35
Views
0
CrossRef citations to date
0
Altmetric
Review

Unravelling the Complex Role of Cdk5 in the Developing Cerebral Cortex

Pages 729-743 | Published online: 28 Oct 2008

Bibliography

  • Guidato S , McLoughlinDM, GriersonAJ, MillerCC: Cyclin D2 interacts with cdk-5 and modulates cellular cdk-5/p35 activity.J. Neurochem.70(1), 335–340 (1998).
  • Miyajima M , NornesHO, NeumanT: Cyclin E is expressed in neurons and forms complexes with cdk5.Neuroreport6(8), 1130–1132 (1995).
  • Xiong Y , ZhangH, BeachD: D type cyclins associate with multiple protein kinases and the DNA replication and repair factor PCNA.Cell71(3), 505–514 (1992).
  • Tsai LH , TakahashiT, CavinessVS Jr, Harlow E: Activity and expression pattern of cyclin-dependent kinase 5 in the embryonic mouse nervous system. Development119(4), 1029–1040 (1993).
  • Tsai LH , DelalleI, CavinessVS Jr, Chae T, Harlow E: p35 is a neural-specific regulatory subunit of cyclin-dependent kinase 5. Nature371(6496), 419–423 (1994).
  • Tang XM , StrocchiP, CambiF: Changes in the activity of cdk2 and cdk5 accompany differentiation of rat primary oligodendrocytes.J. Cell. Biochem.68(1), 128–137 (1998).
  • Lew J , HuangQQ, QiZet al.: A brain-specific activator of cyclin-dependent kinase 5.Nature371, (6496), 423–426 (1994).
  • Buzko O , ShokatKM: A kinase sequence database: sequence alignments and family assignment.Bioinformatics18(9), 1274–1275 (2002).
  • Tarricone C , DhavanR, PengJ, ArecesLB, TsaiLH, MusacchioA: Structure and regulation of the CDK5–p25(nck5a) complex.Mol. Cell8(3), 657–669 (2001).
  • Dhavan R , TsaiLH: A decade of CDK5.Nat. Rev. Mol. Cell Biol.2(10), 749–759 (2001).
  • Wenzel HJ , RobbinsCA, TsaiLH, SchwartzkroinPA: Abnormal morphological and functional organization of the hippocampus in a p35-mutant model of cortical dysplasia associated with spontaneous seizures.J. Neurosci.21(3), 983–998 (2001).
  • Patel LS , WenzelHJ, SchwartzkroinPA: Physiological and morphological characterization of dentate granule cells in the p35 knock-out mouse hippocampus: evidence for an epileptic circuit.J. Neurosci.24(41), 9005–9014 (2004).
  • Chae T , KwonYT, BronsonR, DikkesP, LiE, TsaiLH: Mice lacking p35, a neuronal specific activator of Cdk5, display cortical lamination defects, seizures, and adult lethality.Neuron18(1), 29–42 (1997).
  • Rakic S , DavisC, MolnarZ, NikolicM, ParnavelasJG: Role of p35/Cdk5 in preplate splitting in the developing cerebral cortex.Cereb. Cortex16(Suppl. 1), i35–i45 (2006).
  • Gilmore EC , OhshimaT, GoffinetAM, KulkarniAB, HerrupK: Cyclin-dependent kinase 5-deficient mice demonstrate novel developmental arrest in cerebral cortex.J. Neurosci.18(16), 6370–6377 (1998).
  • Ohshima T , WardJM, HuhCGet al.: Targeted disruption of the cyclin-dependent kinase 5 gene results in abnormal corticogenesis, neuronal pathology and perinatal death.Proc. Natl Acad. Sci. USA93(20), 11173–11178 (1996).
  • Ko J , HumbertS, BronsonRTet al.: p35 and p39 are essential for cyclin-dependent kinase 5 function during neurodevelopment.J. Neurosci.21(17), 6758–6771 (2001).
  • Stein PA , ToretCP, SalicAN, RollsMM, RapoportTA: A novel centrosome-associated protein with affinity for microtubules.J. Cell. Sci.115(Pt 17), 3389–3402 (2002).
  • Ohshima T , GilmoreEC, LongeneckerGet al.: Migration defects of cdk5-/- neurons in the developing cerebellum is cell autonomous.J. Neurosci.19(14), 6017–6026 (1999).
