38
Views
0
CrossRef citations to date
0
Altmetric
Review

Genetics of Osteoporosis

, &
Pages 365-376 | Published online: 04 Aug 2008

Bibliography

  • Melton LJ : How many women have osteoporosis now?J. Bone Miner. Res.10, 175–177(1995).
  • Bonewald LF , JohnsonML: Osteocytes, mechanosensing and Wnt signaling.Bone42, 606–615(2008).
  • van Oers RF , RuimermanR, TanckE, HilbersPA, HuiskesR: A unified theory for osteonal and hemi-osteonal remodeling.Bone42, 250–259(2008).
  • Hofbauer LC , HeufelderAE: Role of receptor activator of nuclear factor-κB ligand and osteoprotegerin in bone cell biology.J. Mol. Med.79, 243–253(2001).
  • Riancho JA , MundyGR: The role of cytokines and growth factors as mediators of the effects of systemic hormones at the bone local level.Crit. Rev. Eukaryot. Gene Expr.5, 193–217(1995).
  • Zaidi M : Skeletal remodeling in health and disease.Nat. Med.13, 791–801(2007).
  • Baron R , RawadiG: Wnt signaling and the regulation of bone mass.Curr. Osteoporos. Rep.5, 73–80(2007).
  • Johnson ML , KamelMA: The Wnt signaling pathway and bone metabolism.Curr. Opin. Rheumatol.19, 376–382(2007).
  • Riggs BL , MeltonLJ, RobbRAet al.: A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J. Bone Miner. Res.23, 205–214(2008).
  • Ralston SH : Genetic control of susceptibility to osteoporosis.J. Clin. Endocrinol. Metab.87, 2460–2466(2002).
  • Peacock M , TurnerCH, EconsMJ, Foroud T: Genetics of osteoporosis. Endocr. Rev.23, 303–326(2002).
  • Nguyen TV , HowardGM, KellyPJ, Eisman JA: Bone mass, lean mass, and fat mass: same genes or same environments? Am. J. Epidemiol.147, 3–16(1998).
  • Wang X , KammererCM, WheelerVW, PatrickAL, BunkerCH, ZmudaJM: Genetic and environmental determinants of volumetric and areal BMD in multi-generational families of African ancestry: the Tobago Family Health Study.J. Bone Miner. Res.22, 527–536(2007).
  • Duncan EL , CardonLR, SinsheimerJS, WassJA, BrownMA: Site and gender specificity of inheritance of bone mineral density.J. Bone Miner. Res.18, 1531–1538(2003).
  • Lenchik L , HsuFC, RegisterTCet al.: Heritability of spinal trabecular volumetric bone mineral density measured by QCT in the Diabetes Heart Study. Calcif. Tissue Int.75, 305–312(2004).
  • Brown LB , StreetenEA, ShapiroJRet al.: Genetic and environmental influences on bone mineral density in pre- and post-menopausal women. Osteoporos. Int.16, 1849–1856(2005).
  • Makovey J , NguyenTV, NaganathanV, Wark JD, Sambrook PN: Genetic effects on bone loss in peri- and postmenopausal women: a longitudinal twin study. J. Bone Miner. Res.22, 1773–1780(2007).
  • Havill LM , MahaneyMC, BinkleyL, Specker BL: Effects of genes, sex, age, and activity on BMC, bone size, and areal and volumetric BMD. J. Bone Miner. Res.22, 737–746(2007).
  • Chen Y , GuoYF, LeiSF, WangYB,Deng HW: Genetic and environmental correlations between bone mineral density and bone size in Caucasians. Hum. Biol.79, 15–24(2007).
  • Cummings SR , NevittMC, BrownerWSet al.: Risk factors for hip fracture in white women. N. Engl. J. Med.332, 767–773(1995).
  • Kanis JA , JohanssonH, OdenAet al.: A family history of fracture and fracture risk: a meta-analysis. Bone35, 1029–1037(2004).
