3,194
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Transplantation of Human Embryonic Stem Cell-Derived Oligodendrocyte Progenitors into Rat Spinal Cord Injuries Does not Cause Harm

, , &
Pages 469-479 | Published online: 18 Jul 2006

Bibliography

  • Schucht P , RaineteauO, SchwabME, FouadK: Anatomical correlates of locomotor recovery following dorsal and ventral lesions of the rat spinal cord.Exp. Neurol.176(1), 143–153 (2002).
  • Beattie MS , BresnahanJC, KomonJ et al.: Endogenous repair after spinal cord contusion injuries in the rat. Exp. Neurol.148(2), 453–463 (1997).
  • Schwab MD , BartholdiD: Degeneration and regeneration of axons in the lesioned spinal cord.Physiol. Rev.76(2), 319–370 (1996).
  • Hayes KC , KakulasBA: Neuropathology of human spinal cord injury sustained in sports-related activities.J. Neurotrauma14(4), 235–248 (1997).
  • Bresnahan JC , KingJS, MartinGF, YashonD: A neuroanatomical analysis of spinal cord injury in the rhesus monkey (Macaca mulatta).J. Neurol. Sci.28(4), 521–542 (1976).
  • Blight AR : Delayed demyelination and macrophage invasion: a candidate for secondary cell damage in spinal cord injury.Cent. Nerv. Syst. Trauma2(4), 299–315 (1985).
  • Blight AR , YoungW: Central axons in injured cat spinal cord recover electrophysiological function following remyelination by Schwann cells.J. Neurol. Sci.91(1–2), 15–34 (1989).
  • Blight AR : Macrophages and inflammatory damage in spinal cord injury.J. Neurotrauma9(Suppl 1), S83–S91 (1992).
  • Blight AR : Remyelination, revascularization, and recovery of function in experimental spinal cord injury.Adv. Neurol.59, 91–104 (1993).
  • Jeffery ND , BlakemoreWF: Locomotor deficits induced by experimental spinal cord demyelination are abolished by spontaneous remyelination.Brain120 (Pt 1), 27–37 (1997).
  • Totoiu MO , KeirsteadHS: Spinal cord injury is accompanied by chronic progressive demyelination.J. Comp. Neurol.486(4), 373–383 (2005).
  • Li GL , BrodinG, FarooqueM et al.: Apoptosis and expression of Bcl-2 after compression trauma to rat spinal cord. J. Neuropathol.Exp. Neurol.55(3), 280–289 (1996).
  • Crowe MJ , BresnahanJC, ShumanSL, MastersJN, BeattieMS: Apoptosis and delayed degeneration after spinal cord injury in rats and monkeys.Nat. Med.3(1), 73–76 (1997).
  • Abe Y , YamamotoT, SugiyamaY et al.: Apoptotic cells associated with Wallerian degeneration after experimental spinal cord injury: a possible mechanism of oligodendroglial death. J. Neurotrauma16(10), 945–952 (1999).
  • Li GL , FarooqueM, HoltzA, OlssonY: Apoptosis of oligodendrocytes occurs for long distances away from the primary injury after compression trauma to rat spinal cord.Acta Neuropathol.98(5), 473–480 (1999).
  • Beattie MS , Farooqui AA, Bresnahan JC: Review of current evidence for apoptosis after spinal cord injury. J. Neurotrauma17(10), 915–925 (2000).
  • Waxman SG : Demyelination in spinal cord injury.J. Neurol. Sci.91(1–2), 1–14 (1989).
  • Gledhill RF , B.M. Harrison, and W.I. McDonald: Demyelination and remyelination after acute spinal cord compression. Exp. Neurol.38(3), 472–87 (1973).
  • Salgado-Ceballos H , Guizar-SahagunG, Feria-VelascoA et al.: Spontaneous long-term remyelination after traumatic spinal cord injury in rats. Brain Res.782(1–2), 126–135 (1998).
  • Bunge RP , PuckettWR, BecerraJL, MarcilloA, QuencerRM: Observations on the pathology of human spinal cord injury. A review and classification of 22 new cases with details from a case of chronic cord compression with extensive focal demyelination.Adv. Neurol.59, 75–89 (1993).
  • Kakulas BA , The applied neuropathology of human spinal cord injury. Spinal Cord. 37(2), 79–88 (1999).
  • Buss A , PechK, MerklerD et al.: Sequential loss of myelin proteins during Wallerian degeneration in the human spinal cord. Brain128(Pt 2), 356–364 (2005).
