57
Views
0
CrossRef citations to date
0
Altmetric
Review

Agrin in the Nervous System: Synaptogenesis and Beyond

&
Pages 67-86 | Published online: 18 Dec 2008

Bibliography

  • Sanes JR , LichtmanJW: Induction, assembly, maturation and maintenance of a postsynaptic apparatus.Nat. Rev. Neurosci.2, 791–805 (2001).
  • McMahan UJ : The agrin hypothesis.Cold Spring Harb. Symp. Quant. Biol.55, 407–418 (1990).
  • Denzer AJ , BrandenbergerR, GesemannM, ChiquetM, RueggMA: Agrin binds to the nerve–muscle basal lamina via laminin.J. Cell Biol.137, 671–683 (1997).
  • Glass DJ , BowenDC, StittTNet al.: Agrin acts via a MuSK receptor complex.Cell85, 513–523 (1996).
  • Weatherbee SD , AndersonKV, NiswanderLA: LDL-receptor-related protein 4 is crucial for formation of the neuromuscular junction.Development133, 4993–5000 (2006).
  • Zhang B , LuoS, WangQ, SuzukiT, XiongWC, MeiL: LRP4 serves as a coreceptor of agrin.Neuron60, 285–297 (2008).
  • Kim N , StieglerAL, CameronTOet al.: Lrp4 is a receptor for agrin and forms a complex with MuSK.Cell135, 334–342 (2008).
  • Finn AJ , FengG, PendergastAM: Postsynaptic requirement for Abl kinases in assembly of the neuromuscular junction.Nat. Neurosci.6, 717–723 (2003).
  • Sadasivam G , WillmannR, LinSet al.: Src-family kinases stabilize the neuromuscular synapse in vivo via protein interactions, phosphorylation, and cytoskeletal linkage of acetylcholine receptors.J. Neurosci.25, 10479–10493 (2005).
  • Zhao XT , QianYK, ChanAW, MadhavanR, PengHB: Regulation of ACh receptor clustering by the tyrosine phosphatase Shp2.Dev. Neurobiol.67, 1789–1801 (2007).
  • Madhavan R , ZhaoXT, RueggMA, PengHB: Tyrosine phosphatase regulation of MuSK-dependent acetylcholine receptor clustering.Mol. Cell. Neurosci.28, 403–416 (2005).
  • Luo ZG , JeHS, WangQet al.: Implication of geranylgeranyltransferase I in synapse formation.Neuron40, 703–717 (2003).
  • Schwarte RC , GodfreyEW: Nitric oxide synthase activity is required for postsynaptic differentiation of the embryonic neuromuscular junction.Dev. Biol.273, 276–284 (2004).
  • Jones MA , WerleMJ: Agrin-induced AChR aggregate formation requires cGMP and aggregate maturation requires activation of cGMP-dependent protein kinase.Mol. Cell. Neurosci.25, 195–204 (2004).
  • Godfrey EW , LongacherM, NeiswenderH, SchwarteRC, BrowningDD: Guanylate cyclase and cyclic GMP-dependent protein kinase regulate agrin signaling at the developing neuromuscular junction.Dev. Biol.307, 195–201 (2007).
  • Nizhynska V , NeumuellerR, HerbstR: Phosphoinositide 3-kinase acts through RAC and Cdc42 during agrin-induced acetylcholine receptor clustering.Dev. Neurobiol.67, 1047–1058 (2007).
  • Cheusova T , KhanMA, SchubertSWet al.: Casein kinase 2-dependent serine phosphorylation of MuSK regulates acetylcholine receptor aggregation at the neuromuscular junction.Genes Dev.20, 1800–1816 (2006).
  • Okada K , InoueA, OkadaMet al.: The muscle protein Dok-7 is essential for neuromuscular synaptogenesis.Science312, 1802–1805 (2006).
  • Jones N , HardyWR, FrieseMBet al.: Analysis of a Shc family adaptor protein, ShcD/Shc4, that associates with muscle-specific kinase.Mol. Cell. Biol.27, 4759–4773 (2007).
  • Beeson D , HiguchiO, PalaceJet al.: Dok-7 mutations underlie a neuromuscular junction synaptopathy.Science313, 1975–1978 (2006).
  • Luo ZG , WangQ, ZhouJZet al.: Regulation of AChR clustering by dishevelled interacting with MuSK and PAK1.Neuron35, 489–505 (2002).
  • Wang JM , JingZ, ZhangLLet al.: Regulation of acetylcholine receptor clustering by the tumor suppressor APC.Nat. Neurosci.6, 1017–1018 (2003).
  • Weston C , YeeB, HodE, PrivesJ: Agrin-induced acetylcholine receptor clustering is mediated by the small guanosine triphosphatases Rac and Cdc42.J. Cell Biol.150, 205–212 (2000).