  • Ralston SH , de Crombrugghe B: Genetic regulation of bone mass and susceptibility to osteoporosis. Genes Dev.20, 2492–2506(2006).
  • Michaelsson K , MelhusH, FermH, AhlbomA, PedersenNL: Genetic liability to fractures in the elderly.Arch. Intern. Med.165, 1825–1830(2005).
  • Liu YZ , LiuYJ, ReckerRR, DengHW: Molecular studies of identification of genes for osteoporosis: the 2002 update.J. Endocrinol.177, 147–196(2003).
  • Ioannidis JP , NgMY, ShamPCet al.: Meta-analysis of genome-wide scans provides evidence for sex- and site-specific regulation of bone mass. J. Bone Miner. Res.22, 173–183(2007).
  • Liu YJ , ShenH, XiaoPet al.: Molecular genetic studies of gene identification for osteoporosis: a 2004 update. J. Bone Miner. Res.21, 1511–1535(2006).
  • Morrison NA , QiJC, TokitaAet al.: Prediction of bone density from vitamin D receptor alleles. Nature367, 284–287(1994).
  • Fang Y , RivadeneiraF, van Meurs JB, Pols HA, Ioannidis JP, Uitterlinden AG: Vitamin D receptor gene BsmI and TaqI polymorphisms and fracture risk: a meta-analysis. Bone39, 938–945(2006).
  • Fang Y , van Meurs JB, Bergink AP et al.: Cdx-2 polymorphism in the promoter region of the human vitamin D receptor gene determines susceptibility to fracture in the elderly. J. Bone Miner. Res.18(9), 1632–1641(2003).
  • Uitterlinden AG , FangY, van Meurs JB, Pols HA, van Leeuwen JP: Genetics and biology of vitamin D receptor polymorphisms. Gene338(2), 143–156(2004).
  • Uitterlinden AG , RalstonSH, BrandiMLet al.: The association between common vitamin D receptor gene variations and osteoporosis: a participant-level meta-analysis. Ann. Int. Med.145, 255–264(2006).
  • Herynk MH , FuquaSAW: Estrogen receptor mutations in human disease.Endocr. Rev.25, 869–898(2004).
  • Turner RT , RiggsBL, SpelsbergTC: Skeletal effects of estrogen.Endocr. Rev.15, 275–300(1994).
  • Khosla S , MeltonLJ, RiggsBL: Estrogen and the male skeleton.J. Clin. Endocrinol. Metab.87, 1443–1450(2002).
  • Riggs BL , KhoslaS, MeltonIII LJ: Sex steroids and the construction and conservation of adult skeleton. Endocr. Rev.23, 279–302(2002).
  • Syed FS , KhoslaS: Mechanisms of sex steroid effects on bone.Biochem. Biophys. Res. Commun.328, 688–696(2005).
  • Deroo BJ , KorachKS: Estrogen receptors and human disease.J. Clin. Invest.116, 561–570(2006).
  • Cranney A , GuyattG, GriffithL, WellsG, TugwellP, RosenC: Summary of meta-analyses of therapies for postmenopausal osteoporosis.Endocr. Rev.23, 570–578(2002).
  • Torgerson DJ , Bell-SyerSEM: Hormone replacement therapy and prevention of nonvertebral fractures. A meta-analysis of randomized trials.JAMA285, 2891–2897(2001).
  • Gennari L , MerlottiD, MartiniGet al.: Longitudinal association between sex hormone levels, bone loss, and bone turnover in elderly men. J. Clin. Endocrinol. Metab.88, 5327–5333(2003).
  • Khosla S , MeltonLJ, III, Atkinson EJ, O‘Fallon WM, Klee GG, Riggs BL: Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J. Clin. Endocrinol. Metab.83, 2266–2274(1998).
