660
Views
1
CrossRef citations to date
0
Altmetric
Review

Biomimetic Self-Assembling Peptides as Injectable Scaffolds for Hard Tissue Engineering

, , , &
Pages 189-199 | Published online: 07 Aug 2006

Bibliography

  • Boskey AL : Biomineralization: conflicts, challenges, and opportunities.J. Cell. Biochem. (Suppl. 30–31), 83–91 (1998).
  • Mann S , WeinerS: Biomineralization: structural questions at all length scales.J. Struct. Biol.126(3), 179–181 (1999).
  • Boskey AL : Biomineralization: an overview.Connect. Tissue Res.44(Suppl. 1), 5–9 (2003).
  • Bengtson S : Mineralized skeletons and early animal evolution. In:Evolving Form and Function: Fossils and Development. Briggs DEG (Ed.). New Haven, CT, USA 101–124 (2005).
  • Selvig KA : The crystal structure of hydroxyapatite in dental enamel as seen with the electron microscope.J. Ultrastruct. Res.41(3), 369–375 (1972).
  • Arnold S , PlateU, WiesmannHP, Stratmann U, Kohl H, Hohling HJ: Quantitative analyses of the biomineralization of different hard tissues. J.Microsc.202(Pt 3), 488–494 (2001).
  • Butler WT , RitchieH: The nature and functional significance of dentin extracellular matrix proteins.Int. J. Dev. Biol.39(1), 169–179 (1995).
  • Butler WT : Dentin matrix proteins.Eur. J. Oral Sci.106(Suppl. 1), 204–210 (1998).
  • George A , SabsayB, SimonianPA, VeisA: Characterization of a novel dentin matrix acidic phosphoprotein. Implications for induction of biomineralization.J. Biol. Chem.268(17), 12624–12630 (1993).
  • Hunter GK , KyleCL, GoldbergHA: Modulation of crystal formation by bone phosphoproteins: structural specificity of the osteopontin-mediated inhibition of hydroxyapatite formation.Biochem. J.300(Pt 3), 723–728 (1994).
  • Chen J , ShapiroHS, SodekJ: Development expression of bone sialoprotein mRNA in rat mineralized connective tissues.J. Bone Miner. Res.7(8), 987–997 (1992).
  • MacDougall M , SimmonsD, GuTT, Dong J: MEPE/OF45, a new dentin/bone matrix protein and candidate gene for dentin diseases mapping to chromosome 4q21. Connect. Tissue Res.43(2–3), 320–330 (2002).
  • Ritchie HH , HouH, VeisA, ButlerWT: Cloning and sequence determination of rat dentin sialoprotein, a novel dentin protein.J. Biol. Chem.269(5), 3698–3702 (1994).
  • MacDougall M : Dental structural diseases mapping to human chromosome 4q21.Connect. Tissue Res.44, 285–291 (2003).
  • Qin C , BrunnJC, CadenaE, RidallA, ButlerWT: Dentin sialoprotein in bone and dentin sialophosphoprotein gene expressed by osteoblasts.Connect. Tissue Res.44(Suppl. 1), 179–183 (2003).
  • George A , BannonL, SabsayBet al.: The carboxyl-terminal domain of phosphophoryn contains unique extended triplet amino acid repeat sequences forming ordered carboxyl–phosphate interaction ridges that may be essential in the biomineralization process.J. Biol. Chem.271(51), 32869–32873 (1996).
  • Veis A : Mineral–matrix interactions in bone and dentin.J. Bone Miner. Res.8(Suppl. 2), S493–S497 (1993).
  • Butler WT : Dentin matrix proteins and dentinogenesis.Connect. Tissue Res.33(1–3), 59–65 (1995).
  • Wallwork ML , KirkhamJ, ChenHet al.: Binding of dentin noncollagenous matrix proteins to biological mineral crystals: an atomic force microscopy study.Calcif. Tissue Int.71(3), 249–255 (2002).
  • Sreenath T , ThyagarajanT, HallBet al.: Dentin sialophosphoprotein knockout mouse teeth display widened predentin zone and develop defective dentin mineralization similar to human dentinogenesis imperfecta type III.J. Biol. Chem.278(27), 24874–24880 (2003).
  • Rajpar MH , KochMJ, DaviesRM, Mellody KT, Kielty CM, Dixon MJ: Mutation of the signal peptide region of the bicistronic gene DSPP affects translocation to the endoplasmic reticulum and results in defective dentine biomineralization. Hum. Mol. Genet.11(21), 2559–2565 (2002).
