229
Views
10
CrossRef citations to date
0
Altmetric
Editorial

Phospholipid-mediated signaling in diseased myocardium

, , , , &
Pages 701-717 | Published online: 18 Jan 2017

  • 1. Lamers JMJ, Dekkers DH, Bezstarosti K, Meij JT, van Heugten HA: Occurrence and functions of the phosphatidylinositol cycle in the myocardium. Mol. Cell Biochem. 116, 59–67 (1992).
  • Dhalla NS, Dent MR, Tappia PS, Sethi R, Bartha J, Goyal RK: Subcellular remodeling as a viable target for the treatment of congestive heart failure. J. Cardiovasc. Pharmacol. Ther. 11, 31–45 (2006).
  • Tappia PS, Dent MR, Dhalla NS: Oxidative stress and redox regulation of phospholipase D in myocardial disease. Free Radic. Biol. Med. 41, 349–361 (2006).
  • Tappia PS, Liu SY, Shatadal S, Takeda N, Dhalla NS, Panagia V: Changes in sarcolemmal PLC isoenzymes in postinfarct congestive heart failure: partial correction by imidapril. Am. J. Physiol. Heart Circ. Physiol. 277(1 Pt 2), H40–H49 (1999).
  • Park JB, Kim JH, Kim Y et al.: Cardiac phospholipase D2 localizes to sarcolemmal membranes and is inhibited by -actinin in an ADP-ribosylation factor-reversible manner. J. Biol. Chem. 275(28), 21295–21301 (2000).
  • Wolf RA: Association of phospholipase C- with a highly enriched preparation of canine sarcolemma. Am. J. Physiol. 263, C1021–C1028 (1992).
  • McHowat J, Tappia PS, Liu S, McCrory R, Panagia V: Redistribution and abnormal activity of phospholipase A2 isoenzymes in postinfarct congestive heart failure. Am. J. Physiol. Cell. Physiol. 280(3), C573–C580 (2001).
  • Panagia V, Ou C, Taira Y, Dai J, Dhalla NS: Phospholipase D actvity in subcellular membranes of rat ventricular myocardium. Biochim. Biophys. Acta 1064, 242–250 (1991).
  • Williams SA, Tappia PS, Yu CH, Binaglia L, Panagia V, Dhalla NS: Subcellular alterations in cardiac phospholipase D activity in chronic diabetes. Protaglandins Leukot. Essent. Fatty Acids 57, 95–99 (1997).
  • Cocco L, Martelli AM, Gilmour RS, Rhee SG, Manzoli FA: Nuclear phospholipase C and signaling. Biochim. Biophys. Acta 1530, 1–14 (2001).
  • Cocco L, Faenza I, Fiume R, Maria Billi A, Gilmour RS, Manzoli FA: Phosphoinositide-specific phospholipase C (PI-PLC) 1 and nuclear lipid-dependent signaling. Biochim. Biophys. Acta 1761, 509–521 (2006).
  • McHowat J, Creer MH: Catalytic features, regulation and function of myocardial phospholipase A2. Curr. Med. Chem. Cardiovasc. Hematol. Agents 2, 209–218 (2004).
  • Diaz BL, Arm JP: Phospholipase A2. Prostaglandins Leukot. Essent. Fatty Acids 69, 87–97 (2003).
  • Karliner S: Lysophospholipids and the cardiovascular system. Biochim. Biophys. Acta 1582, 216–221 (2002).
  • Xu YJ, Rathi SS, Chapman DC, Arneja AS, Dhalla NS: Mechanisms of lysophosphatidic acid-induced DNA synthesis in vascular smooth muscle cells. J. Cardiovasc. Pharmacol. 41, 381–387 (2003).
  • Xu Y-J, Saini HK, Cheema SK, Dhalla NS: Mechanisms of lysophosphatidic acidinduced increase in intracellular calcium in vascular smooth muscle cells. Cell Calcium 38, 569–579 (2005).
  • Xu Y-J, Rathi SS, Zhang M, Bhugra P, Dhalla NS: Mechanism of the positive inotropic effect of lysophosphatidic acid in rat heart. J. Cardiovasc. Pharmacol. Therap. 7, 109–115 (2002).
  • Six DA, Dennis EA: The expanding superfamily of phospholipase A2 enzymes: classification and characterization. Biochim. Biophys. Acta 1488, 1–19 (2000).
  • Ohto T, Uozumi N, Hirabayashi T, Shimizu T: Identification of novel cytosolic phospholipase A2s, murine cPLA2 , , and , which form a gene cluster with cPLA2 . J. Biol. Chem. 280, 24576–24583 (2005).
  • Tanaka H, Takeya R, Sumimoto H: A novel intracellular membrane-bound calciumindependent phospholipase A2. Biochem. Biophys. Res. Commun. 272, 320–326 (2000).
  • Dennis EA: Diversity of group types, regulation, and function of phospholipase A2. J. Biol. Chem. 269(18), 13057–13060 (1994).
  • Hirabayashi T, Murayama T, Shimizu T: Regulatory mechanism and physiological role of cytosolic phospholipase A2. Biol. Pharm. Bull. 27(18), 1168–1173 (2004).