  • Cicero S , HerrupK: Cyclin-dependent kinase 5 is essential for neuronal cell cycle arrest and differentiation.J. Neurosci.25(42), 9658–9668 (2005).
  • Li BS , ZhangL, GuJ, AminND, PantHC: Integrin α(1) β(1)-mediated activation of cyclin-dependent kinase 5 activity is involved in neurite outgrowth and human neurofilament protein H Lys–Ser–Pro tail domain phosphorylation.J. Neurosci.20(16), 6055–6062 (2000).
  • Zhang J , CiceroSA, WangL, Romito-DigiacomoRR, YangY, HerrupK: Nuclear localization of Cdk5 is a key determinant in the postmitotic state of neurons.Proc. Natl Acad. Sci. USA105(25), 8772–8777 (2008).
  • Chang Y , OstlingP, AkerfeltMet al.: Role of heat-shock factor 2 in cerebral cortex formation and as a regulator of p35 expression.Genes Dev.20(7), 836–847 (2006).
  • Lennington JB , YangZ, ConoverJC: Neural stem cells and the regulation of adult neurogenesis.Reprod. Biol. Endocrinol.1, 99 (2003).
  • Hirota Y , OhshimaT, KanekoNet al.: Cyclin-dependent kinase 5 is required for control of neuroblast migration in the postnatal subventricular zone.J. Neurosci.27(47), 12829–12838 (2007).
  • Miyamoto Y , YamauchiJ, ChanJRet al.: Cdk5 regulates differentiation of oligodendrocyte precursor cells through the direct phosphorylation of paxillin.J. Cell. Sci.120(Pt 24), 4355–4366 (2007).
  • He Y , LiHL, XieWY, YangCZ, YuAC, WangY: The presence of active Cdk5 associated with p35 in astrocytes and its important role in process elongation of scratched astrocyte.Glia55(6), 573–583 (2007).
  • Graham ME , Ruma-HaynesP, Capes-DavisAGet al.: Multisite phosphorylation of doublecortin by cyclin-dependent kinase 5.Biochem. J.381(Pt 2), 471–481 (2004).
  • Liu R , TianB, GearingM, HunterS, YeK, MaoZ: Cdk5-mediated regulation of the PIKE-A-Akt pathway and glioblastoma cell invasion.Proc. Natl Acad. Sci. USA105(21), 7570–7575 (2008).
  • Chandana SR , MovvaS, AroraM, SinghT: Primary brain tumors in adults.Am. Fam. Physician77(10), 1423–1430 (2008).
  • Nikolic M , DudekH, KwonYT, RamosYF, TsaiLH: The cdk5/p35 kinase is essential for neurite outgrowth during neuronal differentiation.Genes Dev.10(7), 816–825 (1996).
  • Ledda F , ParatchaG, IbanezCF: Target-derived GFRα1 as an attractive guidance signal for developing sensory and sympathetic axons via activation of Cdk5.Neuron36(3), 387–401 (2002).
  • Desbarats J , BirgeRB, Mimouni-RongyM, WeinsteinDE, PalermeJS, NewellMK: Fas engagement induces neurite growth through ERK activation and p35 upregulation. Nat. Cell Biol.5(2), 118–125 (2003).
  • Hahn CM , KleinholzH, KoesterMP, GrieserS, ThelenK, PollerbergGE: Role of cyclin-dependent kinase 5 and its activator P35 in local axon and growth cone stabilization.Neuroscience134(2), 449–465 (2005).
  • Paglini G , PiginoG, KundaPet al.: Evidence for the participation of the neuron-specific CDK5 activator P35 during laminin-enhanced axonal growth.J. Neurosci.18(23), 9858–9869 (1998).
  • Lee JH , KimKT: Induction of cyclin-dependent kinase 5 and its activator p35 through the extracellular-signal-regulated kinase and protein kinase A pathways during retinoic-acid mediated neuronal differentiation in human neuroblastoma SK-N-BE(2)C cells.J. Neurochem.91(3), 634–647 (2004).
  • Xiong W , PestellR, RosnerMR: Role of cyclins in neuronal differentiation of immortalized hippocampal cells.Mol. Cell. Biol.17(11), 6585–6597 (1997).
  • Ledda F , ParatchaG, Sandoval-GuzmanT, IbanezCF: GDNF and GFRα1 promote formation of neuronal synapses by ligand-induced cell adhesion.Nat. Neurosci.10(3), 293–300 (2007).