  • Zhang X , ZhaoJ, LiCet al.: DSPP mutation in dentinogenesis imperfecta Shields type II.Nat. Genet.27(2), 151–152 (2001).
  • Xiao S , YuC, ChouXet al.: Dentinogenesis imperfecta 1 with or without progressive hearing loss is associated with distinct mutations in DSPP.Nat. Genet.27(2), 201–204 (2001).
  • Addadi L , WeinerS, GevaM: On how proteins interact with crystals and their effect on crystal formation.Z. Kardiol.90(Suppl. 3), 92–98 (2001).
  • Brown WE : Crystal structure of octacalcium phosphate.Nature196, 1048–1050 (1962).
  • Fujisawa R , KubokiY: Conformation of dentin phosphophoryn adsorbed on hydroxyapatite crystals.Eur. J. Oral Sci.106(Suppl. 1), 249–253 (1998).
  • Tye CE , RattrayKR, WarnerKJet al.: Delineation of the hydroxyapatite-nucleating domains of bone sialoprotein.J.Biol. Chem.278(10), 7949–7955 (2003).
  • Robinson C , WoodSR, BrookesSJ, Smith DA, Kirkham J: Initiation and modulation of crystal growth in skeletal tissues: role of extracellular matrix. In: Bio-Implant Interface: Improving Biomaterials and Tissue Reactions. Ellingsen JE (Ed.). CRC Press, FL, USA 464 (2003).
  • Hunter GK , HauschkaPV, PooleAR, RosenbergLC, GoldbergHA: Nucleation and inhibition of hydroxyapatite formation by mineralized tissue proteins.Biochem. J.317, 59–64 (1996).
  • MacDougall M , GuTT, LuanX, Simmons D, Chen J: Identification of a novel isoform of mouse dentin matrix protein 1, spatial expression in mineralized tissues. J. Bone Miner. Res.13(3), 422–431 (1998).
  • He G , DahlT, VeisA, GeorgeA: Nucleation of apatite crystals in vitro by self-assembled dentin matrix protein, 1. Nat. Mat.2(8), 552–558 (2003).
  • Tartaix PH , DoulaverakisM, GeorgeA: In vitro effects of dentin matrix protein-1 on hydroxyapatite formation provide insights into in vivo functions.J. Biol. Chem.279(18), 18115–18120 (2004).
  • Feng JQ : Dmp1-deficient mice develop dwarfism, chondrodysplasia, and exhibit disorganized bone mineralization during postnatal development.J. Bone Miner. Res.17, S127–S127 (2002).
  • He G , GajjeramanS, SchultzDet al.: Spatially and temporally controlled biomineralization is facilitated by interaction between self-assembled dentin matrix protein 1 and calcium phosphate nuclei in solution.Biochemistry44(49), 16140–16148 (2005).
  • Addadi L , BermanA, OldakJM, WeinerS: Structural and stereochemical relations between acidic macromolecules of organic matrices and crystals.Connect. Tissue Res.21(1–4), 127–135 (1989).
  • Hunter GK , GoldbergHA: Nucleation of hydroxyapatite by bone sialoprotein.Proc. Natl Acad. Sci. USA90(18), 8562–8565 (1993).
  • Pampena DA , RobertsonKA, LitvinovaO, LajoieG, GoldbergHA, HunterGK: Inhibition of hydroxyapatite formation by osteopontin phosphopeptides.Biochem. J.378, 1083–1087 (2004).
  • Hartgerink JD , BeniashE, StuppSI: Self-assembly and mineralization of peptide-amphiphile nanofibers.Science294(5547), 1684–1688 (2001).
  • Brookes SJ , KirkhamJ, LyngstadaasSP, ShoreRC, WoodSR, RobinsonC: Spatially related amelogenin interactions in developing rat enamel as revealed by molecular cross-linking studies.Arch. Oral Biol.45(11), 937–943 (2000).
  • Wen HB , Moradian-OldakJ, LeungW, BringasP Jr, Fincham AG: Microstructures of an amelogenin gel matrix. J. Struct. Biol.126(1), 42–51 (1999).
  • Du C , FaliniG, FermaniS, AbbottC, Moradian-OldakJ: Supramolecular assembly of amelogenin nanospheres into birefringent microribbons.Science307(5714), 1450–1454 (2005).
  • Zhang S : Emerging biological materials through molecular self-assembly.Biotechnol. Adv.20, 321–339 (2002).
  • Zhang S : Fabrication of novel biomaterials through molecular self-assembly.Nat. Biotechnol.21(10), 1171–1178 (2003).
  • Stupp SI : Biomaterials for regenerative medicine.MRS Bull.30(7), 546–553 (2005).