  • Weston C , GordonC, TeressaG, HodE, RenXD, PrivesJ: Cooperative regulation by Rac and Rho of agrin-induced acetylcholine receptor clustering in muscle cells.J. Biol. Chem.278, 6450–6455 (2003).
  • Wang J , RuanNJ, QianL, LeiWL, ChenF, LuoZG: Wnt/β-Catenin signaling suppresses rapsyn expression and inhibits acetylcholine receptor clustering at the neuromuscular junction.J. Biol. Chem.283, 21668–21675 (2008).
  • Li XM , DongXP, LuoSWet al.: Retrograde regulation of motoneuron differentiation by muscle β-catenin.Nat. Neurosci.11, 262–268 (2008).
  • Lu Z , JeHS, YoungP, GrossJ, LuB, FengG: Regulation of synaptic growth and maturation by a synapse-associated E3 ubiquitin ligase at the neuromuscular junction.J. Cell Biol.177, 1077–1089 (2007).
  • Luo S , ZhangB, DongXPet al.: HSP90β regulates rapsyn turnover and subsequent AChR cluster formation and maintenance.Neuron60, 97–110 (2008).
  • Campagna JA , FallonJ: Lipid rafts are involved in C95 (4,8) agrin fragment-induced acetylcholine receptor clustering.Neuroscience138, 123–132 (2006).
  • Zhu D , XiongWC, MeiL: Lipid rafts serve as a signaling platform for nicotinic acetylcholine receptor clustering.J. Neurosci.26, 4841–4851 (2006).
  • Stetzkowski-Marden F , GausK, RecouvreurM, CartaudA, CartaudJ: Agrin elicits membrane lipid condensation at sites of acetylcholine receptor clusters in C2C12 myotubes.J. Lipid Res.47, 2121–2133 (2006).
  • Pato C , Stetzkowski-MardenF, GausK, RecouvreurM, CartaudA, CartaudJ: Role of lipid rafts in agrin-elicited acetylcholine receptor clustering.Chem. Biol. Interact.175, 64–67 (2008).
  • Escher P , LacazetteE, CourtetMet al.: Synapses form in skeletal muscles lacking neuregulin receptors.Science308, 1920–1923 (2005).
  • Ravel-Chapuis A , VandrommeM, ThomasJL, SchaefferL: Postsynaptic chromatin is under neural control at the neuromuscular junction.EMBO J.26, 1117–1128 (2007).
  • Mejat A , Ravel-ChapuisA, VandrommeM, SchaefferL: Synapse-specific gene expression at the neuromuscular junction.Myasthenia Gravis and Related Disorders998, 53–65 (2003).
  • Briguet A , RueggMA: The Ets transcription factor GABP is required for postsynaptic differentiation in vivo.J. Neurosci.20, 5989–5996 (2000).
  • Strochlic L , CartaudA, MejatAet al.: 14–13–3 γ associates with muscle specific kinase and regulates synaptic gene transcription at vertebrate neuromuscular synapse.Proc. Natl Acad. Sci. USA101, 18189–18194 (2004).
  • Chen F , QianL, YangZHet al.: Rapsyn interaction with calpain stabilizes AChR clusters at the neuromuscular junction.Neuron55, 247–260 (2007).
  • Zhu D , YangZ, LuoZ, LuoS, XiongWC, MeiL: Muscle-specific receptor tyrosine kinase endocytosis in acetylcholine receptor clustering in response to agrin.J. Neurosci.28, 1688–1696 (2008).
  • Denzer AJ , SchulthessT, FauserCet al.: Electron microscopic structure of agrin and mapping of its binding site in laminin-1.EMBO J.17, 335–343 (1998).
  • Kammerer RA , SchulthessT, LandwehrRet al.: Interaction of agrin with laminin requires a coiled-coil conformation of the agrin-binding site within the laminin γ 1 chain.EMBO J.18, 6762–6770 (1999).
  • Blake DJ , KrögerS: The neurobiology of Duchenne muscular dystrophy: learning lessons from muscle?Trends Neurosci.23, 92–99 (2000).
  • Gesemann M , CavalliV, DenzerAJ, BrancaccioA, SchumacherB, RueggMA: Alternative splicing of agrin alters its binding to heparin, dystroglycan, and the putative agrin receptor.Neuron16, 755–767 (1996).
  • Hopf C , HochW: Agrin binding to α-dystroglycan – domains of agrin necessary to induce acetylcholine-receptor clustering are overlapping but not identical to the α-dystroglycan-binding region.J. Biol. Chem.271, 5231–5236 (1996).
  • Scotton P , BleckmannD, SteblerMet al.: Activation of muscle-specific receptor tyrosine kinase and binding to dystroglycan are regulated by alternative mRNA splicing of agrin.J. Biol. Chem.281, 36835–36845 (2006).