  • Pigino G , PagliniG, UlloaL, AvilaJ, CaceresA: Analysis of the expression, distribution and function of cyclin dependent kinase 5 (cdk5) in developing cerebellar macroneurons.J. Cell. Sci.110(Pt 2), 257–270 (1997).
  • Cheung ZH , IpNY: The roles of cyclin-dependent kinase 5 in dendrite and synapse development.Biotechnol. J.2(8), 949–957 (2007).
  • Song JH , WangCX, SongDK, WangP, ShuaibA, HaoC: Interferon γ induces neurite outgrowth by up-regulation of p35 neuron-specific cyclin-dependent kinase 5 activator via activation of ERK1/2 pathway.J. Biol. Chem.280(13), 12896–12901 (2005).
  • Quintanilla RA , OrellanaDI, Gonzalez-BillaultC, MaccioniRB: Interleukin-6 induces Alzheimer-type phosphorylation of tau protein by deregulating the cdk5/p35 pathway.Exp. Cell. Res.295(1), 245–257 (2004).
  • Takahashi S , SaitoT, HisanagaS, PantHC, KulkarniAB: Tau phosphorylation by cyclin-dependent kinase 5/p39 during brain development reduces its affinity for microtubules.J. Biol. Chem.278(12), 10506–10515 (2003).
  • Wada Y , IshiguroK, ItohTJet al.: Microtubule-stimulated phosphorylation of tau at Ser202 and Thr205 by cdk5 decreases its microtubule nucleation activity.J. Biochem.124(4), 738–746 (1998).
  • Cole AR , CauseretF, YadirgiGet al.: Distinct priming kinases contribute to differential regulation of collapsin response mediator proteins by glycogen synthase kinase-3 in vivo.J. Biol. Chem.281(24), 16591–16598 (2006).
  • Del Rio JA , Gonzalez-BillaultC, UrenaJMet al.: MAP1B is required for Netrin 1 signaling in neuronal migration and axonal guidance.Curr. Biol.14(10), 840–850 (2004).
  • Kawauchi T , ChihamaK, NishimuraYV, NabeshimaY, HoshinoM: MAP1B phosphorylation is differentially regulated by Cdk5/p35, Cdk5/p25, and JNK.Biochem. Biophys. Res. Commun.331(1), 50–55 (2005).
  • Li T , HawkesC, QureshiHY, KarS, PaudelHK: Cyclin-dependent proteinkinase 5 primes microtubule-associated protein tau site-specifically for glycogen synthase kinase 3β.Biochemistry45(10), 3134–3145 (2006).
  • Tsai LH , LeeMS, CruzJ: Cdk5, a therapeutic target for Alzheimer‘s disease?Biochem. Biophys. Acta1697(1–2), 137–142 (2004).
  • Yoshimura T , KawanoY, ArimuraN, KawabataS, KikuchiA, KaibuchiK: GSK-3β regulates phosphorylation of CRMP-2 and neuronal polarity.Cell120(1), 137–149 (2005).
  • Hou Z , LiQ, HeLet al.: Microtubule association of the neuronal p35 activator of Cdk5.J. Biol. Chem.282(26), 18666–18670 (2007).
  • He L , HouZ, QiRZ: Calmodulin binding and Cdk5 phosphorylation of p35 regulate its effect on microtubules.J. Biol. Chem.283(19), 13252–13260 (2008).
  • Choe EA , LiaoL, ZhouJYet al.: Neuronal morphogenesis is regulated by the interplay between cyclin-dependent kinase 5 and the ubiquitin ligase mind bomb 1.J. Neurosci.27(35), 9503–9512 (2007).
  • Pandithage R , LilischkisR, HartingKet al.: The regulation of SIRT2 function by cyclin-dependent kinases affects cell motility.J. Cell. Biol.180(5), 915–929 (2008).
  • Itoh M , KimCH, PalardyGet al.: Mind bomb is a ubiquitin ligase that is essential for efficient activation of Notch signaling by Delta.Dev. Cell.4(1), 67–82 (2003).
  • Connell-Crowley L , Le Gall M, Vo DJ, Giniger E: The cyclin-dependent kinase Cdk5 controls multiple aspects of axon patterning in vivo. Curr. Biol.10(10), 599–602 (2000).