  • Stahelin RV, Rafter JD, Das S, Cho W: The molecular basis of differential subcellular localization of C2 domains of protein kinase C- and group IVa cytosolic phospholipase A2. J. Biol. Chem. 278(14), 12452–12460 (2003).
  • Rhee SG: Regulation of phosphoinositidespecific phospholipase C. Annu. Rev. Biochem. 70, 281–312 (2001).
  • Fukami K: Structure, regulation, and function of phospholipase C isozymes. J. Biochem. (Tokyo) 131, 293–299 (2002).
  • Singal T, Dhalla NS, Tappia PS: Phospholipase C may be involved in norepinephrine-induced cardiac hypertrophy. Biochem. Biophys. Res. Commun. 320, 1015–1019 (2004).
  • Lopez I, Mak EC, Ding J, Hamm HE, Lomasney JW: A novel bifunctional phopsholipase C that is regulated by G 12 and stimulates the Ras/mitogen-activated protein kinase pathway. J. Biol. Chem. 276, 2758–2765 (2001).
  • Heredia Mdel P, Delgado C, Pereira L et al.: Neuropeptide Y rapidly enhances Cai 2+ transients and Ca2+ sparks in adult rat ventricular myocytes through Y1 receptor and PLC activation. J. Mol. Cell Cardiol. 38(1), 205–212 (2005).
  • Balogh J, Wihlborg AK, Isackson H et al.: Phospholipase C and cAMP-dependent positive inotropic effects of ATP in mouse cardiomyocytes via P2Y11-like receptors. J. Mol. Cell Cardiol. 39(2), 223–230 (2005).
  • Yin G, Yan C, Berk BC: Angiotensin II signaling pathways mediated by tyrosine kinases. Int. J. Biochem. Cell Biol. 35(6), 780–783 (2003).
  • Malhotra A, Kang BP, Opawumi D, BelizaireW, Meggs LG: Molecular biology of protein kinase C signaling in cardiac myocytes. Mol. Cell Biochem. 25(1), 97–107 (2001).
  • Kamp TJ, Hell JW: Regulation of cardiac L-type calcium channels by protein kinase A and protein kinase C. Circ. Res. 87(2), 1095–1102 (2000).
  • Zhang S, Lin J, Hirano Y, Hiraoka M: Modulation of ICa-L by 1-adrenergic stimulation in rat ventricular myocytes. Can. J. Physiol. Pharmacol. 83 (11), 1015–1024 (2005).
  • Rebecchi MJ, Pentyala SN: Structure, function, and control of phosphoinositidespecific phospholipase C. Physiol. Rev. 80(4), 1291–1335 (2000).
  • Song C, Hu CD, Masago M et al.: Regulation of a novel human phospholipase C, PLC , through membrane targeting by Ras. J. Biol. Chem. 276(4), 2752–2757 (2001).
  • Saunders CM, Larman MG, Parrington J et al.: PLC : a sperm-specific trigger of Ca2+ oscillations in eggs and embryo development. Development 129(15), 3533–3544 (2002).
  • Wing MR, Bourdon DM, Harden TK: PLC- : a shared effector protein in Ras-, Rho-, and G -mediated signaling. Mol. Interv. 3(5), 273–280 (2003).
  • Hwang JI, Oh YS, Shin KJ, Kim H, Ryu SH, Suh PG: Molecular cloning and characterization of a novel phospholipase C, PLC- . Biochem. J. 389(1), 181–186 (2005).
  • Asemu G, Dhalla NS, Tappia PS: Inhibition of PLC improves postischemic recovery in isolated rat heart. Am. J. Physiol. Heart Circ. Physiol. 287(6), H2598–H2605 (2004).
  • Katan M: Families of phosphoinositidespecific phospholipase C: structure and function. Biochim. Biophys. Acta 1436, 5–17 (1998).
  • Rhee SG, Bae YS: Regulation of phosphoinositide-specific phospholipase C isozymes. J. Biol. Chem. 272(24), 15045–15048 (1997).
  • Lee CW, Lee KH, Lee SB, Park D, Rhee SG: Regulation of phospholipase C- 4 by ribonucleotides and the subunit of Gq. J. Biol. Chem. 269, 25335–25338 (1994).
  • Rhee SG, Bae YS: Regulation of phosphoinositide-specific phospholipase C isozymes. J. Biol. Chem. 272, 15045–15048 (1997).
  • Sekiya F, Bae YS, Rhee SG: Regulation of phospholipase C isoenzymes: activation of phospholipase C- in the absence of tyrosine phosphorylation. Chem. Phys. Lipids 98, 3–11 (1999).
  • Im H-J, Russell MA, Feng J-F: Transglutaminase II: a new class of GTPbinding protein with new biological functions. Cell Signal 9, 477–482 (1997).
  • Park H, Park ES, Lee HS, Yun HY, Kwon NS, Baek KJ: Distinct characteristic of G h (transglutaminase II) by compartment: GTPase and transglutaminase activities. Biochem. Biophys. Res. Commun. 284, 496–500 (2001).
  • Yagisawa H, Sakuma K, Paterson HE et al.: Replacements of single basic amino acids in the pleckstrin homology domain of phospholipase C- 1 alter the ligand binding, phospholipase activity and interaction with the plasma membrane. J. Biol. Chem. 273, 417–424 (1998).