  • Burgess RW , NguyenQT, SonYJ, LichtmanJW, SanesJR: Alternatively spliced isoforms of nerve- and muscle-derived agrin: their roles at the neuromuscular junction.Neuron23, 33–44 (1999).
  • Grady RM , ZhouH, CunninghamJM, HenryMD, CampbellKP, SanesJR: Maturation and maintenance of the neuromuscular synapse: genetic evidence for roles of the dystrophin–glycoprotein complex.Neuron25, 279–293 (2000).
  • Jacobson C , CotePD, RossiSG, RotundoRL, CarbonettoS: The dystroglycan complex is necessary for stabilization of acetylcholine receptor clusters at neuromuscular junctions and formation of the synaptic basement membrane.J. Cell Biol.152, 435–450 (2001).
  • Moll J , BarzaghiP, LinSet al.: An agrin minigene rescues dystrophic symptoms in a mouse model for congenital muscular dystrophy.Nature413, 302–307 (2001).
  • Bentzinger CF , BarzaghiP, LinS, RueggMA: Overexpression of mini-agrin in skeletal muscle increases muscle integrity and regenerative capacity in laminin-α 2-deficient mice.FASEB J.19, 934–942 (2005).
  • Gesemann M , DenzerAJ, RueggMA: Acetylcholine receptor aggregating activity of agrin isoforms and mapping of the active site.J. Cell Biol.128, 625–636 (1995).
  • Kröger S : Differential distribution of agrin isoforms in the developing and adult avian retina.Mol. Cell. Neurosci.10, 149–161 (1997).
  • Burgess RW , SkarnesWC, SanesJR: Agrin isoforms with distinct amino termini: differential expression, localization, and function.J. Cell Biol.151, 41–52 (2000).
  • Neumann FR , BittcherG, AnniesM, SchumacherB, KrögerS, RueggMA: An alternative amino-terminus expressed in the central nervous system converts agrin to a type II transmembrane protein.Mol. Cell. Neurosci.17, 208–225 (2001).
  • Tsen G , HalfterW, KrögerS, ColeGJ: Agrin is a heparan sulfate proteoglycan.J. Biol. Chem.270, 3392–3399 (1995).
  • Cotman SL , HalfterW, ColeGJ: Identification of extracellular matrix ligands for the heparan sulfate proteoglycan agrin.Exp. Cell Res.249, 54–64 (1999).
  • Daggett DF , CohenMW, StoneD, NikolicsK, RauvalaH, PengHB: The role of an agrin–growth factor interaction in ACh receptor clustering.Mol. Cell. Neurosci.8, 272–285 (1996).
  • Kim MJ , CotmanSL, HalfterW, ColeGJ: The heparan sulfate proteoglycan agrin modulates neurite outgrowth mediated by FGF-2.J. Neurobiol.55, 261–277 (2003).
  • Lin S , MajM, BezakovaG, MagyarJP, BrennerHR, RueggMA: Muscle-wide secretion of a miniaturized form of neural agrin rescues focal neuromuscular innervation in agrin mutant mice.Proc. Natl Acad. Sci. USA105, 11406–11411 (2008).
  • DeChiara TM , BowenDC, ValenzuelaDMet al.: The receptor tyrosine kinase MuSK is required for neuromuscular junction formation in vivo.Cell85, 501–512 (1996).
  • Gautam M , DeChiaraTM, GlassDJ, YancopoulosGD, SanesJR: Distinct phenotypes of mutant mice lacking agrin, MuSK, or rapsyn.Dev. Brain Res.114, 171–178 (1999).
  • Gautam M , NoakesPG, MoscosoLet al.: Defective neuromuscular synaptogenesis in agrin-deficient mutant mice.Cell85, 525–535 (1996).
  • Lin WC , BurgessRW, DominguezB, PfaffSL, SanesJR, LeeKF: Distinct roles of nerve and muscle in postsynaptic differentiation of the neuromuscular synapse.Nature410, 1057–1064 (2001).
  • Yang X , ArberS, WilliamCet al.: Patterning of muscle acetylcholine receptor gene expression in the absence of motor innervation.Neuron30, 399–410 (2001).
  • Lin S , LandmannL, RueggMA, BrennerHR: The role of nerve- versus muscle-derived factors in mammalian neuromuscular junction formation.J. Neurosci.28, 3333–3340 (2008).
  • Flanagan-Steet H , FoxMA, MeyerD, SanesJR: Neuromuscular synapses can form in vivo by incorporation of initially aneural postsynaptic specializations.Development132, 4471–4481 (2005).
  • Misgeld T , BurgessRW, LewisRM, CunninghamJM, LichtmanJW, SanesJR: Roles of neurotransmitter in synapse formation: development of neuromuscular junctions lacking choline acetyltransferase.Neuron36, 635–648 (2002).