  • Connell-Crowley L , VoD, LukeL, GinigerE: Drosophila lacking the Cdk5 activator, p35, display defective axon guidance, age-dependent behavioral deficits and reduced lifespan.Mech. Dev.124(5), 341–349 (2007).
  • Kwon YT , TsaiLH, CrandallJE: Callosal axon guidance defects in p35-/- mice.J. Comp. Neurol.415(2), 218–229 (1999).
  • Cheung ZH , ChinWH, ChenY, NgYP, IpNY: Cdk5 is involved in BDNF-stimulated dendritic growth in hippocampal neurons.PLoS Biol.5(4), e63 (2007).
  • Polleux F , MorrowT, GhoshA: Semaphorin 3A is a chemoattractant for cortical apical dendrites.Nature404(6778), 567–573 (2000).
  • Polleux F , GigerRJ, GintyDD, KolodkinAL, GhoshA: Patterning of cortical efferent projections by semaphorin–neuropilin interactions.Science282(5395), 1904–1906 (1998).
  • Sasaki Y , ChengC, UchidaYet al.: Fyn and Cdk5 mediate semaphorin-3A signaling, which is involved in regulation of dendrite orientation in cerebral cortex.Neuron35(5), 907–920 (2002).
  • Uchida Y , OhshimaT, SasakiYet al.: Semaphorin3A signalling is mediated via sequential Cdk5 and GSK3β phosphorylation of CRMP2: implication of common phosphorylating mechanism underlying axon guidance and Alzheimer‘s disease.Genes Cells10(2), 165–179 (2005).
  • Brown M , JacobsT, EickholtBet al.: α2-chimaerin, cyclin-dependent kinase 5/p35, and its target collapsin response mediator protein-2 are essential components in semaphorin 3A-induced growth-cone collapse.J. Neurosci.24(41), 8994–9004 (2004).
  • Namgung U , ChoiBH, ParkSet al.: Activation of cyclin-dependent kinase 5 is involved in axonal regeneration.Mol. Cell. Neurosci.25(3), 422–432 (2004).
  • Kwon YT , TsaiLH: A novel disruption of cortical development in p35-/- mice distinct from reeler.J. Comp. Neurol.395(4), 510–522 (1998).
  • Gupta A , SanadaK, MiyamotoDTet al.: Layering defect in p35 deficiency is linked to improper neuronal–glial interaction in radial migration.Nat. Neurosci.6(12), 1284–1291 (2003).
  • Rakic P : Neuronal migration and contact guidance in the primate telencephalon.Postgrad. Med. J.54(Suppl. 1), 25–40 (1978).
  • Kwon YT , GuptaA, ZhouY, NikolicM, TsaiLH: Regulation of N-cadherin-mediated adhesion by the p35-Cdk5 kinase.Curr. Biol.10(7), 363–372 (2000).
  • Anton ES , KreidbergJA, RakicP: Distinct functions of α3 and α(v) integrin receptors in neuronal migration and laminar organization of the cerebral cortex.Neuron22(2), 277–289 (1999).
  • Dulabon L , OlsonEC, TaglientiMGet al.: Reelin binds α3β1 integrin and inhibits neuronal migration.Neuron27(1), 33–44 (2000).
  • Graus-Porta D , BlaessS, SenftenMet al.: β1-class integrins regulate the development of laminae and folia in the cerebral and cerebellar cortex.Neuron31(3), 367–379 (2001).
  • Schmid RS , SheltonS, StancoA, YokotaY, KreidbergJA, AntonES: α3β1 integrin modulates neuronal migration and placement during early stages of cerebral cortical development.Development131(24), 6023–6031 (2004).
  • Barami K , KirschenbaumB, LemmonV, GoldmanSA: N-cadherin and Ng-CAM/8D9 are involved serially in the migration of newly generated neurons into the adult songbird brain.Neuron13(3), 567–582 (1994).
  • Ohshima T , HirasawaM, TabataHet al.: Cdk5 is required for multipolar-to-bipolar transition during radial neuronal migration and proper dendrite development of pyramidal neurons in the cerebral cortex.Development134(12), 2273–2282 (2007).
  • LoTurco JJ , BaiJ: The multipolar stage and disruptions in neuronal migration.Trends Neurosci.29(7), 407–413 (2006).
  • Noctor SC , Martinez-CerdenoV, IvicL, KriegsteinAR: Cortical neurons arise in symmetric and asymmetric division zones and migrate through specific phases.Nat. Neurosci.7(2), 136–144 (2004).
