–1247 (2005).
  • Russell VA : Reprint of ‘Neurobiology of animal models of attention-deficit hyperactivity disorder‘.J. Neurosci. Methods166, I–XIV (2007).
  • Zhuang X , OostingRS, JonesSRet al.: Hyperactivity and impaired response habituation in hyperdopaminergic mice.Proc. Natl Acad. Sci. USA98, 1982–1987 (2001).
  • Belluscio L , GoldGH, NemesA, AxelR: Mice deficient in G(olf) are anosmic.Neuron20, 69–81 (1998).
  • Hess EJ , CollinsKA, WilsonMC: Mouse model of hyperkinesis implicates SNAP-25 in behavioral regulation.J. Neurosci.16, 3104–3111 (1996).
  • Bajjalieh SM , SchellerRH: The biochemistry of neurotransmitter secretion.J. Biol. Chem.270, 1971–1974 (1995).
  • Heyser CJ , WilsonMC, GoldLH: Coloboma hyperactive mutant exhibits delayed neurobehavioral developmental milestones.Brain Res. Dev. Brain Res.89, 264–269 (1995).
  • Martin NC , PiekJP, HayD: DCD and ADHD: a genetic study of their shared aetiology.Hum. Mov. Sci.25, 110–124 (2006).
  • Piek JP , PitcherTM, HayDA: Motor coordination and kinaesthesis in boys with attention deficit-hyperactivity disorder.Dev. Med. Child Neurol.41, 159–165 (1999).
  • Trantham-Davidson H , VazdarjanovaA, DaiR, TerryA, BergsonC: Up-regulation of calcyon results in locomotor hyperactivity and reduced anxiety in mice.Behav. Brain Res.189, 244–249 (2008).
  • Heijtz RD , AlexeyenkoA, CastellanosFX: Calcyon mRNA expression in the frontal-striatal circuitry and its relationship to vesicular processes and ADHD.Behav. Brain Funct.3, 33 (2007).
  • Xiao J , DaiR, NegyessyL, BergsonC: Calcyon, a novel partner of clathrin light chain, stimulates clathrin-mediated endocytosis.J. Biol. Chem.281, 15182–15193 (2006).
  • Gainetdinov RR , MohnAR, BohnLM, CaronMG: Glutamatergic modulation of hyperactivity in mice lacking the dopamine transporter.Proc. Natl Acad. Sci. USA98, 11047–11054 (2001).
  • Gainetdinov RR , WetselWC, JonesSR, LevinED, JaberM, CaronMG: Role of serotonin in the paradoxical calming effect of psychostimulants on hyperactivity.Science283, 397–401 (1999).
  • Cook EH Jr , Stein MA, Krasowski MDet al.: Association of attention-deficit disorder and the dopamine transporter gene. Am. J. Hum. Genet.56, 993–998 (1995).
  • Daly G , HawiZ, FitzgeraldM, GillM: Mapping susceptibility loci in attention deficit hyperactivity disorder: preferential transmission of parental alleles at DAT1, DBH and DRD5 to affected children.Mol. Psychiatry4, 192–196 (1999).
  • Gill M , DalyG, HeronS, HawiZ, FitzgeraldM: Confirmation of association between attention deficit hyperactivity disorder and a dopamine transporter polymorphism.Mol. Psychiatry2, 311–313 (1997).
  • Waldman ID , RoweDC, AbramowitzAet al.: Association and linkage of the dopamine transporter gene and attention- deficit hyperactivity disorder in children: heterogeneity owing to diagnostic subtype and severity.Am. J. Hum. Genet.63, 1767–1776 (1998).
  • Curran S , MillJ, TahirEet al.: Association study of a dopamine transporter polymorphism and attention deficit hyperactivity disorder in UK and Turkish samples.Mol. Psychiatry6, 425–428 (2001).
  • Chen CK , ChenSL, MillJet al.: The dopamine transporter gene is associated with attention deficit hyperactivity disorder in a Taiwanese sample.Mol. Psychiatry8, 393–396 (2003).
  • Brookes KJ , MillJ, GuindaliniCet al.: A common haplotype of the dopamine transporter gene associated with attention-deficit/hyperactivity disorder and interacting with maternal use of alcohol during pregnancy.Arch. Gen. Psychiatry63, 74–81 (2006).
  • Lim MH , KimHW, PaikKC, ChoSC, YoonDY, LeeHJ: Association of the DAT1 polymorphism with attention deficit hyperactivity disorder (ADHD): a family-based approach.Am. J. Med. Genet. B Neuropsychiatr. Genet.141, 309–311 (2006).
  • Holmes J , PaytonA, BarrettJHet al.: A family-based and case–control association study of the dopamine D4 receptor gene and dopamine transporter gene in attention deficit hyperactivity disorder.Mol. Psychiatry5, 523–530 (2000).
  • Palmer CG , BaileyJN, RamseyCet al.: No evidence of linkage or linkage disequilibrium between DAT1 and attention deficit hyperactivity disorder in a large sample.Psychiatr. Genet.9, 157–160 (1999).
  • Todd RD , JongYJ, LobosEA, ReichW, HeathAC, NeumanRJ: No association of the dopamine transporter gene 3´ VNTR polymorphism with ADHD subtypes in a population sample of twins.Am. J. Med. Genet.105, 745–748 (2001).
  • Muglia P , JainU, InksterB, KennedyJL: A quantitative trait locus analysis of the dopamine transporter gene in adults with ADHD.Neuropsychopharmacology27, 655–662 (2002).
  • Roman T , SchmitzM, PolanczykG, EizirikM, RohdeLA, HutzMH: Attention-deficit hyperactivity disorder: a study of association with both the dopamine transporter gene and the dopamine D4 receptor gene.Am. J. Med. Genet.105, 471–478 (2001).
  • Smith KM , DalyM, FischerMet al.: Association of the dopamine b hydroxylase gene with attention deficit hyperactivity disorder: genetic analysis of the Milwaukee longitudinal study.Am. J. Med. Genet. B Neuropsychiatr. Genet.119, 77–85 (2003).
  • Kim YS , LeventhalBL, KimSJet al.: Family-based association study of DAT1 and DRD4 polymorphism in Korean children with ADHD.Neurosci. Lett.390, 176–181 (2005).
  • Langley K , TuricD, PeirceTRet al.: No support for association between the dopamine transporter (DAT1) gene and ADHD.Am. J. Med. Genet. B Neuropsychiatr. Genet.139, 7–10 (2005).
  • Cheuk DK , LiSY, WongV: No association between VNTR polymorphisms of dopamine transporter gene and attention deficit hyperactivity disorder in Chinese children.Am. J. Med. Genet. B Neuropsychiatr. Genet.141, 123–125 (2006).
  • Simsek M , Al-SharbatiM, Al-AdawiS, GangulySS, LawatiaK: Association of the risk allele of dopamine transporter gene (DAT1*10) in Omani male children with attention-deficit hyperactivity disorder.Clin. Biochem.38, 739–742 (2005).
  • Qian Q , WangY, ZhouR, YangL, FaraoneSV: Family based and case–control association studies of DRD4 and DAT1 polymorphisms in Chinese attention deficit hyperactivity disorder patients suggest long repeats contribute to genetic risk for the disorder.Am. J. Med. Genet. B Neuropsychiatr. Genet.128, 84–89 (2004).