  • Tall E, Dorman G, Garcia P et al.: Phosphoinositide binding specificity among phospholipase C isozymes as determined by photo-cross-linking to novel substrate and product analogs. Biochemistry 36, 7239–7248 (1997).
  • Frohman MA, Morris AJ: Phospholipase D structure and regulation. Chem. Phys. Lipids. 98, 127–140 (1999).
  • Yamazaki M, Zhang Y, Watanabe H et al.: Interaction of the small G protein RhoA with the C terminus of human phospholipase D1. J. Biol. Chem. 274(10), 6035–6038 (1999).
  • Dai J, Williams SA, Ziegelhoffer A, Panagia V: Structure–activity relationship of the effect of cis-unsaturated fatty acids on heart sarcolemmal phospholipase D activity. Prostaglandins Leukot. Essent. Fatty Acids 52(2–3), 167–171 (1995).
  • Liu SY, Tappia PS, Dai J, Williams SA, Panagia V: Phospholipase A2-mediated activation of phospholipase D in rat heart sarcolemma. J. Mol. Cell Cardiol. 30(6), 1203–1214 (1998).
  • Colley WC, Sung TC, Roll R et al.: Phospholipase D2, a distinct phospholipase D isoform with novel regulatory properties that provokes cytoskeletal reorganization. Curr. Biol. 7(3), 191–201 (1997).
  • Sadoshima J, Izumo S: Signal transduction pathways of angiotensin II-induced c-fos gene expression in cardiac myocytes in vitro. Roles of phospholipid-derived second messengers. Circ. Res. 73(3), 424–438 (1993).
  • Ye H, Wolf RA, Kurz T, Corr PB: Phosphatidic acid increases in response to noradrenaline and endothelin-1 in adult rabbit ventricular myocytes. Cardiovasc. Res. 28(12), 1828–1834 (1994).
  • Dhalla NS, Xu YJ, Sheu SS, Tappia PS, Panagia V: Phosphatidic acid: a potential signal transducer for cardiac hypertrophy. J. Mol. Cell Cardiol. 29(11), 2865–2871 (1997).
  • Xu YJ, Botsford MW, Panagia V, Dhalla NS: Responses of heart function and intracellular free Ca2+ to phosphatidic acid in chronic diabetes. Can. J. Cardiol. 12(10), 1092–1098. (1996) 58. Xu YJ, Panagia V, Shao Q, Wang X, Dhalla NS: Phosphatidic acid increases intracellular free Ca2+ and cardiac contractile force. Am. J. Physiol. 271(2), H651–H659 (1996).
  • Lamers JM, Eskildsen-Helmond YE, Resink AM et al.: Endothelin-1-induced phospholipase C- and D and protein kinase C isoenzyme signaling leading to hypertrophy in rat cardiomyocytes. J. Cardiovasc. Pharmacol. 26(Suppl. 3), S100–S103 (1995).
  • Martin A, Saqib KM, Hodgkin MN et al.: Role and regulation of phospholipase D signalling. Biochem. Soc. Trans. 25, 1157–1160 (1997).
  • Hodgkin MN, Pettitt TR, Martin A, Michell RH, Pemberton AJ, Wakelam MJ: Diacylglycerols and phosphatidates: which molecular species are intracellular messengers? Trends Biochem. Sci. 23, 200–204 (1998).
  • Ungvari Z, Gupte SA, Recchia FA, Batkai S, Pacher P: Role of oxidative-nitrosative stress and downstream pathways in various forms of cardiomyopathy and heart failure. Curr. Vasc. Pharmacol. 3(3), 221–229 (2005).
  • Kloner RA, Ellis SG, Lange R, Braunwald E: Studies of experimental coronary artery reperfusion. Effects on infarct size, myocardial function, biochemistry, ultrastructure and microvascular damage. Circulation 68(2 Pt 2), 18–15 (1983).
  • Dhalla NS, Temsah RM, Netticadan T, Sandhu MS: Calcium overload in ischemia/reperfusion injury. In: Heart Physiology and Pathophysiology. Sperelakis N, Kurachi Y, Terzic A, Cohen M (Eds). Academic Press, San Diego, CA, USA 949–965 (2000).
  • Zucchi R, Ronca F, Ronca-Testoni S: Modulation of sarcoplasmic reticulum function: a new strategy in cardioprotection? Pharmacol. Ther. 89, 47–65 (2001).
  • Piper HM, Abdallah Y, Schafer C: The first minutes of reperfusion: a window of opportunity for cardioprotection. Cardiovasc. Res. 61, 365–371 (2004).
  • Dhalla NS, Ziegelhoffer A, Harrow JA: Regulatory role of membrane systems in heart function. Can. J. Physiol. Pharmacol. 55(6), 1211–1234 (1997).
  • Dhalla NS, Das PK, Sharma GP: Subcellular basis of cardiac contractile failure. J.Mol. Cell Cardiol. 10(4), 363–385 (1978).
  • Dhalla NS, Pierce GN, Panagia V, Singal PK, Beamish RE: Calcium movements in relation to heart function. Basic Res. Cardiol. 77(2), 117–139 (1982).