  • Guest JD , HiesterED, BungeRP: Demyelination and Schwann cell responses adjacent to injury epicenter cavities following chronic human spinal cord injury.Exp. Neurol.192(2), 384–393 (2005).
  • Blakemore WF , CrangAJ: Extensive oligodendrocyte remyelination following injection of cultured central nervous system cells into demyelinating lesions in adult central nervous system.Dev. Neurosci.10(1), 1–11 (1988).
  • Blakemore WF , CrangAJ: The relationship between type-1 astrocytes, Schwann cells and oligodendrocytes following transplantation of glial cell cultures into demyelinating lesions in the adult rat spinal cord.J. Neurocytol.18(4), 519–528 (1989).
  • Groves AK , BarnettSC, FranklinRJ et al.: Repair of demyelinated lesions by transplantation of purified O-2A progenitor cells. Nature362(6419), 453–455 (1993).
  • Friedman E , NilaverG, CarmelP, PerlowM, SpatzL, LatovN: Myelination by transplanted fetal and neonatal oligodendrocytes in a dysmyelinating mutant.Brain Res.378(1), 142–146 (1986).
  • Kohsaka S , YoshidaK, InoueY et al.: Transplantation of bulk-separated oligodendrocytes into the brains of shiverer mutant mice: immunohistochemical and electron microscopic studies on the myelination. Brain Res.372(1), 137–142 (1986).
  • Duncan ID , HammangJP, JacksonKF, WoodPM, BungeRP, LangfordL: Transplantation of oligodendrocytes and Schwann cells into the spinal cord of the myelin-deficient rat.J. Neurocytol.17(3), 351–360 (1988).
  • Gumpel M , GoutO, LubetzkiC, GansmullerA, BaumannN: Myelination and remyelination in the central nervous system by transplanted oligodendrocytes using the shiverer model. Discussion on the remyelinating cell population in adult mammals.Dev. Neurosci.11(2), 132–139 (1989).
  • Rosenbluth J , HasegawaM, ShirasakiN, RosenCL, LiuZ: Myelin formation following transplantation of normal fetal glia into myelin-deficient rat spinal cord.J. Neurocytol.19(5), 718–730 (1990).
  • Nistor GI , TotoiuMO, HaqueN, CarpenterMK, KeirsteadHS: Human embryonic stem cells differentiate into oligodendrocytes in high purity and myelinate after spinal cord transplantation.Glia49(3), 385–396 (2005).
  • Keirstead HS , NistorG, BernalG et al.: Remyelination and locomotor recovery follows transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into acute but not chronic spinal cord injuries. J. Neurosci.25(19): 4694–4705 (2005).
  • Xu , C, Inokuma MS, Denham J et al.: Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol.19(10): 971–974 (2001).
  • Carpenter MK , InokumaMS, DenhamJ, MujtabaT, ChiuCP, RaoMS: Enrichment of neurons and neural precursors from human embryonic stem cells.Exp. Neurol.172(2), 383–397 (2001).
  • Basso DM , BeattieMS, BresnahanJC: A sensitive and reliable locomotor rating scale for open field testing in rats.J. Neurotrauma12(1), 1–21 (1995).
  • Barres BA , HartIK, ColesHS et al.: Cell death and control of cell survival in the oligodendrocyte lineage. Cell70(1), 31–46 (1992).
  • Barres , BA, Raff MC: Control of oligodendrocyte number in the developing rat optic nerve. Neuron12(5), 935–942 (1994).
  • Raff MC : Size control: the regulation of cell numbers in animal development.Cell86(2), 173–175 (1996).
  • Raff MC , BarresBA, BurneJF, ColesHS, IshizakiY, JacobsonMD: Programmed cell death and the control of cell survival: lessons from the nervous system.Science262(5134), 695–700 (1993).
  • Trapp BD , NishiyamaA, ChengD, Macklin W: Differentiation and death of premyelinating oligodendrocytes in developing rodent brain. J. Cell Biol.137(2), 459–468 (1997).
  • David S , MillerRH, PatelR, RaffMC: Effects of neonatal transection on glial cell development in the rat optic nerve: evidence that the oligodendrocyte-type 2 astrocyte cell lineage depends on axons for its survival.J. Neurocytol.13(6), 961–974 (1984).
  • Burne JF , StapleJK, RaffMC: Glial cells are increased proportionally in transgenic optic nerves with increased numbers of axons.J. Neurosci.16(6), 2064–2073 (1996).
  • Raff MC , DurandB, GaoFB: Cell number control and timing in animal development: the oligodendrocyte cell lineage.Int. J. Dev. Biol.42(3), 263–267 (1998).