  • Simsek M , Al-SharbatiM, Al-AdawiS, LawatiaK: The VNTR polymorphism in the human dopamine transporter gene: improved detection and absence of association of VNTR alleles with attention-deficit hyperactivity disorder.Genet. Test10, 31–34 (2006).
  • Bakker SC , van der Meulen EM, Oteman Net al.: DAT1, DRD4, and DRD5 polymorphisms are not associated with ADHD in Dutch families. Am. J. Med. Genet. B Neuropsychiatr. Genet.132, 50–52 (2005).
  • Das M , MukhopadhyayK: DAT1 3‘-UTR 9allele R: preferential transmission in Indian children with attention deficit hyperactivity disorder.Am. J. Med. Genet. B Neuropsychiatr. Genet.144, 826–829 (2007).
  • Genro JP , ZeniC, PolanczykGV, RomanT, RohdeLA, HutzMH: A promoter polymorphism (-839 C > T) at the dopamine transporter gene is associated with attention deficit/hyperactivity disorder in Brazilian children.Am. J. Med. Genet. B Neuropsychiatr. Genet.144, 215–219 (2007).
  • Barr CL , XuC, KroftJet al.: Haplotype study of three polymorphisms at the dopamine transporter locus confirm linkage to attention-deficit/hyperactivity disorder.Biol. Psychiatry49, 333–339 (2001).
  • Bobb AJ , AddingtonAM, SidranskyEet al.: Support for association between ADHD and two candidate genes: NET1 and DRD1.Am. J. Med. Genet. B Neuropsychiatr. Genet.134, 67–72 (2005).
  • Kustanovich V , IshiiJ, CrawfordLet al.: Transmission disequilibrium testing of dopamine-related candidate gene polymorphisms in ADHD: confirmation of association of ADHD with DRD4 and DRD5.Mol. Psychiatry9, 711–717 (2004).
  • Banoei MM , MajidizadehT, ShiraziEet al.: No association between the DAT1 10-repeat allele and ADHD in the Iranian population.Am. J. Med. Genet. B Neuropsychiatr. Genet.147B, 110–111 (2008).
  • Johansson S , HallelandH, HalmoyAet al.: Genetic analyses of dopamine related genes in adult ADHD patients suggest an association with the DRD5-microsatellite repeat, but not with DRD4 or SLC6A3 VNTRs.Am. J. Med. Genet. B Neuropsychiatr. Genet. DOI: 10.1002/ajmg.b.30662 (2007) (Epub ahead of print).
  • Nyman ES , OgdieMN, LoukolaAet al.: ADHD candidate gene study in a population-based birth cohort: association with DBH and DRD2.J. Am. Acad. Child. Adolesc. Psychiatry46, 1614–1621 (2007).
  • Bruggemann D , SobanskiE, AlmBet al.: No association between a common haplotype of the 6 and 10-repeat alleles in intron 8 and the 3´UTR of the DAT1 gene and adult attention deficit hyperactivity disorder.Psychiatr. Genet.17, 121 (2007).
  • Purper-Ouakil D , WohlM, MourenMC, VerpillatP, AdesJ, GorwoodP: Meta-analysis of family-based association studies between the dopamine transporter gene and attention deficit hyperactivity disorder.Psychiatr. Genet.15, 53–59 (2005).
  • Faraone SV , PerlisRH, DoyleAEet al.: Molecular genetics of attention-deficit/hyperactivity disorder.Biol. Psychiatry57, 1313–1323 (2005).
  • Maher BS , MarazitaML, FerrellRE, VanyukovMM: Dopamine system genes and attention deficit hyperactivity disorder: a meta-analysis.Psychiatr. Genet.12, 207–215 (2002).
  • Yang B , ChanRC, JingJ, LiT, ShamP, ChenRY: A meta-analysis of association studies between the 10-repeat allele of a VNTR polymorphism in the 3´-UTR of dopamine transporter gene and attention deficit hyperactivity disorder.Am. J. Med. Genet. B Neuropsychiatr. Genet.144, 541–550 (2007).
  • Li D , ShamPC, OwenMJ, HeL: Meta- analysis shows significant association between dopamine system genes and attention deficit hyperactivity disorder (ADHD).Hum. Mol. Genet.15, 2276–2284 (2006).
  • Galili-Weisstub E , LevyS, FrischAet al.: Dopamine transporter haplotype and attention-deficit hyperactivity disorder.Mol. Psychiatry10, 617–618 (2005).
  • Hawi Z , LoweN, KirleyAet al.: Linkage disequilibrium mapping at DAT1, DRD5 and DBH narrows the search for ADHD susceptibility alleles at these loci.Mol. Psychiatry8, 299–308 (2003).
  • Asherson P , BrookesK, FrankeBet al.: Confirmation that a specific haplotype of the dopamine transporter gene is associated with combined-type ADHD.Am. J. Psychiatry164, 674–677 (2007).
  • Feng Y , WiggKG, MakkarRet al.: Sequence variation in the 3´-untranslated region of the dopamine transporter gene and attention-deficit hyperactivity disorder (ADHD).Am. J. Med. Genet. B Neuropsychiatr. Genet.4, 4 (2005).
  • Ouellet-Morin I , WiggKG, FengYet al.: Association of the dopamine transporter gene and ADHD symptoms in a Canadian population-based sample of same-age twins.Am. J. Med. Genet. B Neuropsychiatr. Genet. doi:10.1002/ajmg.b.30677 (2007) (Epub ahead of print).
  • VanNess SH , OwensMJ, KiltsCD: The variable number of tandem repeats element in DAT1 regulates in vitro dopamine transporter density.BMC Genet.6, 55 (2005).
  • Guindalini C , HowardM, HaddleyKet al.: A dopamine transporter gene functional variant associated with cocaine abuse in a Brazilian sample.Proc. Natl Acad. Sci. USA.103, 4552–4557 (2006).
  • Ohadi M , ShiraziE, TehranidoostiMet al.: Attention-deficit/hyperactivity disorder (ADHD) association with the DAT1 core promoter -67 T allele.Brain Res.1101, 1–4 (2006).
  • Friedel S , SaarK, SauerSet al.: Association and linkage of allelic variants of the dopamine transporter gene in ADHD.Mol. Psychiatry.12, 923–933 (2007).
  • Martinez D , GelernterJ, Abi-DarghamAet al.: The variable number of tandem repeats polymorphism of the dopamine transporter gene is not associated with significant change in dopamine transporter phenotype in humans.Neuropsychopharmacology24, 553–560 (2001).
  • Heinz A , GoldmanD, JonesDWet al.: Genotype influences in vivo dopamine transporter availability in human striatum.Neuropsychopharmacology22, 133–139 (2000).
  • van Dyck CH , MalisonRT, JacobsenLKet al.: Increased dopamine transporter availability associated with the 9-repeat allele of the SLC6A3 gene.J. Nucl. Med.46, 745–751 (2005).
  • Winsberg BG , ComingsDE: Association of the dopamine transporter gene (DAT1) with poor methylphenidate response.J. Am. Acad. Child. Adolesc. Psychiatry38, 1474–1477 (1999).