  • Gross GJ, Falck JR, Gross ER, Isbell M, Moore J, Nithipatikom K: Cytochrome P450 and arachidonic acid metabolites: role in myocardial ischemia/reperfusion injury revisited. Cardiovasc. Res. 68(1), 18–25 (2005).
  • Hashizume H, Hoque AN, Magishi K, Hara A, Abiko Y: A new approach to the development of anti-ischemic drugs. Substances that counteract the deleterious effect of lysophosphatidylcholine on the heart. Jpn Heart J. 38, 11–25 (1997).
  • Qiao J, Huang F, Naikawadi RP, Kim KS, Said T, Lum H: Lysophosphatidylcholine impairs endothelial barrier function through the G protein-coupled receptor GPR4. Am. J. Physiol. Lung Cell. Mol. Physiol. 291, L91–L101 (2006).
  • Wang L, Radu CG, Yang LV, Bentolila LA, Riedinger M, Witte ON: Lysophosphatidylcholine-induced surface redistribution regulates signaling of the murine G protein-coupled receptor G2A. Mol. Biol. Cell 16, 2234–2247 (2005).
  • Anderson KE, Dart AM, Woodcock EA: Inositol phosphate release and metabolism during myocardial ischemia and reperfusion in rat heart. Circ. Res. 76, 261–268 (1995).
  • Otani H, Prasad MR, Engelman RM, Otani H, Cordis GA, Das DK: Enhanced phosphodiesteratic breakdown and turnover of phosphoinositides during reperfusion of ischemic rat heart. Circ. Res. 63(5), 930–936 (1988).
  • Moraru II, Jones RM, Popescu LM, Engelman RM, Das DK: Prazosin reduces myocardial ischemia/reperfusion-induced Ca2+ overloading in rat heart by inhibiting phosphoinositide signaling. Biochim. Biophys. Acta 1268(1), 1–8 (1995).
  • Munakata M, Stamm C, Friehs I et al.: Protective effects of protein kinase C during myocardial ischemia require activation of phosphatidyl-inositol specific phospholipase C. Ann. Thorac. Surg. 73(4), 1236–1245 (2002).
  • Kurz T, Schneider I, Tolg R, Richardt G: 1-adrenergic receptor-mediated increase in the mass of phosphatidic acid and 1,2-diacylglycerol in ischemic rat heart. Cardiovasc. Res. 42(1), 48–56 (1999).
  • Schwertz DW, Halverson J: Changes in phosphoinositide-specific phospholipase C and phospholipase A2 activity in ischemic and reperfused rat heart. Basic Res. Cardiol. 87(2), 113–127 (1992).
  • Marsh D: Role of lipids in membrane structures. Curr. Opin. Struc. Biol. 2, 497–502 (1992).
  • Asemu G, Tappia PS, Dhalla NS: Identification of the changes in phospholipase C isozymes in ischemic-reperfused rat heart. Arch. Biochem. Biophys. 411(2), 174–182 (2003). oo First to report differential changes in PLC isozyme activity, protein contents and gene expression in hearts subjected to ischemia-reperfusion. 82. Meij JTA, Suzuki S, Panagia V, Dhalla NS: Oxidative stress modifies the activity of sarcolemmal phospholipase C. Biochim. Biophys. Acta 1199(1), 6–12 (1994).
  • Mesaeli N, Tappia PS, Suzuki S, Dhalla NS, Panagia V: Oxidants depress the synthesis of phosphatidylinositol 4,5-bisphosphate in heart sarcolemma. Arch. Biochem. Biophys. 382(1), 48–56 (2000).
  • Liu S-Y, Yu C-H, Hays J-A, Panagia V, Dhalla NS: Modification of heart sarcolemmal phosphoinositide pathway by lysophosphatidylcholine. Biochim. Biophys. Acta 1349(3), 264–274 (1997).
  • Mangat R, Singal T, Dhalla NS, Tappia PS: Inhibition of phospholipase C 1 augments the decrease in cardiomyocyte viability by H2O2. Am. J. Physiol. Heart Circ. Physiol. 291, H854–H860 (2006).
  • Mozzicato S, Joshi BV, Jacobson KA, Liang BT: Role of direct RhoAphospholipase D1 interaction in mediating adenosine-induced protection from cardiac ischemia. FASEB J. 18(2), 406–408 (2004).
  • Tosaki A, Maulik N, Cordis G, Trifan OC, Popescu LM, Das DK: Ischemic preconditioning triggers phospholipase D signaling in rat heart. Am. J. Physiol. 273(4 Pt 2), H1860–H1866 (1997).
  • Bruhl A, Faldum A, Loffelholz K: Degradation of phosphatidylethanol counteracts the apparent phospholipase D-mediated formation in heart and other organs. Biochim. Biophys. Acta 1633(2), 84–89 (2003).
  • Kurz T, Kemken D, Mier K, Weber I, Richardt G: Human cardiac phospholipase D activity is tightly controlled by phosphatidylinositol 4,5-bisphosphate. J. Mol. Cell Cardiol. 36(2), 225–232 (2004).
  • Asemu G, Dent MR, Singal T, Dhalla NS, Tappia PS: Differential changes in phospholipase D and phosphatidate phosphohydrolase activities in ischemiareperfusion of rat heart. Arch. Biochem. Biophys. 436(1), 136–144 (2005).