  • Kobayashi S , InoueS, HosoiT, OuchiY, ShirakiM, OrimoH: Association of bone mineral density with polymorphism of the estrogen receptor gene.J. Bone Miner. Res.11, 306–311(1996).
  • Ioannidis JPA , RalstonSH, BennettSTet al.: Differential genetics effects of ESR1 gene polymorphisms on osteoporosis outcomes. JAMA292, 2105–2114(2004).
  • Ioannidis JPA , StavrouI, TrikalinosTAet al.: Association of polymorphisms of the estrogen receptor α gene with bone mineral density and fracture risk in women: a meta-analysis. J. Bone Miner. Res.17, 2048–2060(2002).
  • Sano M , InoueS, HosoiTet al.: Association of estrogen receptor dinucleotide repeat polymorphism with osteoporosis. Biochem. Biophys. Res. Commun.217, 378–383(1995).
  • Langdahl BL , LokkeE, CarstensM, StenkjaerLL, EriksenEF: A TA repeat polymorphism in the estrogen receptor gene is associated with osteoporotic fractures but polymorphisms in the first intron are not.J. Bone Miner. Res.15, 2222–2230(2000).
  • Riancho JA , ZarrabeitiaMT, ValeroC, SanudoC, MijaresV, Gonzalez-MaciasJ: A gene-to-gene interaction between aromatase and estrogen receptors influences bone mineral density.Eur. J. Endocrinol.155, 53–59(2006).
  • Gennari L , MerlottiD, De Paola V et al.: Estrogen receptor gene polymorphisms and the genetics of osteoporosis: a HuGE review. Am. J. Epidemiol.161, 307–320(2005).
  • Van Meurs JBJ , SchuitSCE, WeelAEAMet al.: Association of 5´ estrogen receptor α gene polymorphisms with bone mineral density, vertebral bone area and fracture risk. Human Molecular Genetics12, 1745–1754(2003).
  • Scariano JK , SimplicioSG, MontoyaGD, GarryPJ, BaumgartnerRN: Estrogen receptor β dinucleotide (CA) repeat polymorphism is significantly associated with bone mineral density in postmenopausal women.Calcif. Tissue Int.74, 501–508(2004).
  • Lau HHL , HoAYY, LukKDK, KungAWC: Estrogen receptor β gene polymorphisms are associated with higher bone mineral density in premenopausal, but not postmenopausal southern chinese women.Bone31, 276–281(2002).
  • Ichikawa S , KollerDL, PeacockMet al.: Polymorphisms in the estrogen receptor β (ESR2) gene are associated with bone mineral density in Caucasian men and women. J. Clin. Endocrinol. Metab.90, 5921–5927(2005).
  • Shearman AM , KarasikD, GruenthalKMet al.: Estrogen receptor β polymorphisms are associated with bone mass in women and men: The Framingham study. J. Bone Miner. Res.19, 773–781(2004).
  • Greendale GA , ChuJ, FerrellR, Randolph JF, Jr., Johnston JM, Sowers MR: The association of bone mineral density with estrogen receptor gene polymorphisms. Am. J. Med.119(9 Suppl. 1), S79–S86 (2006).
  • Rivadeneira F , van Meurs JB, Kant J et al.: Estrogen receptor β (ESR2) polymorphisms in interaction with estrogen receptor α (ESR1) and insulin-like growth factor I (IGF1) variants influence the risk of fracture in postmenopausal women. J. Bone Miner. Res.21, 1443–1456(2006).
  • Gruber CJ , TschugguelW, SchneebergerC, HuberJC: Mechanisms of disease: production and actions of estrogens.N. Engl. J. Med.346, 340–352(2002).
  • McCloskey E : Effects of third-generation aromatase inhibitors on bone.Eur. J. Cancer42, 1044–1051(2006).
  • Lester J , ColemanR: Bone loss and the aromatase inhibitors.Br. J. Cancer93(Suppl. 1), S16–S22 (2005).