  • Kirley A , LoweN, HawiZet al.: Association of the 480 bp DAT1 allele with methylphenidate response in a sample of Irish children with ADHD.Am. J. Med. Genet.121B, 50–54 (2003).
  • Roman T , SzobotC, MartinsS, BiedermanJ, RohdeLA, HutzMH: Dopamine transporter gene and response to methylphenidate in attention-deficit/hyperactivity disorder.Pharmacogenetics12, 497–499 (2002).
  • Kahn RS , KhouryJ, NicholsWC, LanphearBP: Role of dopamine transporter genotype and maternal prenatal smoking in childhood hyperactive-impulsive, inattentive, and oppositional behaviors.J. Pediatr.143, 104–110 (2003).
  • Fuke S , SuoS, TakahashiN, KoikeH, SasagawaN, IshiuraS: The VNTR polymorphism of the human dopamine transporter (DAT1) gene affects gene expression.Pharmacogenomics J.1, 152–156 (2001).
  • Miller GM , MadrasBK: Polymorphisms in the 3´-untranslated region of human and monkey dopamine transporter genes affect reporter gene expression.Mol. Psychiatry7, 44–55 (2002).
  • Mill J , AshersonP, CraigI, D‘SouzaUM: Transient expression analysis of allelic variants of a VNTR in the dopamine transporter gene (DAT1).BMC Genet.6, 3 (2005).
  • Greenwood TA , KelsoeJR: Promoter and intronic variants affect the transcriptional regulation of the human dopamine transporter gene.Genomics82, 511–520 (2003).
  • Mill J , AshersonP, BrowesC, D‘SouzaU, CraigI: Expression of the dopamine transporter gene is regulated by the 3´ UTR VNTR: evidence from brain and lymphocytes using quantitative RT-PCR.Am. J. Med. Genet.114, 975–979 (2002).
  • Brookes KJ , NealeBM, SugdenK, KhanN, AshersonP, D‘SouzaUM: Relationship between VNTR polymorphisms of the human dopamine transporter gene and expression in post-mortem midbrain tissue.Am. J. Med. Genet. B Neuropsychiatr. Genet.144B, 1070–1078 (2007).
  • Spencer TJ , BiedermanJ, MadrasBKet al.: Further evidence of dopamine transporter dysregulation in ADHD: a controlled PET imaging study using altropane.Biol. Psychiatry62, 1059–1061 (2007).
  • Spencer TJ , BiedermanJ, MadrasBKet al.: In vivo neuroreceptor imaging in attention-deficit/hyperactivity disorder: a focus on the dopamine transporter.Biol. Psychiatry57, 1293–1300 (2005).
  • Madras BK , MillerGM, FischmanAJ: The dopamine transporter and attention-deficit/hyperactivity disorder.Biol. Psychiatry57, 1397–1409 (2005).
  • Krause J : SPECT and PET of the dopamine transporter in attention-deficit/hyperactivity disorder.Expert Rev. Neurother.8, 611–625 (2008).
  • Kelada SN , Costa-MallenP, CheckowayHet al.: Dopamine transporter (SLC6A3) 5´ region haplotypes significantly affect transcriptional activity in vitro but are not associated with Parkinson‘s disease.Pharmacogenet. Genomics.15, 659–668 (2005).
  • Van Tol HH , WuCM, GuanHCet al.: Multiple dopamine D4 receptor variants in the human population.Nature358, 149–152 (1992).
  • Lichter JB , BarrCL, KennedyJL, Van Tol HH, Kidd KK, Livak KJ: A hypervariable segment in the human dopamine receptor D4 (DRD4) gene. Hum. Mol. Genet.2, 767–73. (1993).
  • Asghari V , SchootsO, van Kats Set al.: Dopamine D4 receptor repeat: analysis of different native and mutant forms of the human and rat genes. Mol. Pharmacol.46, 364–373 (1994).
  • Asghari V , SanyalS, BuchwaldtS, PatersonA, JovanovicV, Van Tol HH: Modulation of intracellular cyclic AMP levels by different human dopamine D4 receptor variants. J. Neurochem.65, 1157–1165 (1995).
  • Jovanovic V , GuanHC, Van Tol HH: Comparative pharmacological and functional analysis of the human dopamine D4.2 and D4.10 receptor variants. Pharmacogenetics9, 561–568 (1999).
  • Schoots O , Van Tol HH: The human dopamine D4 receptor repeat sequences modulate expression. Pharmacogenomics J.3, 343–348 (2003).
  • Catalano M , NobileM, NovelliE, NothenMM, SmeraldiE: Distribution of a novel mutation in the first exon of the human dopamine D4 receptor gene in psychotic patients.Biol. Psychiatry34, 459–464 (1993).
  • Nothen MM , CichonS, HemmerSet al.: Human dopamine D4 receptor gene: frequent occurrence of a null allele and observation of homozygosity.Hum. Mol. Genet.3, 2207–2212 (1994).
  • Cichon S , NothenMM, CatalanoMet al.: Identification of two novel polymorphisms and a rare deletion variant in the human dopamine D4 receptor gene.Psychiatr. Genet.5, 97–103 (1995).
  • Seaman MI , FisherJB, ChangF, KiddKK: Tandem duplication polymorphism upstream of the dopamine D4 receptor gene (DRD4).Am. J. Med. Genet.88, 705–709 (1999).
  • D‘Souza UM , RussC, TahirEet al.: Functional effects of a tandem duplication polymorphism in the 5´ flanking region of the DRD4 gene.Biol. Psychiatry56, 691–697 (2004).
  • Kereszturi E , KiralyO, CsapoZet al.: Association between the 120-bp duplication of the dopamine D4 receptor gene and attention deficit hyperactivity disorder: genetic and molecular analyses.Am. J. Med. Genet. B Neuropsychiatr. Genet.144, 231–236 (2007).
  • Okuyama Y , IshiguroH, ToruM, ArinamiT: A genetic polymorphism in the promoter region of DRD4 associated with expression and schizophrenia.Biochem. Biophys. Res. Commun.258, 292–295 (1999).
  • Kereszturi E , KiralyO, BartaC, MolnarN, Sasvari-SzekelyM, CsapoZ: No direct effect of the -521 C/T polymorphism in the human dopamine D4 receptor gene promoter on transcriptional activity.BMC Mol. Biol.7, 18 (2006).
  • LaHoste GJ , SwansonJM, WigalSBet al.: Dopamine D4 receptor gene polymorphism is associated with attention deficit hyperactivity disorder.Mol. Psychiatry1, 121–124 (1996).
  • Swanson JM , SunoharaGA, KennedyJLet al.: Association of the dopamine receptor D4 (DRD4) gene with a refined phenotype of attention deficit hyperactivity disorder (ADHD): a family based approach.Mol. Psychiatry3, 38–41 (1998).
  • Sunohara GA , RobertsW, MaloneMet al.: Linkage of the dopamine D4 receptor gene and attention-deficit/hyperactivity disorder.J. Am. Acad. Child. Adolesc. Psychiatry39, 1537–1542 (2000).
  • Faraone SV , BiedermanJ, WeiffenbachBet al.: Dopamine D4 gene 7-repeat allele and attention deficit hyperactivity disorder.Am. J. Psychiatry156, 768–770 (1999).