  • McEvilly RJ , de Diaz MO, Schonemann MD, Hooshmand F, Rosenfeld MG: Transcriptional regulation of cortical neuron migration by POU domain factors. Science295(5559), 1528–1532 (2002).
  • Sugitani Y , NakaiS, MinowaOet al.: Brn-1 and Brn-2 share crucial roles in the production and positioning of mouse neocortical neurons.Genes Dev.16(14), 1760–1765 (2002).
  • Ohshima T , MikoshibaK: Reelin signaling and Cdk5 in the control of neuronal positioning.Mol. Neurobiol.26(2–3), 153–166 (2002).
  • Tissir F , GoffinetAM: Reelin and brain development.Nat. Rev. Neurosci.4(6), 496–505 (2003).
  • Beffert U , WeeberEJ, MorfiniGet al.: Reelin and cyclin-dependent kinase 5-dependent signals cooperate in regulating neuronal migration and synaptic transmission.J. Neurosci.24(8), 1897–1906 (2004).
  • Ohshima T , OgawaM, Veerannaet al.: Synergistic contributions of cyclin-dependant kinase 5/p35 and Reelin/Dab1 to the positioning of cortical neurons in the developing mouse brain. Proc. Natl Acad. Sci. USA98(5), 2764–2769 (2001).
  • Sato Y , TaokaM, SugiyamaNet al.: Regulation of the interaction of disabled-1 with CIN85 by phosphorylation with cyclin-dependent kinase 5.Genes Cells12(12), 1315–1327 (2007).
  • Keshvara L , MagdalenoS, BenhayonD, CurranT: Cyclin-dependent kinase 5 phosphorylates disabled 1 independently of Reelin signaling.J. Neurosci.22(12), 4869–4877 (2002).
  • Ohshima T , SuzukiH, MorimuraT, OgawaM, MikoshibaK: Modulation of Reelin signaling by cyclin-dependent kinase 5.Brain Res.1140, 84–95 (2007).
  • Dikic I : CIN85/CMS family of adaptor molecules.FEBS Lett.529(1), 110–115 (2002).
  • Kawauchi T , ChihamaK, NabeshimaY, HoshinoM: Cdk5 phosphorylates and stabilizes p27kip1 contributing to actin organization and cortical neuronal migration.Nat. Cell. Biol.8(1), 17–26 (2006).
  • Besson A , Gurian-WestM, SchmidtA, HallA, RobertsJM: p27Kip1 modulates cell migration through the regulation of RhoA activation.Genes Dev.18(8), 862–876 (2004).
  • Causeret F , JacobsT, TeraoM, HeathO, HoshinoM, NikolicM: Neurabin-I is phosphorylated by Cdk5: implications for neuronal morphogenesis and cortical migration.Mol. Biol. Cell18(11), 4327–4342 (2007).
  • Kim Y , SungJY, CegliaIet al.: Phosphorylation of WAVE1 regulates actin polymerization and dendritic spine morphology.Nature442(7104), 814–817 (2006).
  • Sossey-Alaoui K , HartungAJ, GuerriniRet al.: Human doublecortin (DCX) and the homologous gene in mouse encode a putative Ca2+ -dependent signaling protein which is mutated in human X-linked neuronal migration defects.Hum. Mol. Genet.7(8), 1327–1332 (1998).
  • Tanaka T , SerneoFF, TsengHC, KulkarniAB, TsaiLH, GleesonJG: Cdk5 phosphorylation of doublecortin ser297 regulates its effect on neuronal migration.Neuron41(2), 215–227 (2004).
  • Xie Z , SanadaK, SamuelsBA, ShihH, TsaiLH: Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organization, nuclear movement, and neuronal migration.Cell114(4), 469–482 (2003).
  • Niethammer M , SmithDS, AyalaRet al.: NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein.Neuron28(3), 697–711 (2000).
  • Sasaki S , MoriD, Toyo-okaKet al.: Complete loss of Ndel1 results in neuronal migration defects and early embryonic lethality.Mol. Cell. Biol.25(17), 7812–7827 (2005).
  • Shu T , AyalaR, NguyenMD, XieZ, GleesonJG, TsaiLH: Ndel1 operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning.Neuron44(2), 263–277 (2004).