  • Riancho JA : Polymorphisms in the CYP19 gene that influence bone mineral density.Pharmacogenomics8, 339–352(2007).
  • Zarrabeitia MT , HernandezJL, ValeroCet al.: A common polymorphism in the 5´-untranslated region of the aromatase gene influences bone mass and fracture risk. Eur. J. Endocrinol.150, 699–704(2004).
  • Riancho JA , ZarrabeitiaMT, ValeroCet al.: Aromatase gene and osteoporosis: relationship of ten polymorphic loci with bone mineral density. Bone36, 917–925(2005).
  • Enjuanes A , Garcia-GiraltN, SuperviaAet al.: A new SNP in a negative regulatory region of the CYP19A1 gene is associated with lumbar spine BMD in postmenopausal women. Bone38, 738–743(2006).
  • Masi L , BecheriniL, GennariLet al.: Polymorphism of the aromatase gene in postmenopausal italian women: distribution and correlation with bone mass and fracture risk. J. Clin. Endocrinol. Metab.86, 2263–2269(2001).
  • Riancho JA , ValeroC, NaranjoA, Morales DJ, Sanudo C, Zarrabeitia MT: Identification of an aromatase haplotype that is associated with gene expression and postmenopausal osteoporosis. J. Clin. Endocrinol. Metab.92, 660–665(2007).
  • Valero C , Perez-CastrillonJL, Zarrabeitia MT et al.: Association of aromatase and estrogen receptor gene polymorphisms with hip fractures. Osteoporos. Int.19, 787–792(2008).
  • Salmen T , HeikkinenAM, MahonenAet al.: Relation of androgen receptor gene polymorphism to bone mineral density and fracture risk in early postmenopausal women during a 5-year randomized hormone replacement therapy trial. J. Bone Miner. Res.18, 319–324(2003).
  • Tofteng CL , KindmarkA, BrandstromHet al.: Polymorphisms in the CYP19 and AR genes – relation to bone mass and longitudinal bone changes in postmenopausal women with or without hormone replacement therapy: The Danish Osteoporosis Prevention Study. Calcif. Tissue Int.74, 25–34(2004).
  • Moron FJ , MendozaN, VazquezFet al.: Multilocus analysis of estrogen-related genes in Spanish postmenopausal women suggests an interactive role of ESR1, ESR2 and NRIP1 genes in the pathogenesis of osteoporosis. Bone39, 213–221(2006).
  • Mendoza N , MoronFJ, VazquezFet al.: Weighting the effect of CYP19A gene in bone mineral density of postmenopausal women. Bone38, 951–953(2006).
  • Valero C , ZarrabeitiaMT, HernandezJL, ZarrabeitiaMT, González-MacíasJ, RianchoJA: Bone mass in young adults: relationship with gender, weight, and genetic factors.J. Intern. Med.258, 554–562(2005).
  • Labrie F , BelangerA, CusanL, GómezJL, CandasB: Marked decline in serum concentrations of adrenal C19 sex steroid precursors and conjugated androgen metabolites during aging.J. Clin. Endocrinol. Metab.82, 2396–2402(1997).
  • Johnson ML , HarnishK, NusseR, Van Hul W: LRP5 and Wnt signaling: a union made for bone. J. Bone Miner. Res.19, 1749–1757(2004).
  • Gordon MD , NusseR: Wnt signaling: multiple pathways, multiple receptors, and multiple transcription factors.J. Biol. Chem.281, 22429–22433(2006).
  • Li X , ZhangY, KangHet al.: Sclerostin binds to LRP5/6 and antagonizes canonical Wnt signaling. J. Biol. Chem.280, 19883–19887(2005).
  • Adaimy L , ChoueryE, MegarbaneHet al.: Mutation in WNT10A is associated with an autosomal recessive ectodermal dysplasia: the odonto–onycho–dermal dysplasia. Am. J. Hum. Genet.81, 821–828(2007).