  • Tahir E , YazganY, CirakogluB, OzbayF, WaldmanI, AshersonPJ: Association and linkage of DRD4 and DRD5 with attention deficit hyperactivity disorder (ADHD) in a sample of Turkish children.Mol. Psychiatry5, 396–404 (2000).
  • Smalley SL , BaileyJN, PalmerCGet al.: Evidence that the dopamine D4 receptor is a susceptibility gene in attention deficit hyperactivity disorder.Mol. Psychiatry3, 427–430 (1998).
  • Rowe DC , SteverC, GiedinghagenLNet al.: Dopamine DRD4 receptor polymorphism and attention deficit hyperactivity disorder.Mol. Psychiatry3, 419–426 (1998).
  • Mill J , CurranS, KentLet al.: Attention deficit hyperactivity disorder (ADHD) and the dopamine D4 receptor gene: evidence of association but no linkage in a UK sample.Mol. Psychiatry.6, 440–444 (2001).
  • Gornick MC , AddingtonA, ShawPet al.: Association of the dopamine receptor D4 (DRD4) gene 7-repeat allele with children with attention-deficit/hyperactivity disorder (ADHD): an update.Am. J. Med. Genet. B Neuropsychiatr. Genet.144, 379–382 (2007).
  • Castellanos FX , LauE, TayebiNet al.: Lack of an association between a dopamine-4 receptor polymorphism and attention-deficit/hyperactivity disorder: genetic and brain morphometric analyses.Mol. Psychiatry3, 431–434 (1998).
  • Hawi Z , McCarronM, KirleyA, DalyG, FitzgeraldM, GillM: No association of the dopamine DRD4 receptor (DRD4) gene polymorphism with attention deficit hyperactivity disorder (ADHD) in the Irish population.Am. J. Med. Genet.96, 268–272 (2000).
  • Kotler M , ManorI, SeverYet al.: Failure to replicate an excess of the long dopamine D4 exon III repeat polymorphism in ADHD in a family-based study.Am. J. Med. Genet.96, 278–281 (2000).
  • Kirley A , HawiZ, DalyGet al.: Dopaminergic system genes in ADHD: toward a biological hypothesis.Neuropsychopharmacology27, 607–619 (2002).
  • Eisenberg J , ZoharA, Mei-TalGet al.: A haplotype relative risk study of the dopamine D4 receptor (DRD4) exon III repeat polymorphism and attention deficit hyperactivity disorder (ADHD).Am. J. Med. Genet.96, 258–261 (2000).
  • Manor I , TyanoS, EisenbergJ, Bachner-MelmanR, KotlerM, EbsteinRP: The short DRD4 repeats confer risk to attention deficit hyperactivity disorder in a family-based design and impair performance on a continuous performance test (TOVA).Mol. Psychiatry.7, 790–794 (2002).
  • Leung PW , LeeCC, HungSFet al.: Dopamine receptor D4 (DRD4) gene in Han Chinese children with attention-deficit/hyperactivity disorder (ADHD): increased prevalence of the 2-repeat allele.Am. J. Med. Genet. B Neuropsychiatr. Genet.133, 54–56 (2005).
  • Faraone SV , DoyleAE, MickE, BiedermanJ: Meta-analysis of the association between the 7-repeat allele of the dopamine D(4) receptor gene and attention deficit hyperactivity disorder.Am. J. Psychiatry158, 1052–1057 (2001).
  • McCracken JT , SmalleySL, McGoughJJet al.: Evidence for linkage of a tandem duplication polymorphism upstream of the dopamine D4 receptor gene (DRD4) with attention deficit hyperactivity disorder (ADHD).Mol. Psychiatry5, 531–536 (2000).
  • Barr CL , FengY, WiggKGet al.: 5´ untranslated region of the dopamine D4 receptor gene and attention-deficit hyperactivity disorder.Am. J. Med. Genet.105, 84–90 (2001).
  • Mill J , FisherN, CurranS, RichardsS, TaylorE, AshersonP: Polymorphisms in the dopamine D4 receptor gene and attention-deficit hyperactivity disorder.Neuroreport14, 1463–1466 (2003).
  • Brookes KJ , XuX, ChenCK, HuangYS, WuYY, AshersonP: No evidence for the association of DRD4 with ADHD in a Taiwanese population within-family study.BMC Med. Genet.6, 31 (2005).
  • Lowe N , KirleyA, MullinsC, FitzgeraldM, GillM, HawiZ: Multiple marker analysis at the promoter region of the DRD4 gene and ADHD: evidence of linkage and association with the SNP -616.Am. J. Med. Genet. B Neuropsychiatr. Genet.131, 33–37 (2004).
  • Todd RD , NeumanRJ, LobosEA, JongYJ, ReichW, HeathAC: Lack of association of dopamine D4 receptor gene polymorphisms with ADHD subtypes in a population sample of twins.Am. J. Med. Genet.105, 432–438 (2001).
  • Payton A , HolmesJ, BarrettJHet al.: Examining for association between candidate gene polymorphisms in the dopamine pathway and attention-deficit hyperactivity disorder: a family-based study.Am. J. Med. Genet.105, 464–470 (2001).
  • Yang JW , JangWS, HongSDet al.: A case–control association study of the polymorphism at the promoter region of the DRD4 gene in Korean boys with attention deficit-hyperactivity disorder: evidence of association with the -521 C/T SNP.Prog. Neuropsychopharmacol. Biol. Psychiatry32, 243–248 (2008).
  • Barr CL , WiggKG, BloomSet al.: Further evidence from haplotype analysis for linkage of the dopamine D4 receptor gene and attention-deficit hyperactivity disorder.Am. J. Med. Genet.96, 262–267 (2000).
  • Helms CM , GubnerNR, WilhelmCJ, MitchellSH, GrandyDK: D(4) receptor deficiency in mice has limited effects on impulsivity and novelty seeking.Pharmacol. Biochem. Behav.90, 387–393 (2008).
  • Manor I , CorbexM, EisenbergJet al.: Association of the dopamine D5 receptor with attention deficit hyperactivity disorder (ADHD) and scores on a continuous performance test (TOVA).Am. J. Med. Genet. B Neuropsychiatr. Genet.127, 73–77 (2004).
  • Barr CL , WiggKG, FengYet al.: Attention-deficit hyperactivity disorder and the gene for the dopamine D5 receptor.Mol. Psychiatry5, 548–551 (2000).
  • Lowe N , KirleyA, HawiZet al.: Joint Analysis of the DRD5 marker concludes association with attention-deficit/hyperactivity disorder confined to the predominantly inattentive and combined subtypes.Am. J. Hum. Genet.74, 348–356 (2004).
  • Mill J , CurranS, RichardsS, TaylorE, AshersonP: Polymorphisms in the dopamine D5 receptor (DRD5) gene and ADHD.Am. J. Med. Genet. B Neuropsychiatr. Genet.125B, 38–42 (2004).
  • Nguyen T , BardJ, JinHet al.: Human dopamine D5 receptor pseudogenes.Gene109, 211–218 (1991).
  • Jackson DM , Westlind-DanielssonA: Dopamine receptors: molecular biology, biochemistry and behavioural aspects.Pharmacol. Ther.64, 291–370 (1994).