  • Yan X , LiF, LiangYet al.: Human Nudel and NudE as regulators of cytoplasmic dynein in poleward protein transport along the mitotic spindle.Mol. Cell. Biol.23(4), 1239–1250 (2003).
  • Toyo-oka K , ShionoyaA, GambelloMJet al.: 14–13–3ε is important for neuronal migration by binding to NUDEL: a molecular explanation for Miller-Dieker syndrome.Nat. Genet.34(3), 274–285 (2003).
  • Toyo-Oka K , SasakiS, YanoYet al.: Recruitment of katanin p60 by phosphorylated NDEL1, an LIS1 interacting protein, is essential for mitotic cell division and neuronal migration.Hum. Mol. Genet.14(21), 3113–3128 (2005).
  • Angelo M , PlattnerF, GieseKP: Cyclin-dependent kinase 5 in synaptic plasticity, learning and memory.J. Neurochem.99(2), 353–370 (2006).
  • Cheung ZH , FuAK, IpNY: Synaptic roles of Cdk5: implications in higher cognitive functions and neurodegenerative diseases.Neuron50(1), 13–18 (2006).
  • Nguyen C , BibbJA: Cdk5 and the mystery of synaptic vesicle endocytosis.J. Cell Biol.163(4), 697–699 (2003).
  • Fischer A , SananbenesiF, SpiessJ, RadulovicJ: Cdk5: a novel role in learning and memory.Neurosignals12(4–5), 200–208 (2003).
  • Hawasli AH , BibbJA: Alternative roles for Cdk5 in learning and synaptic plasticity.Biotechnol. J.2(8), 941–948 (2007).
  • Benavides DR , QuinnJJ, ZhongPet al.: Cdk5 modulates cocaine reward, motivation, and striatal neuron excitability.J. Neurosci.27(47), 12967–12976 (2007).
  • Norrholm SD , BibbJA, NestlerEJ, OuimetCC, TaylorJR, GreengardP: Cocaine-induced proliferation of dendritic spines in nucleus accumbens is dependent on the activity of cyclin-dependent kinase-5.Neuroscience116(1), 19–22 (2003).
  • Taylor JR , LynchWJ, SanchezH, Olausson, Nestler EJ, Bibb JA: Inhibition of Cdk5 in the nucleus accumbens enhances the locomotor-activating and incentive-motivational effects of cocaine. Proc. Natl Acad. Sci. USA104(10), 4147–4152 (2007).
  • Bhat R , ChariG, RaoR, WirtshafterD: Prenatal cocaine and morphine alter brain cyclin-dependent kinase 5 (Cdk5) activity in rat pups.Neurotoxicol. Teratol.28(5), 625–628 (2006).
  • Morita A , YamashitaN, SasakiYet al.: Regulation of dendritic branching and spine maturation by semaphorin3A-Fyn signaling.J. Neurosci.26(11), 2971–2980 (2006).
  • Yamashita N , MoritaA, UchidaYet al.: Regulation of spine development by semaphorin3A through cyclin-dependent kinase 5 phosphorylation of collapsin response mediator protein 1.J. Neurosci.27(46), 12546–12554 (2007).
  • Fu WY , ChenY, SahinMet al.: Cdk5 regulates EphA4-mediated dendritic spine retraction through an ephexin1-dependent mechanism.Nat. Neurosci.10(1), 67–76 (2007).
  • Aoto J , ChenL: Bidirectional ephrin/Eph signaling in synaptic functions.Brain Res1184, 72–80 (2007).
  • Pilpel Y , SegalM: Rapid WAVE dynamics in dendritic spines of cultured hippocampal neurons is mediated by actin polymerization.J. Neurochem.95(5), 1401–1410 (2005).
  • Sung JY , EngmannO, TeylanMA, NairnAC, GreengardP, KimY: WAVE1 controls neuronal activity-induced mitochondrial distribution in dendritic spines.Proc. Natl Acad. Sci. USA105(8), 3112–3116 (2008).
  • Buttery P , BegAA, ChihB, BroderA, MasonCA, ScheiffeleP: The diacylglycerol-binding protein α1-chimaerin regulates dendritic morphology.Proc. Natl Acad. Sci. USA103(6), 1924–1929 (2006).
  • Terry-Lorenzo RT , RoadcapDW, OtsukaTet al.: Neurabin/protein phosphatase-1 complex regulates dendritic spine morphogenesis and maturation.Mol. Biol. Cell16(5), 2349–2362 (2005).