  • Balemans W , Van Hul W: The genetics of low-density lipoprotein receptor-related protein 5 in bone: a story of extremes. Endocrinology148(6), 2622–2629(2007).
  • Balemans W , Van Hul W: Human genetics of SOST. J. Musculoskelet. Neuronal. Interact.6, 355–356(2006).
  • Grundberg E , LauEM, LorentzsonMet al.: Large-scale association study between two coding LRP5 gene polymorphisms and bone phenotypes and fractures in men. Osteoporos. Int.19, 829–837(2008).
  • Kiel DP , FerrariSL, CupplesLAet al.: Genetic variation at the low-density lipoprotein receptor-related protein 5 (LRP5) locus modulates Wnt signaling and the relationship of physical activity with bone mineral density in men. Bone40, 587–596(2007).
  • Urano T , ShirakiM, EzuraYet al.: Association of a single-nucleotide polymorphism in low-density lipoprotein receptor-related protein 5 gene with bone mineral density. J. Bone Miner. Metab.22, 341–345(2004).
  • Xiong DH , LeiSF, YangFet al.: Low-density lipoprotein receptor-related protein 5 (LRP5) gene polymorphisms are associated with bone mass in both Chinese and whites. J. Bone Miner. Res.22, 385–393(2007).
  • Ferrari S , DeutschS, ChoudhuryUet al.: Polymorphisms in the low-density lipoprotein-related protein 5 (LRP5) gene are associated with variation in vertebral bone mass, vertebral bone size, and stature in whites. Am. J. Human Genet.74, 866–875(2004).
  • van Meurs JB , TrikalinosTA, RalstonSHet al.: Large-scale analysis of association between LRP5 and LRP6 variants and osteoporosis. JAMA299, 1277–1290(2008).
  • Giroux S , ElfassihiL, ColeDE, RousseauF: Replication of associations between LRP5 and ESRRA variants and bone density in premenopausal women.Osteoporos. Int. (2008).
  • Giroux S , ElfassihiL, CardinalG, Laflamme N, Rousseau F: LRP5 coding polymorphisms influence the variation of peak bone mass in a normal population of French–Canadian women. Bone40, 1299–1307(2007).
  • Saarinen A , ValimakiVV, ValimakiMJet al.: The A1330V polymorphism of the low-density lipoprotein receptor-related protein 5 gene (LRP5) associates with low peak bone mass in young healthy men. Bone40, 1006–1012(2007).
  • Koay MA , TobiasJH, LearySD, SteerCD, Vilarino-GuellC, BrownMA: The effect of LRP5 polymorphisms on bone mineral density is apparent in childhood.Calcif. Tissue Int.81, 1–9(2007).
  • Cheung CL , HuangQY, ChanV, KungAW: Association of low-density lipoprotein receptor-related protein 5 (LRP5) promoter SNP with peak bone mineral density in Chinese women.Human Heredity65, 232–239(2008).
  • Koller DL , IchikawaS, JohnsonMLet al.: Contribution of the LRP5 gene to normal variation in peak BMD in women. J. Bone Miner. Res.20, 75–80(2005).
  • Balemans W , FoernzlerD, ParsonsCet al.: Lack of association between the SOST gene and bone mineral density in perimenopausal women: analysis of five polymorphisms. Bone31, 515–519(2002).
  • Uitterlinden AG , ArpPP, PaeperBWet al.: Polymorphisms in the sclerosteosis/van Buchem disease gene (SOST) region are associated with bone-mineral density in elderly whites. Am. J. Hum. Genet.75, 1032–1045(2004).
  • Fazzalari NL , KuliwabaJS, AtkinsGJ, ForwoodMR, FindlayDM: The ratio of messenger RNA levels of receptor activator nuclear κB ligand to osteoprotegerin correlates with bone remodeling indices in normal human cancellous bone but not in osteoarthritis.J. Bone Miner. Res.16, 1015–1027(2001).