  • Ferrari R, Ceconi C, Curello S et al.: Oxygen free radicals and myocardial damage: protective role of thiol-containing agents. Am. J. Med. 91(30), S95–S105 (1991).
  • Ozer MK, Parlakpinar H, Cigremis Y, Ucar M, Vardi N, Acet A: Ischemiareperfusion leads to depletion of glutathione content and augmentation of malondialdehyde production in the rat heart from overproduction of oxidants: can caffeic acid phenethyl ester (CAPE) protect the heart? Mol. Cell Biochem. 273(1–2), 169–175 (2005).
  • Wu G, Fang YZ, Yang S, Lupton JR, Turner ND: Glutathione metabolism and its implications for health. J. Nutr. 134(3), 489–492 (2004).
  • Hurd TR, Costa NJ, Dahm CC, Beer SM, Brown SE, Filipovska A, Murphy MP: Glutathionylation of mitochondrial proteins. Antioxid. Redox. Signal 7(7–8), 999–1010 (2005).
  • Sapirstein A, Spech RA, Witzgall R, Bonventre JV: Cytosolic phospholipase A2 (PLA2), but not secretory PLA2, potentiates hydrogen peroxide cytotoxicity in kidney epithelial cells. J. Biol. Chem. 271(35), 21505–21513 (1996).
  • Lindmar R, Loffelholz K: Phospholipase D in rat myocardium: formation of lipid messengers and synergistic activation by G-protein and protein kinase C. Biochem. Pharmacol. 56(7), 799–805 (1998).
  • Snabaitis AK, Hearse DJ, Avkiran M: Regulation of sarcolemmal Na+/H+ exchange by hydrogen peroxide in adult rat ventricular myocytes. Cardiovasc. Res. 53(2), 470–480 (2002).
  • Purdom S, Chen QM: Epidermal growth factor receptor-dependent and -independent pathways in hydrogen peroxide-induced mitogen-activated protein kinase activation in cardiomyocytes and heart fibroblasts. J. Pharmacol. Exp. Ther. 312(3), 1179–1186 (2005).
  • Nataranjan V, Vepa S, Verma RS, Scribner WM: Role of protein tyrosine phosphorylation in H2O2-induced activation of endothelial cell phopsholipase D. Am. J. Physiol. 27, L400–L408 (1996).
  • Nataranjan V, Shamlal R, Al-Hassani M, Ramasarma T, Ravishankar HN, Scribner WM: Tyrosine kinases and calcium dependent activation of endothelial cell phospholipase D by diperoxovanadate. Mol. Cell Biochem. 183, 113–124 (1998).
  • Oh SO, Hong JH, Kim YR et al.: Regulation of phospholipase D2 by H2O2 in PC12 cells. J. Neurochem. 75, 2445–2454 (2000).
  • Min DS, Kim EG, Exton JH: Involvement of tyrosine phosphorylation and protein kinase C in the activation of phospholipase D by H2O2 in Swiss 3T3 fibroblasts. J. Biol. Chem. 273, 29986–29994 (1998).
  • Min DS, Ahn BH, Jo YH: Differential tyrosine phosphorylation of phospholipase D isozymes by hydrogen peroxide and epidermal growth factor in A431 epidermoid carcinoma cells. Mol. Cell 30, 369–378 (2001).
  • Banno Y, Wang S, Ito Y et al.: Involvement of ERK and p38 MAP kinase in oxidative stress-induced phospholipase D activation in PC12 cells. Neuroreport 12, 2271–2275 (2001).
  • Roy S, Parinandi N, Zeigelstein R et al.: Hyperoxia alters phorbol ester-induced phospholipase D activation in bovine lung microvascular endothelial cells. Antioxid. Redox Signal 5, 217–228 (2003).
  • Taher MM, Mahgoub MA, Abd-Elfattah AS: Redox regulation of signal transduction in vascular smooth muscle cells: thiol oxidizing agents induced phospholipase D. Biochem. Mol. Biol. Int. 46, 619–628 (1998).
  • Parinandi NL, Scribner WM, Vepa S, Shi S, Natarajan V: Phospholipase D activation in endothelial cells is redox sensitive. Antioxid. Redox. Signal 1, 193–210 (1999).
  • Dai J, Meij JTA, Padua RR, Panagia V: Depression of cardiac sarcolemmal phospholipase D activity by oxidantinduced thiol modification. Circ. Res. 71, 970–977 (1992).
  • Dai J, Meij JT, Dhalla V, Panagia V: Involvement of thiol groups in the impairment of cardiac sarcoplasmic reticular phospholipase D activity by oxidants. J. Lipid Mediat. Cell Signal. 11(2), 107–118 (1995).
  • Bruhl A, Hafner G, Loffelholz K: Release of choline in the isolated heart, an indicator of ischemic phospholipid degradation and its protection by ischemic preconditioning: no evidence for a role of phospholipase D. Life Sci. 75, 1609–1620 (2004).
  • Moolenaar WH: Lysophospholipids in the limelight: autotaxin takes center stage. J. Cell Biol. 158, 197–199 (2002).
  • Xie Y, Meier KE: Lysophospholipase D and its role in LPA production. Cell Signal. 16, 975–981 (2004).