  • Heeroma JH , PlompJJ, RoubosEW, VerhageM: Development of the mouse neuromuscular junction in the absence of regulated secretion.Neuroscience120, 733–744 (2003).
  • Verhage M , MaiaAS, PlompJJet al.: Synaptic assembly of the brain in the absence of neurotransmitter secretion.Science287, 864–869 (2000).
  • Campagna JA , RueggMA, BixbyJL: Agrin is a differentiation-inducing ‘stop signal‘ for motoneurons in vitro.Neuron15, 1365–1374 (1995).
  • Campagna JA , RueggMA, BixbyJL: Evidence that agrin directly influences presynaptic differentiation at neuromuscular junctions in vitro.Eur. J. Neurosci.9, 2269–2283 (1997).
  • Dimitropoulou A , BixbyJL: Motor neurite outgrowth is selectively inhibited by cell surface MuSK and agrin.Mol. Cell. Neurosci.28, 292–302 (2005).
  • Fox MA , SanesJR, BorzaDBet al.: Distinct target-derived signals organize formation, maturation, and maintenance of motor nerve terminals.Cell129, 179–193 (2007).
  • Kim N , BurdenSJ: MuSK controls where motor axons grow and form synapses.Nat. Neurosci.11, 19–27 (2008).
  • Hesser BA , HenschelO, WitzemannV: Synapse disassembly and formation of new synapses in postnatal muscle upon conditional inactivation of MuSK.Mol. Cell. Neurosci.31, 470–480 (2006).
  • Jones G , MooreC, HashemolhosseiniS, BrennerHR: Constitutively active MuSK is clustered in the absence of agrin and induces ectopic postsynaptic-like membranes in skeletal muscle fibers.J. Neurosci.19, 3376–3383 (1999).
  • Kong XC , BarzaghiP, RueggMA: Inhibition of synapse assembly in mammalian muscle in vivo by RNA interference.EMBO Rep.5, 183–188 (2004).
  • Cohen I , RimerM, LomoT, McMahanUJ: Agrin-induced postsynaptic-like apparatus in skeletal muscle fibers in vivo.Mol. Cell. Neurosci.9, 237–253 (1997).
  • Meier T , HauserDM, ChiquetM, LandmannL, RueggMA, BrennerHR: Neural agrin induces ectopic postsynaptic specializations in innervated muscle fibers.J. Neurosci.17, 6534–6544 (1997).
  • Jones G , MeierT, LichtsteinerM, WitzemannV, SakmannB, BrennerHR: Induction by agrin of ectopic and functional postsynaptic-like membrane in innervated muscle.Proc. Natl Acad. Sci. USA94, 2654–2659 (1997).
  • Bezakova G , HelmJP, FrancoliniM, LomoT: Effects of purified recombinant neural and muscle agrin on skeletal muscle fibers in vivo.J. Cell Biol.153, 1441–1452 (2001).
  • Ruegg MA , BixbyJL: Agrin orchestrates synaptic differentiation at the vertebrate neuromuscular junction.Trends Neurosci.21, 22–27 (1998).
  • Rimer M , MathiesenI, LomoT, McMahanUJ: γ -AChR/e-AChR switch at agrin-induced postsynaptic-like apparatus in skeletal muscle.Mol. Cell. Neurosci.9, 254–263 (1997).
  • Engel AG , OhnoK, SineSM: Sleuthing molecular targets for neurological diseases at the neuromuscular junction.Nat. Rev. Neurosci.4, 339–352 (2003).
  • Vincent A , McConvilleJ, FarrugiaMEet al.: Antibodies in myasthenia gravis and related disorders.Ann. NY Acad. Sci.998, 324–335 (2003).
  • Hoch W , McConvilleJ, HelmsS, Newsom-DavisJ, MelmsA, VincentA: Auto-antibodies to the receptor tyrosine kinase MuSK in patients with myasthenia gravis without acetylcholine receptor antibodies.Nat. Med.7, 365–368 (2001).
  • Chevessier F , FarautB, Ravel-ChapuisAet al.: MUSK, a new target for mutations causing congenital myasthenic syndrome.Hum. Mol. Genet.13, 3229–3240 (2004).
  • Chevessier F , GirardE, MolgoJet al.: A mouse model for congenital myasthenic syndrome due to MuSK mutations reveals defects in structure and function of neuromuscular junctions.Hum. Mol. Genet.22, 3577–3595 (2008).
  • Maselli RA , DunneV, Pascual-PascualSIet al.: Rapsyn mutations in myasthenic syndrome due to impaired receptor clustering.Muscle Nerve28, 293–301 (2003).
  • Dunne V , MaselliRA: Identification of pathogenic mutations in the human rapsyn gene.J. Hum. Genet.48, 204–207 (2003).