  • Mizuno A , AmizukaN, IrieK, Murakami A, Fujise N, Kanno T: Severe osteoporosis in mice lacking osteoclastogenesis inhibitory factor/osteoprotegerin. Biochem. Biophys. Res. Commun.247, 610–615(1998).
  • Lei SF , JiangH, DengFY, DengHW: Searching for genes underlying susceptibility to osteoporotic fracture: current progress and future prospect.Osteoporos. Int.18, 1157–1175(2007).
  • Arko B , PrezeljJ, KomelR, HudlerP, Marc J: Sequence variations in the osteoprotegerin gene promoter in patients with postmenopausal osteoporosis. J. Clin. Endocrinol. Metab.87, 4080–4084(2002).
  • Browner WS , LuiLY, CummingsSR: Associations of serum osteoprotegerin levels with diabetes, stroke, bone density, fractures, and mortality in elderly women.J. Clin. Endocrinol. Metab.86, 631–637(2001).
  • Choi JY , ShinA, ParkSKet al.: Genetic polymorphisms of OPG, RANK, and ESR1 and bone mineral density in Korean postmenopausal women. Calcif. Tissue Int.77, 152–159(2005).
  • Kim JG , KimJH, KimJYet al.: Association between osteoprotegerin (OPG), receptor activator of nuclear factor-κB (RANK), and RANK ligand (RANKL) gene polymorphisms and circulating OPG, soluble RANKL levels, and bone mineral density in Korean postmenopausal women. Menopause14(5), 913–918(2007).
  • Koh JM , ParkBL, KimDJet al.: Identification of novel RANK polymorphisms and their putative association with low BMD among postmenopausal women. Osteoporos. Int.18(3), 323–331(2007).
  • Hsu YH , NiuT, TerwedowHAet al.: Variation in genes involved in the RANKL/RANK/OPG bone remodeling pathway are associated with bone mineral density at different skeletal sites in men. Hum. Genet.118(5), 568–577(2006).
  • Grant SF , ReidDM, BlakeG, HerdR, FogelmanI, RalstonSH: Reduced bone density and osteoporosis associated with a polymorphic Sp1 binding site in the collagen type I α1 gene.Nat. Genet.14, 203–205(1996).
  • Garcia-Giralt N , EnjuanesA, Bustamante M et al.: In vitro functional assay of alleles and haplotypes of two COL1A1-promoter SNPs. Bone36, 902–908(2005).
  • Mann V , HobsonEE, LiBet al.: A COL1A1 Sp1 binding site polymorphism predisposes to osteoporotic fracture by affecting bone density and quality. J. Clin. Invest.107, 899–907(2001).
  • Mann V , RalstonSH: Meta-analysis of COL1A1 Sp1 polymorphism in relation to bone mineral density and osteoporotic fracture.Bone32, 711–717(2003).
  • Efstathiadou Z , TsatsoulisA, IoannidisJP: Association of collagen Iα 1 Sp1 polymorphism with the risk of prevalent fractures: a meta-analysis.J. Bone Miner. Res.16, 1586–1592(2001).
  • Ralston SH , UitterlindenAG, BrandiMLet al.: Large-scale evidence for the effect of the COLIA1 Sp1 polymorphism on osteoporosis outcomes: the GENOMOS study. PLoS Med.3, E90 (2006).
  • Nieves JW : Osteoporosis: the role of micronutrients.Am. J. Clin. Nutrit.81, 1232S–1239S (2005).
  • Yazdanpanah N , ZillikensMC, Rivadeneira F et al.: Effect of dietary B vitamins on BMD and risk of fracture in elderly men and women: the Rotterdam study. Bone41, 987–994(2007).
  • Riancho JA , ValeroC, ZarrabeitiaMT: MTHFR polymorphism and bone mineral density: meta-analysis of published studies.Calcif. Tissue Int.79, 289–293(2006).