  • Missale C , NashSR, RobinsonSW, JaberM, CaronMG: Dopamine receptors: from structure to function.Physiol. Rev.78, 189–225 (1998).
  • Misener V , LucaP, AzekeOet al.: Linkage of the dopamine receptor D1 gene to attention-deficit/hyperactivity disorder.Mol. Psychiatry9, 500–509 (2004).
  • Luca P , LaurinN, MisenerVLet al.: Association of the dopamine receptor D1 gene, DRD1, with inattention symptoms in families selected for reading problems.Mol. Psychiatry12, 776–785 (2007).
  • Huang W , MaJZ, PayneTJ, BeutenJ, DupontRT, LiMD: Significant association of DRD1 with nicotine dependence.Hum. Genet.123, 133–140 (2008).
  • Comings DE , ComingsBG, MuhlemanDet al.: The dopamine D2 receptor locus as a modifying gene in neuropsychiatric disorders.JAMA266, 1793–1800 (1991).
  • Neville MJ , JohnstoneEC, WaltonRT: Identification and characterization of ANKK1: a novel kinase gene closely linked to DRD2 on chromosome band 11q23.1.Hum. Mutat.23, 540–545 (2004).
  • Rowe DC , Van den Oord EJ, Stever Cet al.: The DRD2 TaqI polymorphism and symptoms of attention deficit hyperactivity disorder. Mol. Psychiatry4, 580–586 (1999).
  • Waldman ID , RobinsonBF, RheeSH: A logistic regression extension of the transmission disequilibrium test for continuous traits: application to linkage disequilibrium between alcoholism and the candidate genes DRD2 and ADH3.Genet. Epidemiol.17(Suppl. 1), S379–S384 (1999).
  • Qian Q , WangY, LiJet al.: Evaluation of potential gene–gene interactions for attention deficit hyperactivity disorder in the Han Chinese population.Am. J. Med. Genet. B Neuropsychiatr. Genet.144, 200–206 (2007).
  • Jonsson EG , NothenMM, GrunhageFet al.: Polymorphisms in the dopamine D2 receptor gene and their relationships to striatal dopamine receptor density of healthy volunteers.Mol. Psychiatry4, 290–296 (1999).
  • Pohjalainen T , RinneJO, NagrenKet al.: The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers.Mol. Psychiatry3, 256–260 (1998).
  • Ritchie T , NobleEP: Association of seven polymorphisms of the D2 dopamine receptor gene with brain receptor-binding characteristics.Neurochem. Res.28, 73–82 (2003).
  • Thompson J , ThomasN, SingletonAet al.: D2 dopamine receptor gene (DRD2) Taq1 polymorphism A: reduced dopamine D2 receptor binding in the human striatum associated with the A1 allele.Pharmacogenetics7, 479–484 (1997).
  • Laruelle M , GelernterJ, InnisRB: D2 receptors binding potential is not affected by Taq1 polymorphism at the D2 receptor gene.Mol. Psychiatry3, 261–265 (1998).
  • Blum K , SheridanPJ, WoodRC, BravermanER, ChenTJ, ComingsDE: Dopamine D2 receptor gene variants: association and linkage studies in impulsive–addictive–compulsive behaviour.Pharmacogenetics5, 121–141 (1995).
  • Duan J , WainwrightMS, ComeronJMet al.: Synonymous mutations in the human dopamine receptor D2 (DRD2) affect mRNA stability and synthesis of the receptor.Hum. Mol. Genet.12, 205–216 (2003).
  • Dean A : On a chromosome far, far away: LCRs and gene expression.Trends Genet.22, 38–45 (2006).
  • Barr CL , WiggKG, WuJet al.: Linkage study of two polymorphisms at the dopamine D3 receptor gene and attention-deficit hyperactivity disorder.Am. J. Med. Genet.96, 114–117 (2000).
  • Muglia P , JainU, KennedyJL: A transmission disequilibrium test of the Ser9/Gly dopamine D3 receptor gene polymorphism in adult attention-deficit hyperactivity disorder.Behav. Brain Res.130, 91–95 (2002).
  • Guan L , WangB, ChenYet al.: A high-density single-nucleotide polymorphism screen of 23 candidate genes in attention deficit hyperactivity disorder: suggesting multiple susceptibility genes among Chinese Han population.Mol. Psychiatry DOI: 10.1038/sj.mp.4002139 (2008) (Epub ahead of print).
  • Hawi Z , FoleyD, KirleyA, McCarronM, FitzgeraldM, GillM: Dopa decarboxylase gene polymorphisms and attention deficit hyperactivity disorder (ADHD): no evidence for association in the Irish population.Mol. Psychiatry6, 420–424 (2001).
  • Ribases M , Ramos-QuirogaJA, HervasAet al.: Exploration of 19 serotoninergic candidate genes in adults and children with attention-deficit/hyperactivity disorder identifies association for 5HT2A, DDC and MAOB.Mol. Psychiatry DOI: 10.1038/sj.mp.4002100 (2007) (Epub ahead of print).
  • Albanese V , BiguetNF, KieferH, BayardE, MalletJ, MeloniR: Quantitative effects on gene silencing by allelic variation at a tetranucleotide microsatellite.Hum. Mol. Genet.10, 1785–1792 (2001).
  • Eisenberg J , Mei-TalG, SteinbergAet al.: Haplotype relative risk study of catechol-O-methyltransferase (COMT) and attention deficit hyperactivity disorder (ADHD): association of the high-enzyme activity Val allele with ADHD impulsive–hyperactive phenotype.Am. J. Med. Genet.88, 497–502 (1999).
  • Manor I , KotlerM, SeverYet al.: Failure to replicate an association between the catechol-O-methyltransferase polymorphism and attention deficit hyperactivity disorder in a second, independently recruited Israeli cohort.Am. J. Med. Genet.96, 858–860 (2000).
  • Lotta T , VidgrenJ, TilgmannCet al.: Kinetics of human soluble and membrane-bound catechol O-methyltransferase: a revised mechanism and description of the thermolabile variant of the enzyme.Biochemistry34, 4202–4210 (1995).
  • Lachman HM , MorrowB, ShprintzenRet al.: Association of codon 108/158 catechol-O-methyltransferase gene polymorphism with the psychiatric manifestations of velo-cardio-facial syndrome.Am. J. Med. Genet.67, 468–472 (1996).
  • Barr CL , WiggK, MaloneMet al.: Linkage study of catechol-O-methyltransferase and attention-deficit hyperactivity disorder.Am. J. Med. Genet.88, 710–713 (1999).
  • Hawi Z , MillarN, DalyG, FitzgeraldM, GillM: No association between catechol-O-methyltransferase (COMT) gene polymorphism and attention deficit hyperactivity disorder (ADHD) in an Irish sample.Am. J. Med. Genet.96, 282–284 (2000).
  • Turic D , WilliamsH, LangleyK, OwenM, ThaparA, O‘DonovanMC: A family based study of catechol-O-methyltransferase (COMT) and attention deficit hyperactivity disorder (ADHD).Am. J. Med. Genet. B Neuropsychiatr. Genet.133, 64–67 (2005).