  • Alfsen A , YuH, Magerus-ChatinetA, SchmittA, BomselM: HIV-1-infected blood mononuclear cells form an integrin- and agrin-dependent viral synapse to induce efficient HIV-1 transcytosis across epithelial cell monolayer.Mol. Biol. Cell16, 4267–4279 (2005).
  • Harvey SJ , JaradG, CunninghamJet al.: Disruption of glomerular basement membrane charge through podocyte-specific mutation of agrin does not alter glomerular permselectivity.Am. J. Pathol.171, 139–152 (2007).
  • Tatrai P , DudasJ, BatmunkhEet al.: Agrin, a novel basement membrane component in human and rat liver, accumulates in cirrhosis and hepatocellular carcinoma.Lab. Invest.86, 1149–1160 (2006).
  • Batmunkh E , TatraiP, SzaboEet al.: Comparison of the expression of agrin, a basement membrane heparan sulfate proteoglycan, in cholangiocarcinoma and hepatocellular carcinoma.Hum. Pathol.38, 1508–1515 (2007).
  • Kumar P , FernsMJ, MeizelS: Identification of agrin(SN) isoform and muscle-specific receptor tyrosine kinase in sperm.Biochem. Biophys. Res. Commun.342, 522–528 (2006).
  • Hausser HJ , RueggMA, BrennerRE, KsiazekI: Agrin is highly expressed by chondrocytes and is required for normal growth.Histochem. Cell Biol.127, 363–374 (2007).
  • Zhang J , WangY, ChuYet al.: Agrin is involved in lymphocytes activation that is mediated by α-dystroglycan.FASEB J.20, 50–58 (2006).
  • Khan AA , BöseCM, YamLS, SoloskiMJ, RuppF: Physiological regulation of the immunological synapse by agrin.Science292, 1681–1686 (2001).
  • Gingras J , RassadiS, CooperE, FernsM: Agrin plays an organizing role in the formation of sympathetic synapses.J. Cell Biol.158, 1109–1118 (2002).
  • Gingras J , RassadiS, CooperE, FernsM: Synaptic transmission is impaired at neuronal autonomic synapses in agrin-null mice.Dev. Neurobiol.67, 521–534 (2007).
  • Martin AO , AlonsoG, GuerineauNC: Agrin mediates a rapid switch from electrical coupling to chemical neurotransmission during synaptogenesis.J. Cell Biol.169, 503–514 (2005).
  • Koulen P , HonigLS, FletcherEL, KrögerS: Expression, distribution and ultrastructural localization of the synapse-organizing molecule agrin in the mature avian retina.Eur. J. Neurosci.11, 4188–4196 (1999).
  • Mann S , KrögerS: Agrin is synthesized by retinal cells and colocalizes with gephyrin.Mol. Cell. Neurosci.8, 1–13 (1996).
  • Ksiazek I , BurkhardtC, LinSet al.: Synapse loss in cortex of agrin-deficient mice after genetic rescue of perinatal death.J. Neurosci.27, 7183–7195 (2007).
  • Hoover CL , HilgenbergLGW, SmithMA: The COOH-terminal domain of agrin signals via a synaptic receptor in central nervous system neurons.J. Cell Biol.161, 923–932 (2003).
  • Böse CM , QiuD, BergamaschiAet al.: Agrin controls synaptic differentiation in hippocampal neurons.J. Neurosci.20, 9086–9095 (2000).
  • Magill-Solc C , McMahanUJ: Motor neurons contain agrin-like molecules.J. Cell Biol.107, 1825–1833 (1988).
  • Godfrey EW , DietzME, MorstadAL, WallskogPA, YordeDE: Acetylcholine receptor-aggregating proteins are associated with the extracellular matrix of many tissues in Torpedo.J. Cell Biol.106, 1263–1272 (1988).
  • Stone DM , NikolicsK: Tissue- and age-specific expression patterns of alternatively spliced agrin mRNA transcripts in embryonic rat suggest novel developmental roles.J. Neurosci.15, 6767–6778 (1995).
  • O‘Connor LT , LauterbornJC, GallCM, SmithMA: Localization and alternative splicing of agrin mRNA in adult rat brain: transcripts encoding isoforms that aggregate acetylcholine receptors are not restricted to cholinergic regions.J. Neurosci.14, 1141–1152 (1994).
  • Smith MA , O‘DowdDK: Cell-specific regulation of agrin RNA splicing in the chick ciliary ganglion.Neuron12, 795–804 (1994).
  • Annies M , KrögerS: Isoform pattern and AChR aggregation activity of agrin expressed by embryonic chick retinal ganglion neurons.Mol. Cell. Neurosci.20, 525–535 (2002).