  • Abrahamsen B , JorgensenHL, NielsenTLet al.: MTHFR c.677C>T polymorphism as an independent predictor of peak bone mass in Danish men – results from the Odense Androgen Study. Bone38, 215–219(2006).
  • Li M , LauEM, WooJ: Methylenetetrahydrofolate reductase polymorphism (MTHFR C677T) and bone mineral density in Chinese men and women.Bone35, 1369–1374(2004).
  • Miyao M , MoritaH, HosoiTet al.: Association of methylenetetrahydrofolate reductase (MTHFR) polymorphism with bone mineral density in postmenopausal Japanese women. Calcif. Tissue Int.66, 190–194(2000).
  • Bathum L , von Bornemann-Hjelmorbg J, Christiansen L, Madsen JS, Skytthe A, Christensen K: Evidence for an association of methylene tetrahydrofolate reductase polymorphism C677T and an increased rsik of fractures: results from a population-based Danish study. Osteoporos. Int.15, 659–664(2004).
  • Jorgensen HL , MadsenJS, MadsenBet al.: Association of a common allelic polymorphism (C677T) in the methylene tetrahydrofolate reductase gene with a reduced risk of osteoporotic fractures. A case control study in danish postmenopausal women. Calcif. Tissue Int.71, 386–392(2002).
  • Valero C , AlonsoMA, ZarrabeitiaMT, ViaderoC, HernandezJL, RianchoJA: MTHFR C677T polymorphism and osteoporotic fractures.Horm. Metab. Res.39, 543–547(2007).
  • McLean RR , KarasikD, SelhubJet al.: Association of a common polymorphism in the methylenetetrahydrofolate reductase (MTHFR) gene with bone phenotypes depends on plasma folate status. J. Bone Miner. Res.19, 410–418(2004).
  • Yazdanpanah N , UitterlindenAG, Zillikens MC et al.: Low dietary riboflavin but not folate predicts increased fracture risk in postmenopausal women homozygous for the MTHFR 677 T allele. J. Bone Miner. Res.23, 86–94(2008).
  • Abrahamsen B , MadsenJS, ToftengCLet al.: Are effects of MTHFR (C677T) genotype on BMD confined to women with low folate and riboflavin intake? Analysis of food records from the Danish osteoporosis prevention study. Bone36, 577–583(2005).
  • Xiong DH , ZhaoLJ, XiaoPet al.: Robust and comprehensive analysis of 20 osteoporosis candidate genes by very high-density single-nucleotide polymorphism screen among 405 white nuclear families identified significant association and gene–gene interaction. J. Bone Miner. Res.21, 1678–1695(2006).
  • Sims AM , ShephardN, CarterKet al.: Genetic analyses in a sample of individulas with high or low bone density demonstrates association with multiple Wnt pathway genes. J. Bone Miner. Res.23, 459–506(2008).
  • Kiel DP , DemissieS, DupuisJ, LunettaKL, MurabitoJM, KarasikD: Genome-wide association with bone mass and geometry in the Framingham Heart Study.BMC Med. Genet.8(Suppl. 1), S14 (2007).
  • Birney E , StamatoyannopoulosJA, DuttaAet al.: Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature447, 799–816(2007).
  • Richards JB , RivadeneiraF, InouyeMet al.: Bone mineral density, osteoporosis, and osteoporotic fractures: a genome-wide association study. Lancet371, 1505–1512(2008).
  • Styrkarsdottir U , HalldorssonBV, GretarsdottirSet al.: Multiple genetic loci for bone mineral density and fractures. N. Engl. J. Med.358, 2355–2365(2008).
  • Chanock SJ , ManolioT, BoehnkeMet al.: Replicating genotype–phenotype associations. Nature447, 655–660(2007).
  • Manolio TA , RodriguezLL, BrooksLet al.: New models of collaboration in genome-wide association studies: the Genetic Association Information Network. Nat. Genet.39, 1045–1051(2007).

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.