  • Olivetti G, Abbi R, Quaini F et al.: Apoptosis in the failing human heart. N. Engl. J.Med. 336(16), 1131–1141 (1997).
  • Nishio Y, Kashiwagi A, Taki H et al.: Altered activities of transcription factors and their related gene expression in cardiac tissues of diabetic rats. Diabetes 47(8), 1318–1325 (1998).
  • Bromme HJ, Holtz J: Apoptosis in the heart: when and why? Mol. Cell Biochem. 261–275 (1996).
  • Tritto I, Ambrosio G: Role of oxidants in the signaling pathway of preconditioning. Antioxid. Redox. Signal. 3(1), 3–10 (2001).
  • Dhalla NS, Liu X, Panagia V, Takeda N: Subcellular remodeling and heart dysfunction in chronic diabetes. Cardiovasc. Res. 40(2), 239–247 (1998).
  • Moraru II, Popescu LM, Maulik N, Liu X, Das DK: Phospholipase D signaling in ischemic heart. Biochim. Biophys. Acta 1139(1–2), 148–154 (1992).
  • Cohen MV, Liu Y, Liu GS et al.: Phospholipase D plays a role in ischemic preconditioning in rabbit heart. Circulation 94(7), 1713–1718 (1996).
  • Eskildsen-Helmond YE, Gho BC, Bezstarosti K et al.: Exploration of the possible roles of phospholipase D and protein kinase C in the mechanism of ischemic preconditioning in the myocardium. Ann. NY Acad. Sci. 793, 210–225 (1996).
  • Trifan OC, Popescu LM, Tosaki A, Cordis G, Das DK: Ischemic preconditioning involves phospholipase D. Ann. NY Acad. Sci. 793, 485–488 (1996).
  • Dorn GW 2nd, Force T: Protein kinase cascades in the regulation of cardiac hypertrophy. J. Clin. Invest. 115(3), 527–537 (2005).
  • Kawaguchi H, Sano H, Iizuka K et al.: Phosphatidylinositol metabolism in hypertrophic rat heart. Circ. Res. 72(5), 966–972 (1993).
  • Wang H, Oestreich EA, Maekawa N et al.: Phospholipase C modulates -adrenergic receptor-dependent cardiac contraction and inhibits cardiac hypertrophy. Circ. Res. 97(112), 1305–1313 (2005).
  • Sakata Y: Tissue factors contributing to cardiac hypertrophy in cardiomyopathic hamsters (BIO14.6): involvement of transforming growth factor- 1 and tissue renin-angiotensin system in the progression of cardiac hypertrophy. Hokkaido Igaku Zasshi 68(1), 18–28 (1993).
  • Bai H, Wu LL, Xing DQ, Liu J, Zhao YL: Angiotensin II induced upregulation of G q/11, phospholipase C 3 and extracellular signal-regulated kinase 1/2 via angiotensin II type 1 receptor. Chin. Med. J. (Engl). 117(1), 88–93 (2004).
  • Dent MR, Dhalla NS, Tappia PS: Phospholipase C gene expression, protein content, and activities in cardiac hypertrophy and heart failure due to volume overload. Am. J. Physiol. Heart Circ. Physiol. 287(2), H719–H727 (2004).
  • Dent MR, Aroutiounova N, Dhalla NS, Tappia PS: Losartan attenuates phospholipase C isozyme gene expression in hypertrophied hearts due to volume overload. J. Cell. Mol. Med. (2006) (In Press).
  • Jalili T, Takeishi Y, Song G, Ball NA, Howles G, Walsh RA: PKC translocation without changes in G q and PLC- protein abundance in cardiac hypertrophy and failure. Am. J. Physiol. 277(6 Pt 2), H2298–H2304 (1999).
  • Barac YD, Zeevi-Levin N, Yaniv G et al.: The 1,4,5-inositol trisphosphate pathway is a key component in Fas-mediated hypertrophy in neonatal rat ventricular myocytes. Cardiovasc. Res. 68(1), 75–86 (2005).
  • Peivandi AA, Huhn A, Lehr HA et al.: Upregulation of phospholipase D expression and activation in ventricular pressureoverload hypertrophy. J. Pharmacol. Sci. 98(3), 244–254 (2005).
  • Tappia PS, Yu CH, Di Nardo P, Pasricha AK, Dhalla NS, Panagia V: Depressed responsiveness of phospholipase C isoenzymes to phosphatidic acid in congestive heart failure. J. Mol. Cell Cardiol. 33(3), 431–440 (2001).
  • Henry RA, Boyce SY, Kurz T, Wolf RA: Stimulation and binding of myocardial phospholipase C by phosphatidic acid. Am. J. Physiol. 269, C349-C358 (1995).
  • D’Angelo DD, Sakata Y, Lorenz JN et al.: Transgenic G q overexpression induces cardiac contractile failure in mice. Proc. Natl Acad. Sci. USA 94(15), 8121–8126 (1997).
  • Sakata Y, Hoit BD, Liggett SB, Walsh RA, Dorn GW 2nd: Decompensation of pressure-overload hypertrophy in G q-overexpressing mice. Circulation 97(15), 1488–1495 (1998).