  • O‘Connor LT , LauterbornJC, SmithMA, GallCM: Expression of agrin mRNA is altered following seizures in adult rat brain.Mol. Brain Res.33, 277–287 (1995).
  • Falo MC , ReevesTM, PhillipsLL: Agrin expression during synaptogenesis induced by traumatic brain injury.J. Neurotrauma25, 769–783 (2008).
  • Faraci E , EckM, GerstmayerB, BosioA, VogelWF: An extracellular matrix-specific microarray allowed the identification of target genes downstream of discoidin domain receptors.Matrix Biol.22, 373–381 (2003).
  • Serpinskaya AS , FengGP, SanesJR, CraigAM: Synapse formation by hippocampal neurons from agrin-deficient mice.Dev. Biol.205, 65–78 (1999).
  • Li Z , HilgenbergLGW, O‘DowdDK, SmithMA: Formation of functional synaptic connections between cultured cortical neurons from agrin-deficient mice.J. Neurobiol.39, 547–557 (1999).
  • Ferreira A : Abnormal synapse formation in agrin-depleted hippocampal neurons.J. Cell Sci.112, 4729–4738 (1999).
  • Benson DL , ColmanDR, HuntleyGW: Molecules, maps and synapse specificity.Nat. Rev. Neurosci.2, 899–909 (2001).
  • Arikkath J , ReichardtLF: Cadherins and catenins at synapses: roles in synaptogenesis and synaptic plasticity.Trends Neurosci.31, 487–494 (2008).
  • Fogel AI , AkinsMR, KruppAJ, StagiM, SteinV, BiedererT: SynCAMs organize synapses through heterophilic adhesion.J. Neurosci.27, 12516–12530 (2007).
  • Lucic V , YangT, SchweikertG, ForsterF, BaumeisterW: Morphological characterization of molecular complexes present in the synaptic cleft.Structure13, 423–434 (2005).
  • Annies M , BittcherG, RamsegerRet al.: Clustering transmembrane-agrin induces filopodia-like processes on axons and dendrites. Mol. Cell. Neurosci.31, 515–524 (2006).
  • Mattila PK , LappalainenP: Filopodia: molecular architecture and cellular functions.Nat. Rev. Mol. Cell. Biol.9, 446–454 (2008).
  • McCroskery S , ChaudhryA, LinL, DanielsMP: Transmembrane agrin regulates filopodia in rat hippocampal neurons in culture.Mol. Cell. Neurosci.33, 15–28 (2006).
  • Uhm CS , NeuhuberB, LoweB, CrockerV, DanielsMP: Synapse-forming axons and recombinant agrin induce microprocess formation on myotubes.J. Neurosci.21, 9678–9689 (2001).
  • Ziv NE , SmithSJ: Evidence for a role of dendritic filopodia in synaptogenesis and spine formation.Neuron17, 91–102 (1996).
  • Jontes JD , SmithSJ: Filopodia, spines, and the generation of synaptic diversity.Neuron27, 11–14 (2000).
  • Yuste R , BonhoefferT: Genesis of dendritic spines: insights from ultrastructural and imaging studies.Nat. Rev. Neurosci.5, 24–34 (2004).
  • Holtmaat AJGD , TrachtenbergJT, WilbrechtLet al.: Transient and persistent dendritic spines in the neocortex in vivo.Neuron45, 279–291 (2005).
  • Toni N , BuchsPA, NikonenkoI, BronCR, MullerD: LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite.Nature402, 421–425 (1999).
  • Engert F , BonhoefferT: Dendritic spine changes associated with hippocampal long-term synaptic plasticity.Nature399, 66–70 (1999).
  • Maletic-Savatic M , MalinowR, SvobodaK: Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity.Science283, 1923–1927 (1999).
  • Nägerl UV , EberhornN, CambridgeSB, BonhoefferT: Bidirectional activity-dependent morphological plasticity in hippocampal neurons.Neuron44, 759–767 (2004).
  • Nägerl UV , KostingerG, AndersonJC, MartinKA, BonhoefferT: Protracted synaptogenesis after activity-dependent spinogenesis in hippocampal neurons.J. Neurosci.27, 8149–8156 (2007).
  • Knott GW , HoltmaatA, WilbrechtL, WelkerE, SvobodaK: Spine growth precedes synapse formation in the adult neocortex in vivo.Nat. Neurosci.9, 1117–1124 (2006).
  • Fiala JC , FeinbergM, PopovV, HarrisKM: Synaptogenesis via dendritic filopodia in developing hippocampal area CA1.J. Neurosci.18, 8900–8911 (1998).
  • Friedman HV , BreslerT, GarnerCC, ZivNE: Assembly of new individual excitatory synapses: time course and temporal order of synaptic molecule recruitment.Neuron27, 57–69 (2000).