  • Futter M , UematsuK, BullockSAet al.: Phosphorylation of spinophilin by ERK and cyclin-dependent PK 5 (Cdk5).Proc. Natl Acad. Sci. USA102(9), 3489–3494 (2005).
  • Salminen A , SuuronenT, KaarnirantaK: ROCK, PAK, and Toll of synapses in Alzheimer‘s disease.Biochem. Biophys. Res. Commun.371(4), 587–590 (2008).
  • Fischer A , SananbenesiF, PangPT, LuB, TsaiH: Opposing roles of transient and prolonged expression of p25 in synaptic plasticity and hippocampus-dependent memory.Neuron48(5), 825–838 (2005).
  • Angelo M , PlattnerF, IrvineEE, GieseKP: Improved reversal learning and altered fear conditioning in transgenic mice with regionally restricted p25 expression.Eur J. Neurosci.18(2), 423–431 (2003).
  • Patrick GN , ZukerbergL, NikolicM, de la Monte S, Dikkes P, Tsai LH: Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature402(6762), 615–622 (1999).
  • Camins A , VerdaguerE, FolchJ, CanudasAM, PallasM: The role of CDK5/P25 formation/inhibition in neurodegeneration.Drug News Perspect.19(8), 453–460 (2006).
  • Ris L , AngeloM, PlattnerFet al.: Sexual dimorphisms in the effect of low-level p25 expression on synaptic plasticity and memory.Eur. J. Neurosci.21(11), 3023–3033 (2005).
  • Hader WJ , MackayM, OtsuboHet al.: Cortical dysplastic lesions in children with intractable epilepsy: role of complete resection.J. Neurosurg.100(2 Suppl. Pediatrics), 110–117 (2004).
  • Philippon J , ClemenceauS, AdamC, BaulacM: Place of surgery in the treatment of adult temporal lobe epilepsy.Bull. Acad. Natl Med.188(8), 1397–1410; discussion 1410–1391 (2004).
  • Sisodiya SM , ThomM, LinWR, BajajNP, CrossJH, HardingBN: Abnormal expression of cdk5 in focal cortical dysplasia in humans.Neurosci. Lett.328(3), 217–220 (2002).
  • Sen A , ThomM, MartinianL, YogarajahM, NikolicM, SisodiyaSM: Increased immunoreactivity of cdk5 activators in hippocampal sclerosis.Neuroreport18(5), 511–516 (2007).
  • Sen A , ThomM, MartinianL, JacobsT, NikolicM, SisodiyaSM: Deregulation of cdk5 in Hippocampal sclerosis.J. Neuropathol. Exp. Neurol.65(1), 55–66 (2006).
  • Green SL , KulpKS, VullietR: Cyclin-dependent protein kinase 5 activity increases in rat brain following ischemia.Neurochem. Int.31(4), 617–623 (1997).
  • Kremer S , De Saint Martin A, Minotti L,et al.: Focal cortical dysplasia possibly related to a probable prenatal ischemic injury. J. Neuroradiol.29(3), 200–203 (2002).
  • Mitsios N , PennucciR, KrupinskiJet al.: Expression of cyclin-dependent kinase 5 mRNA and protein in the human brain following acute ischemic stroke.Brain Pathol.17(1), 11–23 (2007).
  • Fisher PD , SperberEF, MosheSL: Hippocampal sclerosis revisited.Brain. Dev.20(8), 563–573 (1998).
  • Muyllaert D , TerwelD, KremerAet al.: Neurodegeneration and neuroinflammation in cdk5/p25-inducible mice: a model for hippo- campal sclerosis and neocortical degeneration.Am. J. Pathol.172(2), 470–485 (2008).
  • Angevine JB Jr, Sidman RL: Autoradiographic study of cell migration during histogenesis of cerebral cortex in the mouse. Nature192, 766–768 (1961).
  • Rakic P : Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition.Science183(123), 425–427 (1974).
  • Anderson SA , EisenstatDD, ShiL, RubensteinJL: Interneuron migration from basal forebrain to neocortex: dependence on Dlx genes.Science278(5337), 474–476 (1997).
  • Ang ES Jr, Haydar TF, Gluncic V, Rakic P: Four-dimensional migratory coordinates of GABAergic interneurons in the developing mouse cortex. J. Neurosci.23(13), 5805–5815 (2003).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.