  • Aggeli A , BellM, BodenNet al.: Engineering of peptide β-sheet nanotapes.J. Mater. Chem.7(7), 1135–1145 (1997).
  • Aggeli A , BellM, BodenNet al.: Responsive gels formed by the spontaneous self-assembly of peptides into polymeric β-sheet tapes.Nature386(6622), 259–262 (1997).
  • Nyrkova IA , SemenovAN, AggeliA, Boden N: Fibril stability in solutions of twisted β-sheet peptides: a new kind of micellization in chiral systems. Eur. Phys. J.B17(3), 481–497 (2000).
  • Nyrkova IA , SemenovAN, AggeliA, BellM, BodenN, McLeishTCB: Self-assembly and structure transformations in living polymers forming fibrils.Eur. Phys. J. B17(3), 499–513 (2000).
  • Aggeli A , NyrkovaIA, BellMet al.: Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet tapes, ribbons, fibrils, and fibers.Proc. Natl Acad. Sci. USA98(21), 11857–11862 (2001).
  • Aggeli A , BellM, BodenN, CarrickLM, StrongAE: Self-assembling peptide polyelectrolyte β-sheet complexes form nematic hydrogels.Angew. Chem. Int. Ed. Engl.42(45), 5603–5606 (2003).
  • Fishwick CWG , BeeversAJ, CarrickLM, WhitehouseCD, AggeliA, BodenN: Structures of helical β-tapes and twisted ribbons: the role of side-chain interactions on twist and bend behavior.Nano Lett.3(11), 1475–1479 (2003).
  • Aggeli A , BellM, CarrickLMet al.: pH as a trigger of peptide β-sheet self-assembly and reversible switching between nematic and isotropic phases.J. Am. Chem. Soc.125(32), 9619–9628 (2003).
  • Aggeli A , FytasG, VlassopoulosD, McLeish TC, Mawer PJ, Boden N: Structure and dynamics of self-assembling β-sheet peptide tapes by dynamic light scattering. Biomacromolecules2(2), 378–388 (2001).
  • Sofia S , McCarthyMB, GronowiczG, KaplanDL: Functionalized silk-based biomaterials for bone formation.J. Biomed. Mater. Res.54(1), 139–148 (2001).
  • Meinel L , FajardoR, HofmannSet al.: Silk implants for the healing of critical size bone defects.Bone37(5), 688–698 (2005).
  • Saito T : Apatite induction by insoluble dentin collagen.J. Bone Miner. Res.13(2), 265 (1998).
  • Chang S , ChenH, LiuJ, WoodD, Bentley P, Clarkson B: Synthesis of a potentially bioactive, hydroxyapatite-nucleating molecule. Calcif. Tissue Int.78(1), 55–61 (2006).
  • Fujisawa R , MizunoM, NodasakaY, Kuboki Y: Attachment of osteoblastic cells to hydroxyapatite crystals by a synthetic peptide (Glu7-Pro-Arg-Gly-Asp-Thr) containing two functional sequences of bone sialoprotein. Matrix Biol.16(1), 21–28 (1997).
  • Kisiday J , JinM, KurzBet al.: Self-assembling peptide hydrogel fosters chondrocyte extracellular matrix production and cell division: implications for cartilage tissue repair.Proc. Natl Acad. Sci. USA99(15), 9996–10001 (2002).
  • Bokhari MA , AkayG, ZhangS, BirchMA: The enhancement of osteoblast growth and differentiation in vitro on a peptide hydrogel–polyHIPE polymer hybrid material.Biomaterials26(25), 5198–5208 (2005).
  • Wang Y , KimUJ, BlasioliDJ, KimHJ, KaplanDL: In vitro cartilage tissue engineering with 3D porous aqueous-derived silk scaffolds and mesenchymal stem cells.Biomaterials26(34), 7082–7094 (2005).
  • Moreau JE , ChenJ, BramonoDSet al.: Growth factor induced fibroblast differentiation from human bone marrow stromal cells in vitro.J. Orthop. Res.23(1), 164–174 (2005).
  • Zhang S , HolmesTC, DiPersioCM, Hynes RO, Xing S, Rich A: Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials16(18), 1385–1393 (1995).
  • Zhang S , LockshinC, CookC, RichA: Unusually stable β-sheet formation in an ionic self-complementary oligopeptide.Biopolymers34(5), 663–672 (1994).
  • Kretsinger JK , HainesLA, OzbasB, Pochan DJ, Schneider JP: Cytocompatibility of self-assembled β-hairpin peptide hydrogel surfaces. Biomaterials26(25), 5177–5186 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.