  • Okabe S , MiwaA, OkadoH: Spine formation and correlated assembly of presynaptic and postsynaptic molecules.J. Neurosci.21, 6105–6114 (2001).
  • Lohmann C , FinskiA, BonhoefferT: Local calcium transients regulate the spontaneous motility of dendritic filopodia.Nat. Neurosci.8, 305–312 (2005).
  • Lohmann C , BonhoefferT: A role for local calcium signaling in rapid synaptic partner selection by dendritic filopodia.Neuron59, 253–260 (2008).
  • Dailey ME , SmithSJ: The dynamics of dendritic structure in developing hippocampal slices.J. Neurosci.16, 2983–2994 (1996).
  • Parnass Z , TashiroA, YusteR: Analysis of spine morphological plasticity in developing hippocampal pyramidal neurons.Hippocampus10, 561–568 (2000).
  • Hering H , ShengM: Dendritic spines: structure, dynamics and regulation.Nat. Rev. Neurosci.2, 880–888 (2001).
  • Wierenga CJ , BeckerN, BonhoefferT: GABAergic synapses are formed without the involvement of dendritic protrusions.Nat. Neurosci.11, 1044–1052 (2008).
  • Mantych KB , FerreiraA: Agrin differentially regulates the rates of axonal and dendritic elongation in cultured hippocampal neurons.J. Neurosci.21, 6802–6809 (2001).
  • Ji RR , BöseCM, LesuisseCet al.: Specific agrin isoforms induce cAMP response element-binding protein phosphorylation in hippocampal neurons.J. Neurosci.18, 9695–9702 (1998).
  • Hilgenberg LGW , HooverCL, SmithMA: Evidence of an agrin receptor in cortical neurons.J. Neurosci.19, 7384–7393 (1999).
  • Hilgenberg LG , HoKD, LeeD, O‘DowdDK, SmithMA: Agrin regulates neuronal responses to excitatory neurotransmitters in vitro and in vivo.Mol. Cell. Neurosci.19, 97–110 (2002).
  • Hilgenberg LG , SuH, GuH, O‘DowdDK, SmithMA: α3Na+/K+-ATPase is a neuronal receptor for agrin.Cell125, 359–369 (2006).
  • Hilgenberg LG , SmithMA: Agrin signaling in cortical neurons is mediated by a tyrosine kinase-dependent increase in intracellular Ca2+ that engages both CaMKII and MAPK signal pathways.J. Neurobiol.61, 289–300 (2004).
  • Valenzuela DM , StittTN, DistefanoPSet al.: Receptor tyrosine kinase specific for the skeletal muscle lineage: expression in embryonic muscle, at the neuromuscular junction, and after injury.Neuron15, 573–584 (1995).
  • Ganju P , WallsE, BrennanJ, ReithAD: Cloning and developmental expression of Nsk2, a novel receptor tyrosine kinase implicated in skeletal myogenesis.Oncogene11, 281–290 (1995).
  • Fu AKY , SmithFD, ZhouHet al.: Xenopus muscle-specific kinase: molecular cloning and prominent expression in neural tissues during early embryonic development.Eur. J. Neurosci.11, 373–382 (1999).
  • Cheusova T , KhanMA, EnzR, HashemolhosseiniS: Identification of developmentally regulated expression of MuSK in astrocytes of the rodent retina.J. Neurochem.99, 450–457 (2006).
  • Garcia-Osta A , TsokasP, PolloniniG, LandauEM, BlitzerR, AlberiniCM: MuSK expressed in the brain mediates cholinergic responses, synaptic plasticity, and memory formation.J. Neurosci.26, 7919–7932 (2006).
  • Tian QB , SuzukiT, YamauchiTet al.: Interaction of LDL receptor-related protein 4 (LRP4) with postsynaptic scaffold proteins via its C-terminal PDZ domain-binding motif, and its regulation by Ca/calmodulin-dependent protein kinase II. Eur. J. Neurosci.23, 2864–2876 (2006).
  • VanSaun M , WerleMJ: Matrix metalloproteinase-3 removes agrin from synaptic basal lamina.J. Neurobiol.43, 140–149 (2000).
  • Werle MJ , VanSaunM: Activity dependent removal of agrin from synaptic basal lamina by matrix metalloproteinase 3.J. Neurocytol.32, 905–913 (2003).
  • VanSaun M , HerreraAA, WerleMJ: Structural alterations at the neuromuscular junctions of matrix metalloproteinase 3 null mutant mice.J. Neurocytol.32, 1129–1142 (2003).
  • VanSaun M , HumburgBC, ArnettMG, PenceM, WerleMJ: Activation of matrix metalloproteinase-3 is altered at the frog neuromuscular junction following changes in synaptic activity.Dev. Neurobiol.67, 1488–1497 (2007).