  • Paradis P, Dali-Youcef N, Paradis FW, Thibault G, Nemer M: Overexpression of angiotensin II type I receptor in cardiomyocytes induces cardiac hypertrophy and remodeling. Proc. Natl Acad. Sci. USA 97(2), 931–936 (2000).
  • Milano CA, Dolber PC, Rockman HA et al.: Myocardial expression of a constitutively active 1B-adrenergic receptor in transgenic mice induces cardiac hypertrophy. Proc. Natl Acad. Sci. USA 91(21), 10109–10113 (1994).
  • Hefti MA, Harder BA, Eppenberger HM, Schaub MC: Signaling pathways in cardiac myocyte hypertrophy. J. Mol. Cell Cardiol. 29(11), 2873–2892 (1997).
  • Singal T, Dhalla NS, Tappia PS: Norepinephrine-induced changes in gene expression of phospholipase C in cardiomyocytes. J. Mol. Cell Cardiol. 41(1), 126–137 (2006).
  • Schnabel P, Mies F, Nohr T, Geisler M, Bohm M: Differential regulation of phospholipase C- isozymes in cardiomyocyte hypertrophy. Biochem. Biophys. Res. Commun. 275(1), 1–6 (2000).
  • Ju H, Zhao S, Tappia PS, Panagia V, Dixon IM: Expression of Gq and PLC- in scar and border tissue in heart failure due to myocardial infarction. Circulation 97(9), 892–899 (1998).
  • Ziegelhoffer A, Tappia PS, Mesaeli N, Sahi N, Dhalla NS, Panagia V: Low level of sarcolemmal phosphatidylinositol 4,5-bisphosphate in cardiomyopathic hamster (UM-X7.1) heart. Cardiovasc. Res. 49(1), 118–126 (2001).
  • Huang CL, Feng S, Hilgemann DW: Direct activation of inward rectifier potassium channels by PIP2 and its stabilization by G . Nature 391(6669), 803–806 (1998).
  • Caroni P, Zurini M, Clark A: The calcium-pumping ATPase of heart sarcolemma. Ann. NY Acad. Sci. 402, 402–421 (1982).
  • Hilgemann DW, Ball R: Regulation of cardiac Na+, Ca2+ exchange and KATP potassium channels by PIP2. Science 273(5277), 956–959 (1996).
  • Dent MR, Singal T, Dhalla NS, Tappia PS: Expression of phospholipase D isozymes in scar and viable tissue in congestive heart failure due to myocardial infarction. J. Cell. Mol. Med. 8(4), 526–536 (2004).
  • Tappia PS, Maddaford TG, Hurtado C, Panagia V, Pierce GN: Depressed phosphatidic acid-induced contractile activity of failing cardiomyocytes. Biochem. Biophys. Res. Commun. 300(2), 457–463 (2003). , Liu SY, Takeda N, Dhalla NS: Alterations of sarcolemmal phospholipase D and phosphatidate phosphohydrolase in congestive heart failure. Biochim. Biophys. Acta 1584(1), 65–72 (2002).
  • McHowat J, Creer MH, Hicks KK, Jones JH, McCrory R, Kennedy RH: Induction of Ca-independent PLA2 and conservation of plasmalogen polyunsaturated fatty acids in diabetic heart. Am. J. Physiol. Endocrinol. Metab. 279(1), E25–E32 (2000).
  • Su X, Han X, Mancuso DJ, Abendschein DR, Gross RW: Accumulation of long-chain acylcarnitine and 3-hydroxy acylcarnitine molecular species in diabetic myocardium: identification of alterations in mitochondrial fatty acid processing in diabetic myocardium by shotgun lipidomics. Biochemistry 44(13), 5234–5245 (2005).
  • Vecchini A, Del Rosso F, Binaglia L, Dhalla NS, Panagia V: Molecular defects in sarcolemmal glycerophospholipid subclasses in diabetic cardiomyopathy. J. Mol. Cell Cardiol. 32(6), 1061–1074 (2000).
  • Malhotra A, Reich D, Reich D et al.: Experimental diabetes is associated with functional activation of protein kinase C and phosphorylation of troponin I in the heart, which are prevented by angiotensin II receptor blockade. Circ. Res. 81(6), 1027–1033 (1997).
  • Malhotra A, Kang BP, Cheung S, Opawumi D, Meggs LG: Angiotensin II promotes glucose-induced activation of cardiac protein kinase C isozymes and phosphorylation of troponin I. Diabetes 50(8), 1918–1926 (2001).
  • Xiang H, McNeill JH: Protein kinase C activity is altered in diabetic rat hearts. Biochem. Biophys. Res. Commun. 187(2), 703–710 (1992).
  • Tanaka Y, Kashiwagi A, Ogawa T et al.: Effect of verapamil on cardiac protein kinase C activity in diabetic rats. Eur. J. Pharmacol. 200(2–3), 353–356 (1991).
  • Liu X, Wang J, Takeda N, Binaglia L, Panagia V, Dhalla NS: Changes in cardiac protein kinase C activities and isozymes in streptozotocin-induced diabetes. Am. J. Physiol. 277(5 Pt 2), E798–E804 (1999).
  • Wald M, Borda ES, Sterin-Borda L: -adrenergic supersensitivity and decreased number of -adrenoceptors in heart from acute diabetic rats. Can. J. Physiol. Pharmacol. 66(9), 1154–1160 (1988).