  • Casaccia-Bonnefil P : Cell death in the oligodendrocyte lineage: a molecular perspective of life/death decisions in development and disease.Glia29(2), 124–135 (2000).
  • McMorris FA , Dubois-DalcqM: Insulin-like growth factor I promotes cell proliferation and oligodendroglial commitment in rat glial progenitor cells developing in vitro.J. Neurosci. Res.21(2–4), 199–209 (1988).
  • Mozell RL , McMorrisFA: Insulin-like growth factor I stimulates oligodendrocyte development and myelination in rat brain aggregate cultures.J. Neurosci. Res.30(2), 382–390 (1991).
  • Barres BA , JacobsonMD, SchmidR, SendtnerM, RaffMC: Does oligodendrocyte survival depend on axons?Curr. Biol.3(8), 489–497 (1993).
  • Althaus HH , KloppnerS, Schmidt-SchultzT, SchwartzP: Nerve growth factor induces proliferation and enhances fiber regeneration in oligodendrocytes isolated from adult pig brain.Neurosci. Lett.135(2), 219–223 (1992).
  • Cohen RI , MarmurR, NortonWT, MehlerMF, KesslerJA: Nerve growth factor and neurotrophin-3 differentially regulate the proliferation and survival of developing rat brain oligodendrocytes.J. Neurosci.16(20), 6433–6442 (1996).
  • Bertollini L , CiottiMT, CherubiniE, CattaneoA: Neurotrophin-3 promotes the survival of oligodendrocyte precursors in embryonic hippocampal cultures under chemically defined conditions.Brain Res.746(1–2), 19–24 (1997).
  • Kumar S , KahnMA, DinhL, de Vellis J: NT-3-mediated TrkC receptor activation promotes proliferation and cell survival of rodent progenitor oligodendrocyte cells in vitro and in vivo. J. Neurosci. Res.54(6), 754–765 (1998).
  • Canoll PD , MusacchioJM, HardyR, ReynoldsR, MarchionniMA, SalzerJL: GGF/neuregulin is a neuronal signal that promotes the proliferation and survival and inhibits the differentiation of oligodendrocyte progenitors.Neuron17(2), 229–243 (1996).
  • Louis JC , MagalE, TakayamaS, VaronS: CNTF protection of oligodendrocytes against natural and tumor necrosis factor-induced death.Science259(5095), 689–692 (1993).
  • Mayer M , BhakooK, NobleM: Ciliary neurotrophic factor and leukemia inhibitory factor promote the generation, maturation and survival of oligodendrocytes in vitro.Development120(1), 143–153 (1994).
  • Dell'Albani P , KahnMA, ColeR, CondorelliDF, Giuffrida-StellaAM, de Vellis J: Oligodendroglial survival factors, PDGF-AA and CNTF, activate similar JAK/STAT signaling pathways. J. Neurosci. Res.54(2), 191–205 (1998).
  • Komoly S , HudsonLD, WebsterHD, BondyCA: Insulin-like growth factor I gene expression is induced in astrocytes during experimental demyelination.Proc. Natl Acad. Sci. U S A89(5), 1894–1898 (1992).
  • Redwine JM , ArmstrongRC: In vivo proliferation of oligodendrocyte progenitors expressing PDGFαR during early remyelination.J. Neurobiol.37(3), 413–428 (1998).
  • Hinks GL , FranklinRJ: Distinctive patterns of PDGF-A, FGF-2, IGF-I, and TGF-β1 gene expression during remyelination of experimentally-induced spinal cord demyelination.Mol. Cell Neurosci.14(2), 153–168 (1999).
  • Tourbah A , LinningtonC, BachelinC et al.: Inflammation promotes survival and migration of the CG4 oligodendrocyte progenitors transplanted in the spinal cord of both inflammatory and demyelinated EAE rats. J. Neurosci. Res.50(5), 853–861 (1997).
  • Franklin RJ , BayleySA, BlakemoreWF: Transplanted CG4 cells (an oligodendrocyte progenitor cell line) survive, migrate, and contribute to repair of areas of demyelination in X-irradiated and damaged spinal cord but not in normal spinal cord.Exp. Neurol.137(2), 263–276 (1996).
  • O'Leary MT , BlakemoreWF: Oligodendrocyte precursors survive poorly and do not migrate following transplantation into the normal adult central nervous system.J. Neurosci. Res.48(2), 159–167 (1997).
  • Foote AK , BlakemoreWF: Inflammation stimulates remyelination in areas of chronic demyelination.Brain128(Pt 3), 528–39 (2005).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.