  • Taerk E , GrizenkoN, Ben Amor Let al.: Catechol-O-methyltransferase (COMT) Val108/158 Met polymorphism does not modulate executive function in children with ADHD. BMC Med. Genet.5, 30 (2004).
  • Bellgrove MA , DomschkeK, HawiZet al.: The methionine allele of the COMT polymorphism impairs prefrontal cognition in children and adolescents with ADHD.Exp. Brain Res.163, 352–360 (2005).
  • Cheuk DK , WongV: Meta-analysis of association between a catechol-O-methyltransferase gene polymorphism and attention deficit hyperactivity disorder.Behav. Genet.36, 651–659 (2006).
  • Bray NJ , BucklandPR, WilliamsNMet al.: A haplotype implicated in schizophrenia susceptibility is associated with reduced COMT expression in human brain.Am. J. Hum. Genet.73, 152–161 (2003).
  • Craddock N , OwenMJ, O‘DonovanMC: The catechol-O-methyl transferase (COMT) gene as a candidate for psychiatric phenotypes: evidence and lessons.Mol. Psychiatry11, 446–458 (2006).
  • Comings DE , Gade-AndavoluR, GonzalezN, BlakeH, WuS, MacMurrayJP: Additive effect of three noradrenergic genes (ADRA2a, ADRA2C, DBH) on attention-deficit hyperactivity disorder and learning disabilities in Tourette syndrome subjects.Clin. Genet.55, 160–172 (1999).
  • Roman T , SchmitzM, PolanczykGV, EizirikM, RohdeLA, HutzMH: Further evidence for the association between attention-deficit/hyperactivity disorder and the dopamine-β-hydroxylase gene.Am. J. Med. Genet.114, 154–158 (2002).
  • Wigg K , ZaiG, SchacharRet al.: Attention deficit hyperactivity disorder and the gene for dopamine β-hydroxylase.Am. J. Psychiatry159, 1046–1048 (2002).
  • Bhaduri N , MukhopadhyayK: Lack of significant association between -1021C–>T polymorphism in the dopamine β-hydroxylase gene and attention deficit hyperactivity disorder.Neurosci. Lett.402, 12–16 (2006).
  • Inkster B , MugliaP, JainU, KennedyJL: Linkage disequilibrium analysis of the dopamine β-hydroxylase gene in persistent attention deficit hyperactivity disorder.Psychiatr. Genet.14, 117–120 (2004).
  • Cubells JF , ZabetianCP: Human genetics of plasma dopamine β-hydroxylase activity: applications to research in psychiatry and neurology.Psychopharmacology (Berl.)174, 463–476 (2004).
  • Wei J , RamchandCN, HemmingsGP: Possible control of dopamine β-hydroxylase via a codominant mechanism associated with the polymorphic (GT)n repeat at its gene locus in healthy individuals.Hum. Genet.99, 52–55 (1997).
  • Cubells JF , KranzlerHR, McCance-KatzEet al.: A haplotype at the DBH locus, associated with low plasma dopamine β-hydroxylase activity, also associates with cocaine-induced paranoia.Mol. Psychiatry5, 56–63 (2000).
  • Tang Y , BuxbaumSG, WaldmanIet al.: A single nucleotide polymorphism at DBH, possibly associated with attention-deficit/hyperactivity disorder, associates with lower plasma dopamine beta-hydroxylase activity and is in linkage disequilibrium with two putative functional single nucleotide polymorphisms.Biol. Psychiatry60, 1034–1038 (2006).
  • Hotamisligil GS , BreakefieldXO: Human monoamine oxidase A gene determines levels of enzyme activity.Am. J. Hum. Genet.49, 383–392 (1991).
  • Sabol SZ , HuS, HamerD: A functional polymorphism in the monoamine oxidase A gene promoter.Hum. Genet.103, 273–279 (1998).
  • Deckert J , CatalanoM, SyagailoYVet al.: Excess of high activity monoamine oxidase A gene promoter alleles in female patients with panic disorder.Hum. Mol. Genet.8, 621–624 (1999).
  • Denney RM , KochH, CraigIW: Association between monoamine oxidase A activity in human male skin fibroblasts and genotype of the MAOA promoter-associated variable number tandem repeat.Hum. Genet.105, 542–551 (1999).
  • Balciuniene J , EmilssonL, OrelandL, PetterssonU, JazinE: Investigation of the functional effect of monoamine oxidase polymorphisms in human brain.Hum. Genet.110, 1–7 (2002).
  • Jiang S , XinR, WuXet al.: Association between attention deficit hyperactivity disorder and the DXS7 locus.Am. J. Med. Genet.96, 289–292 (2000).
  • Lowe N , HawiZ, FitzgeraldM, GillM: No evidence of linkage or association between ADHD and DXS7 locus in Irish population.Am. J. Med. Genet.105, 394–395 (2001).
  • Jiang S , XinR, LinSet al.: Linkage studies between attention-deficit hyperactivity disorder and the monoamine oxidase genes.Am. J. Med. Genet.105, 783–788 (2001).
  • Manor I , TyanoS, MelEet al.: Family-based and association studies of monoamine oxidase A and attention deficit hyperactivity disorder (ADHD): preferential transmission of the long promoter-region repeat and its association with impaired performance on a continuous performance test (TOVA).Mol. Psychiatry7, 626–632 (2002).
  • Das M , BhowmikAD, SinhaSet al.: MAOA promoter polymorphism and attention deficit hyperactivity disorder (ADHD) in indian children.Am. J. Med. Genet. B Neuropsychiatr. Genet.141, 637–642 (2006).
  • Lawson DC , TuricD, LangleyKet al.: Association analysis of monoamine oxidase A and attention deficit hyperactivity disorder.Am. J. Med. Genet. B Neuropsychiatr. Genet.116, 84–89 (2003).
  • Manuck SB , FloryJD, FerrellRE, MannJJ, MuldoonMF: A regulatory polymorphism of the monoamine oxidase-A gene may be associated with variability in aggression, impulsivity, and central nervous system serotonergic responsivity.Psychiatry Res.95, 9–23 (2000).
  • Domschke K , SheehanK, LoweNet al.: Association analysis of the monoamine oxidase A and B genes with attention deficit hyperactivity disorder (ADHD) in an Irish sample: preferential transmission of the MAO-A 941G allele to affected children.Am. J. Med. Genet. B Neuropsychiatr. Genet.134, 110–114 (2005).
  • Xu X , BrookesK, ChenCK, HuangYS, WuYY, AshersonP: Association study between the monoamine oxidase A gene and attention deficit hyperactivity disorder in Taiwanese samples.BMC Psychiatry7, 10 (2007).
  • Fowler JS , Alia-KleinN, KriplaniAet al.: Evidence that brain MAO A activity does not correspond to MAO A genotype in healthy male subjects.Biol. Psychiatry62, 355–358 (2007).
  • Garpenstrand H , EkblomJ, ForslundK, RylanderG, OrelandL: Platelet monoamine oxidase activity is related to MAOB intron 13 genotype.J. Neural Transm.107, 523–530 (2000).
  • Ekblom J , GarpenstrandH, DambergM, ChenK, ShihJC, OrelandL: Transcription factor binding to the core promoter of the human monoamine oxidase B gene in the cerebral cortex and in blood cells.Neurosci. Lett.258, 101–104 (1998).