  • Gschwend TP , KruegerSR, KozlovSV, WolferDP, SondereggerP: Neurotrypsin, a novel multidomain serine protease expressed in the nervous system.Mol. Cell. Neurosci.9, 207–219 (1997).
  • Molinari F , RioM, MeskenaiteVet al.: Truncating neurotrypsin mutation in autosomal recessive nonsyndromic mental retardation. Science298, 1779–1781 (2002).
  • Wolfer DP , LangR, CinelliP, MadaniR, SondereggerP: Multiple roles of neurotrypsin in tissue morphogenesis and nervous system development suggested by the mRNA expression pattern.Mol. Cell. Neurosci.18, 407–433 (2001).
  • Reif R , SalesS, HettwerSet al.: Specific cleavage of agrin by neurotrypsin, a synaptic protease linked to mental retardation.FASEB J.21, 3468–3478 (2007).
  • Stephan A , MateosJM, KozlovSVet al.: Neurotrypsin cleaves agrin locally at the synapse.FASEB J.22, 1861–1873 (2008).
  • Frischknecht R , FejtovaA, ViestiM, StephanA, SondereggerP: Activity-induced synaptic capture and exocytosis of the neuronal serine protease neurotrypsin.J. Neurosci.28, 1568–1579 (2008).
  • Halfter W , SchurerB, YipJet al.: Distribution and substrate properties of agrin, a heparan sulfate proteoglycan of developing axonal pathways.J. Comp. Neurol.383, 1–17 (1997).
  • Escher G , BéchadeC, LeviS, TrillerA: Axonal targeting of agrin in cultured rat dorsal horn neurons.J. Cell Sci.109, 2959–2966 (1996).
  • Neuhuber B , DanielsMP: Targeting of recombinant agrin to axonal growth cones.Mol. Cell. Neurosci.24, 1180–1196 (2003).
  • Bergstrom RA , SinjoanuRC, FerreiraA: Agrin induced morphological and structural changes in growth cones of cultured hippocampal neurons.Neuroscience149, 527–536 (2007).
  • Karasewski L , FerreiraA: MAPK signal transduction pathway mediates agrin effects on neurite elongation in cultured hippocampal neurons.J. Neurobiol.55, 14–24 (2003).
  • Chang D , WooJS, CampanelliJ, SchellerRH, IgnatiusMJ: Agrin inhibits neurite outgrowth but promotes attachment of embryonic motor and sensory neurons.Dev. Biol.181, 21–35 (1997).
  • Barber AJ , LiethE: Agrin accumulates in the brain microvascular basal lamina during development of the blood–brain barrier.Dev. Dyn.208, 62–74 (1997).
  • Kröger S , MannS: Biochemical and functional characterization of basal lamina-bound agrin in the chick central nervous system.Eur. J. Neurosci.8, 500–509 (1996).
  • Rupp F , OzcelikT, LinialM, PetersonK, FranckeU, SchellerRH: Structure and chromosomal localization of the mammalian agrin gene.J. Neurosci.12, 3535–3544 (1992).
  • Walsh DM , SelkoeDJ: Deciphering the molecular basis of memory failure in Alzheimer‘s disease.Neuron44, 181–193 (2004).
  • Götz J , IttnerLM: Animal models of Alzheimer‘s disease and frontotemporal dementia.Nat. Rev. Neurosci.9, 532–544 (2008).
  • van Horssen J , KleinnijenhuisJ, MaassCNet al.: Accumulation of heparan sulfate proteoglycans in cerebellar senile plaques. Neurobiol. Aging23, 537–545 (2002).
  • van Horssen J , Otte-HollerI, DavidGet al.: Heparan sulfate proteoglycan expression in cerebrovascular amyloid β deposits in Alzheimer‘s disease and hereditary cerebral hemorrhage with amyloidosis (Dutch) brains. Acta Neuropathol.102, 604–614 (2001).
  • Verbeek MM , Otte-HollerI, van den BJet al.: Agrin is a major heparan sulfate proteoglycan accumulating in Alzheimer‘s disease brain. Am. J. Pathol.155, 2115–2125 (1999).
  • Donahue JE , BerzinTM, RafiiMSet al.: Agrin in Alzheimer‘s disease: altered solubility and abnormal distribution within microvasculature and brain parenchyma.Proc. Natl Acad. Sci. USA96, 6468–6472 (1999).
  • Cotman SL , HalfterW, ColeGJ: Agrin binds to β-amyloid (A β), accelerates A β fibril formation, and is localized to Aβ deposits in Alzheimer‘s disease brain.Mol. Cell. Neurosci.15, 183–198 (2000).
  • Wallace GQ , McNallyEM: Mechanisms of muscle degeneration, regeneration, and repair in the muscular dystrophies.Annu. Rev. Physiol. doi:10.1146/annurev.physiol.010908.163216 (2009) (Epub ahead of print).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.