  • Tappia PS, Liu S-Y, Tong Y, Ssenyange S, Panagia V: Reduction of phosphatidyliositol-4,5-bisphosphate mass in heart sarcolemma during diabetic cardiomyopathy. Adv. Exp. Med. Biol. 498, 183–190 (2001).
  • Tappia PS, Maddaford TG, Hurtado C et al.: Defective phosphatidic acidphospholipase C signaling in diabetic cardiomyopathy. Biochem. Biophys. Res. Commun. 316(1), 280–289 (2004).
  • Tappia PS, Asemu G, Aroutiounova N, Dhalla NS: Defective sarcolemmal phospholipase C signaling in diabetic cardiomyopathy. Mol. Cell Biochem. 261(1–2), 193–199 (2004).
  • Heyliger CE, Pierce GN, Singal PK, Beamish RE, Dhalla NS: Cardiac - and -adrenergic receptor alterations in diabetic cardiomyopathy. Basic Res. Cardiol. 77(16), 610–618 (1982).
  • Heijnis JB, van Zwieten PA: Enhanced inotropic responsiveness to 1-adrenoceptor stimulation in isolated working hearts from diabetic rats. J. Cardiovasc. Pharmacol. 20(4), 559–562 (1992).
  • Puceat M, Vassort G: Signalling by protein kinase C isoforms in the heart. Mol. Cell Biochem. 157(1–2), 65–72 (1996).
  • Tamada A, Hattori Y, Houzen H et al.: Effects of -adrenoceptor stimulation on contractility, [Ca2+]i, and Ca2+ current in diabetic rat cardiomyocytes. Am. J. Physiol. 274(6 Pt 2), H1849–H1857 (1998).
  • Ha T, Kotsanas G, Wendt I: Intracellular Ca2+ and adrenergic responsiveness of cardiac myocytes in streptozotocin-induced diabetes. Clin. Exp. Pharmacol. Physiol. 26(4), 347–353 (1999).
  • Tong Y, Liu S-Y, Tappia PS, Panagia V: Sarcolemmal PLC 1 is hypoactive but hyperresponsive to phosphatidic acid in diabetic cardiomyopathy. J. Mol. Cell Cardiol. 30, A257 (1998) 167. Tappia PS, Bibeau M, Sahi N, Pierce GN, Dixon IMC, Panagia V: Defective sarcolemmal Gq /PLC 1 signaling in diabetic cardiomyopathy. J. Mol. Cell Cardiol. 32, A46 (2000).
  • Williams SA, Tappia PS, Yu CH, Bibeau M, Panagia V: Impairment of the sarcolemmal phospholipase D-phosphatidate phosphohydrolase pathway in diabetic cardiomyopathy. J. Mol. Cell Cardiol. 30(1), 109–118 (1998).
  • Okumura K, Akiyama N, Hashimoto H, Ogawa K, Satake T: Alteration of 1,2-diacylglycerol content in myocardium from diabetic rats. Diabetes 37(9), 1168–1172 (1988).
  • Inoguchi T, Battan R, Handler E, Sportsman JR, Heath W, King GL: Preferential elevation of protein kinase C isoform II and diacylglycerol levels in the aorta and heart of diabetic rats: differential reversibility to glycemic control by islet cell transplantation. Proc. Natl Acad. Sci. USA 89(22), 11059–11063 (1992).
  • Das S, Rand RP: Diacylglycerol causes major structural transitions in phospholipid bilayer membranes. Biochem. Biophys. Res. Commun. 124(2), 491–496 (1984).
  • Das S, Rand RP: Modification by diacylglycerol of the structure and interaction of various phospholipid bilayer membranes. Biochemistry 25(10), 2882–2889 (1986).
  • Meij JT, Suzuki S, Panagia V, Dhalla NS: Oxidative stress modifies the activity of cardiac sarcolemmal phospholipase C. Biochim. Biophys. Acta 1199(1), 6–12 (1994).
  • Pang Y, Bounelis P, Chatham JC, Marchase RB: Hexosamine pathway is responsible for inhibition by diabetes of phenylephrine-induced inotropy. Diabetes 53(4), 1074–1081 (2004).
  • Squadrito G, Cucinotta D: The late complications of diabetes mellitus. Ann. Ital. Med. Int. 6, 126–136 (1991).
  • Bell DSH: Diabetic cardiomyopathy. A unique entity or a complication of coronary artery disease. Diabetes Care 18, 708–714 (1995).
  • Rossi E: Cardiovascular disease in diabetes and operative risk. Rays 22, 595–602 (1997).
  • Bell DSH: Diabetic cardiomyopathy. Diabetes Care 26, 2949–2951 (2003).
  • Giles TD: The patients with diabetes mellitus and heart failure: at risk issues. Am. J. Med. 115, S107–S110 (2003).
  • Srikanthan P, Hsueh W: Preventing heart failure inpatients with diabetes. Med. Clin. North Am. 88, 1237–1256 (2004).
  • Langford MC: Type 2 diabetes and chronic systolc heart failure: clinical implications. J. Cardiovasc. Nurs. 19, S35–S44; quiz S45–S46 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.