  • Winblad B , GottfriesCG, OrelandL, WibergA: Monoamine oxidase in platelets and brains of non-psychiatric and non-neurological geriatric patients.Med. Biol.57, 129–132 (1979).
  • Young WF Jr., Laws ER Jr., Sharbrough FW, Weinshilboum RM: Human monoamine oxidase. Lack of brain and platelet correlation. Arch. Gen. Psychiatry43, 604–609 (1986).
  • Li J , WangY, HuSet al.: The monoamine oxidase B gene exhibits significant association to ADHD.Am. J. Med. Genet. B Neuropsychiatr. Genet.147, 370–374 (2008).
  • Barr CL , FengY, WiggKet al.: Identification of DNA variants in the SNAP-25 gene and linkage study of these polymorphisms and attention-deficit hyperactivity disorder.Mol. Psychiatry5, 405–409 (2000).
  • Feng Y , CrosbieJ, WiggKet al.: The SNAP25 gene as a susceptibility gene contributing to attention-deficit hyperactivity disorder.Mol. Psychiatry10, 998–1005, 973 (2005).
  • Mill J , CurranS, KentLet al.: Association study of a SNAP-25 microsatellite and attention deficit hyperactivity disorder.Am. J. Med. Genet.114, 269–271 (2002).
  • Mill J , RichardsS, KnightJ, CurranS, TaylorE, AshersonP: Haplotype analysis of SNAP-25 suggests a role in the aetiology of ADHD.Mol. Psychiatry9, 801–810 (2004).
  • Kustanovich V , MerrimanB, McGoughJ, McCrackenJT, SmalleySL, NelsonSF: Biased paternal transmission of SNAP-25 risk alleles in attention-deficit hyperactivity disorder.Mol. Psychiatry8, 309–315 (2003).
  • Brophy K , HawiZ, KirleyA, FitzgeraldM, GillM: Synaptosomal-associated protein 25 (SNAP-25) and attention deficit hyperactivity disorder (ADHD): evidence of linkage and association in the Irish population.Mol. Psychiatry7, 913–917 (2002).
  • Brookes K , XuX, ChenWet al.: The analysis of 51 genes in DSM-IV combined type attention deficit hyperactivity disorder: association signals in DRD4, DAT1 and 16 other genes.Mol. Psychiatry11, 934–953 (2006).
  • Choi TK , LeeHS, KimJWet al.: Support for the MnlI polymorphism of SNAP25; a Korean ADHD case–control study.Mol. Psychiatry12, 224–226 (2007).
  • Kim JW , BiedermanJ, ArbeitmanLet al.: Investigation of variation in SNAP-25 and ADHD and relationship to co-morbid major depressive disorder.Am. J. Med. Genet. B Neuropsychiatr. Genet.144B, 781–790 (2007).
  • Mill J , XuX, RonaldAet al.: Quantitative trait locus analysis of candidate gene alleles associated with attention deficit hyperactivity disorder (ADHD) in five genes: DRD4, DAT1, DRD5, SNAP-25, and 5HT1B.Am. J. Med. Genet. B Neuropsychiatr. Genet.133, 68–73 (2005).
  • Renner TJ , WalitzaS, DempfleAet al.: Allelic variants of SNAP25 in a family-based sample of ADHD.J. Neural Transm.115, 317–321 (2008).
  • Brookes KJ , KnightJ, XuX, AshersonP: DNA pooling analysis of ADHD and genes regulating vesicle release of neurotransmitters.Am. J. Med. Genet. B Neuropsychiatr. Genet.139, 33–37 (2005).
  • Dickman DK , HorneJA, MeinertzhagenIA, SchwarzTL: A slowed classical pathway rather than kiss-and-run mediates endocytosis at synapses lacking synaptojanin and endophilin.Cell123, 521–533 (2005).
  • Laurin N , MisenerVL, CrosbieJet al.: Association of the calcyon gene (DRD1IP) with attention deficit/hyperactivity disorder.Mol. Psychiatry10, 1117–1125 (2005).
  • Turic D , LangleyK, KirovG, OwenMJ, ThaparA, O‘DonovanMC: Direct analysis of the genes encoding G proteins G a T2, G a o, G a Z in ADHD.Am. J. Med. Genet. B Neuropsychiatr. Genet.127, 68–72 (2004).
  • Laurin N , IckowiczA, PathareTet al.: Investigation of the G protein subunit Ga(olf) gene (GNAL) in attention deficit/hyperactivity disorder.J. Psychiatr. Res.42, 117–124 (2008).
  • Gershon ES , BadnerJA, Detera-WadleighSD, FerraroTN, BerrettiniWH: Maternal inheritance and chromosome 18 allele sharing in unilineal bipolar illness pedigrees.Am. J. Med. Genet.67, 202–207 (1996).
  • Nothen MM , CichonS, RohlederHet al.: Evaluation of linkage of bipolar affective disorder to chromosome 18 in a sample of 57 German families.Mol. Psychiatry4, 76–84 (1999).
  • Stine OC , XuJ, KoskelaRet al.: Evidence for linkage of bipolar disorder to chromosome 18 with a parent-of-origin effect.Am. J. Hum. Genet.57, 1384–1394 (1995).
  • Chang FM , KiddJR, LivakKJ, PakstisAJ, KiddKK: The world-wide distribution of allele frequencies at the human dopamine D4 receptor locus.Hum. Genet.98, 91–101 (1996).
  • Barr CL , KiddKK: Population frequencies of the A1 allele at the dopamine D2 receptor locus.Biol. Psychiatry34, 204–209 (1993).
  • Washbourne P , ThompsonPM, CartaMet al.: Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis.Nat. Neurosci.5, 19–26 (2002).
  • Threlkeld SW , McClureMM, BaiJet al.: Developmental disruptions and behavioral impairments in rats following in utero RNAi of Dyx1c1.Brain Res. Bull.71, 508–514 (2007).
  • Ramus F : Genes, brain, and cognition: a roadmap for the cognitive scientist.Cognition101, 247–269 (2006).
  • Schulte-Korne G , DeimelW, BartlingJ, RemschmidtH: Pre-attentive processing of auditory patterns in dyslexic human subjects.Neurosci. Lett.276, 41–44 (1999).
  • Tallal P , MillerSL, BediGet al.: Language comprehension in language-learning impaired children improved with acoustically modified speech.Science271, 81–84 (1996).
  • Strehlow U , HaffnerJ, BischofJ, GratzkaV, ParzerP, ReschF: Does successful training of temporal processing of sound and phoneme stimuli improve reading and spelling?Eur. Child Adolesc. Psychiatry15, 19–29 (2006).
  • Kujala T , KarmaK, CeponieneRet al.: Plastic neural changes and reading improvement caused by audiovisual training in reading-impaired children.Proc. Natl Acad. Sci. USA.98, 10509–105014 (2001).
  • Drysdale CM , McGrawDW, StackCBet al.: Complex promoter and coding region b 2-adrenergic receptor haplotypes alter receptor expression and predict in vivo responsiveness.Proc. Natl Acad. Sci. USA97, 10483–10488 (2000).
  • Jais PH : How frequent is altered gene expression among susceptibility genes to human complex disorders?Genet. Med.7, 83–96 (2005).
  • Knight JC : Regulatory polymorphisms underlying complex disease traits.J. Mol. Med.83, 97–109 (2005).
  • Buckland PR , HoogendoornB, ColemanSL, GuyCA, SmithSK, O‘DonovanMC: Strong bias in the location of functional promoter polymorphisms.Hum. Mutat.26, 214–223 (2005).
  • Buckland PR , HoogendoornB, GuyCAet al.: A high proportion of polymorphisms in the promoters of brain expressed genes influences transcriptional activity.Biochim. Biophys. Acta1690, 238–249 (2004).
  • Rockman MV , WrayGA: Abundant raw material for cis-regulatory evolution in humans.Mol. Biol. Evol.19, 1991–2004 (2002).
  • Heintzman ND , StuartRK, HonGet al.: Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome.Nat. Genet.39, 311–318 (2007).
  • Ni Z , Abou El Hassan M, Xu Z, Yu T, Bremner R: The chromatin-remodeling enzyme BRG1 coordinates CIITA induction through many interdependent distal enhancers. Nat. Immunol.9, 785–793 (2008).
  • Harold D , ParacchiniS, ScerriTet al.: Further evidence that the KIAA0319 gene confers susceptibility to developmental dyslexia.Mol. Psychiatry11, 1085–1091, 1061 (2006).
  • Deffenbacher KE , KenyonJB, HooverDMet al.: Refinement of the 6p21.3 quantitative trait locus influencing dyslexia: linkage and association analyses.Hum. Genet.115, 128–138 (2004).
  • Francks C , ParacchiniS, SmithSDet al.: A 77-kilobase region of chromosome 6p22.2 is associated with dyslexia in families from the United Kingdom and from the United States.Am. J. Hum. Genet.75, 1046–1058 (2004).
  • Cope N , HaroldD, HillGet al.: Strong evidence that KIAA0319 on chromosome 6p is a susceptibility gene for developmental dyslexia.Am. J. Hum. Genet.76, 581–5891 (2005).
  • Kaplan DE , GayanJ, AhnJet al.: Evidence for linkage and association with reading disability on 6p21.3–22.Am. J. Hum. Genet.70, 1287–1298 (2002).
  • Luciano M , LindPA, DuffyDLet al.: A haplotype spanning KIAA0319 and TTRAP is associated with normal variation in reading and spelling ability.Biol. Psychiatry62(7), 811–817 (2007).
  • Milberger S , BiedermanJ, FaraoneSV, GuiteJ, TsuangMT: Pregnancy, delivery and infancy complications and attention deficit hyperactivity disorder: issues of gene–environment interaction.Biol. Psychiatry41, 65–75 (1997).
  • Ernst M , MoolchanET, RobinsonML: Behavioral and neural consequences of prenatal exposure to nicotine.J. Am. Acad. Child. Adolesc. Psychiatry40, 630–641 (2001).
  • Linnet KM , DalsgaardS, ObelCet al.: Maternal lifestyle factors in pregnancy risk of attention deficit hyperactivity disorder and associated behaviors: review of the current evidence.Am. J. Psychiatry160, 1028–1040 (2003).
  • Braun JM , KahnRS, FroehlichT, AuingerP, LanphearBP: Exposures to environmental toxicants and attention deficit hyperactivity disorder in U.S. children.Environ. Health Perspect.114, 1904–1909 (2006).
  • Barman SK , PulkkinenL, KaprioJ, RoseRJ: Inattentiveness, parental smoking and adolescent smoking initiation.Addiction99, 1049–1061 (2004).
  • Batstra L , M Hadders-Algra, Neeleman J: Effect of antenatal exposure to maternal smoking on behavioural problems and academic achievement in childhood: prospective evidence from a Dutch birth cohort. Early Hum. Dev.75, 21–33 (2003).
  • Kotimaa AJ , MoilanenI, TaanilaAet al.: Maternal smoking and hyperactivity in 8-year-old children.J. Am. Acad. Child. Adolesc. Psychiatry42, 826–833 (2003).
  • Thapar A , FowlerT, RiceFet al.: Maternal smoking during pregnancy and attention deficit hyperactivity disorder symptoms in offspring.Am. J. Psychiatry160, 1985–1989 (2003).
  • Mick E , BiedermanJ, FaraoneSV, SayerJ, KleinmanS: Case–control study of attention-deficit hyperactivity disorder and maternal smoking, alcohol use, and drug use during pregnancy.J. Am. Acad. Child. Adolesc. Psychiatry41, 378–385 (2002).
  • Sprich-Buckminster S , BiedermanJ, MilbergerS, FaraoneSV, LehmanBK: Are perinatal complications relevant to the manifestation of ADD? Issues of comorbidity and familiality.J. Am. Acad. Child. Adolesc. Psychiatry32, 1032–1037 (1993).
  • Weissman MM , WarnerV, WickramaratnePJ, KandelDB: Maternal smoking during pregnancy and psychopathology in offspring followed to adulthood.J. Am. Acad. Child. Adolesc. Psychiatry.38, 892–899 (1999).
  • Thapar A , LangleyK, FowlerTet al.: Catechol O-methyltransferase gene variant and birth weight predict early-onset antisocial behavior in children with attention-deficit/hyperactivity disorder.Arch. Gen. Psychiatry62, 1275–1278 (2005).
  • Laucht M , SkowronekMH, BeckerKet al.: Interacting effects of the dopamine transporter gene and psychosocial adversity on attention-deficit/hyperactivity disorder symptoms among 15-year-olds from a high-risk community sample.Arch. Gen. Psychiatry64, 585–590 (2007).
  • Neuman RJ , LobosE, ReichW, HendersonCA, SunLW, ToddRD: Prenatal smoking exposure and dopaminergic genotypes interact to cause a severe ADHD subtype.Biol. Psychiatry61, 1320–1328 (2007).
  • Knopik VS , SparrowEP, MaddenPAet al.: Contributions of parental alcoholism, prenatal substance exposure, and genetic transmission to child ADHD risk: a female twin study.Psychol. Med.35, 625–635 (2005).
  • Gross J , MullerI, ChenYet al.: Perinatal asphyxia induces region-specific long-term changes in mRNA levels of tyrosine hydroxylase and dopamine D(1) and D(2) receptors in rat brain.Brain Res. Mol. Brain Res.79, 110–117 (2000).
  • Rommelse NN , Arias-VasquezA, AltinkMEet al.: Neuropsychological endophenotype approach to genome-wide linkage analysis identifies susceptibility loci for ADHD on 2q21.1 and 13q12.11.Am. J. Hum. Genet.83, 99–105 (2008).
  • Kuntsi J , NealeBM, ChenW, FaraoneSV, AshersonP: The IMAGE project: methodological issues for the molecular genetic analysis of ADHD.Behav. Brain Funct.2, 27 (2006).
  • Bellgrove MA , MattingleyJB: Molecular genetics of attention.Ann. NY Acad. Sci.1129, 200–212 (2008).
  • Waldman ID : Statistical approaches to complex phenotypes: evaluating neuropsychological endophenotypes for attention-deficit/hyperactivity disorder.Biol. Psychiatry57, 1347–1356 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.