352
Views
59
CrossRef citations to date
0
Altmetric
Reviews

Ceramide signaling in cancer and stem cells

Pages 273-300 | Published online: 18 Jan 2017

Bibliography

  • Sourkes TL: Thudichum's Successors. Neurochem. Res. 32, 1808–1812 (2007)
  • Merrill AH Jr, Schmelz EM, Dillehay DL et al.: Sphingolipids – the enigmatic lipid class: biochemistry, physiology, and pathophysiology. Toxicol. Appl. Pharmacol. 142, 208–225 (1997)
  • Sullards MC, Allegood JC, Kelly S et al.: Structure-specific, quantitative methods for analysis of sphingolipids by liquid chromatography–tandem mass spectrometry: ‘inside-out’ sphingolipidomics. Methods Enzymol. 432, 83–115 (2007)
  • Fahy E, Sud M, Cotter D, Subramaniam S: LIPID MAPS online tools for lipid research. Nucleic Acids Res. 35, W606–W612 (2007)
  • Hoetzl S, Sprong H, van Meer G: The way we view cellular (glyco)sphingolipids. J. Neurochem. 103(Suppl. 1), 3–13 (2007)
  • Van Brocklyn JR: Sphingolipid signaling pathways as potential therapeutic targets in gliomas. Mini Rev. Med. Chem. 7, 984–990 (2007)
  • Morales A, Lee H, Goni FM, Kolesnick R, Fernandez-Checa JC: Sphingolipids and cell death. Apoptosis 12, 923–939 (2007)
  • Taha TA, Mullen TD, Obeid LM: A house divided: ceramide, sphingosine, and sphingosine-1-phosphate in programmed cell death. Biochim. Biophys. Acta 1758, 2027–2036 (2006)
  • Zheng W, Kollmeyer J, Symolon H et al.: Ceramides and other bioactive sphingolipid backbones in health and disease: lipidomic analysis, metabolism and roles in membrane structure, dynamics, signaling and autophagy. Biochim. Biophys. Acta 1758, 1864–1884 (2006)
  • Ogretmen B: Sphingolipids in cancer: regulation of pathogenesis and therapy. FEBS Lett. 580, 5467–5476 (2006)
  • Segui B, Andrieu-Abadie N, Jaffrezou JP, Benoist H, Levade T: Sphingolipids as modulators of cancer cell death: potential therapeutic targets. Biochim. Biophys. Acta 1758, 2104–2120 (2006)
  • Gulbins E, Li PL: Physiological and pathophysiological aspects of ceramide. Am. J. Physiol. Regul. Integr. Comp. Physiol. 290, R11–R26 (2006)
  • Chalfant CE, Spiegel S: Sphingosine 1- phosphate and ceramide 1-phosphate: expanding roles in cell signaling. J. Cell Sci. 118, 4605–4612 (2005)
  • Milstien S, Gude D, Spiegel S: Sphingosine 1-phosphate in neural signalling and function. Acta Paediatr. Suppl. 96, 40–43 (2007)
  • Futerman AH, Hannun YA: The complex life of simple sphingolipids. EMBO Rep. 5, 777–782 (2004)
  • Dbaibo GS, Hannun YA: Signal transduction and the regulation of apoptosis: roles of ceramide. Apoptosis 3, 317–334 (1998)
  • Hannun YA, Obeid LM: The ceramidecentric universe of lipid-mediated cell regulation: stress encounters of the lipid kind. J. Biol. Chem. 277, 25847–25850 (2002)
  • Perry DK, Hannun YA: The role of ceramide in cell signaling. Biochim. Biophys. Acta 1436, 233–243 (1998)
  • Spiegel S, Milstien S: Sphingosine-1- phosphate: an enigmatic signalling lipid. Nat. Rev. Mol. Cell Biol. 4, 397–407 (2003)
  • Merrill AH Jr, Sullards MC, Wang E, Voss KA, Riley RT: Sphingolipid metabolism: roles in signal transduction and disruption by fumonisins. Environ. Health Perspect. 109(Suppl. 2), 283–289 (2001)
  • Buccoliero R, Futerman AH: The roles of ceramide and complex sphingolipids in neuronal cell function. Pharmacol. Res. 47, 409–419 (2003)
  • Venkataraman K, Futerman AH: Ceramide as a second messenger: sticky solutions to sticky problems. Trends Cell Biol. 10, 408–412 (2000)
  • Futerman AH: Distinct roles for sphingolipids and glycosphingolipids at different stages of neuronal development. Acta Biochim. Pol. 45, 469–478 (1998)
  • Haimovitz-Friedman A, Kolesnick RN, Fuks Z: Ceramide signaling in apoptosis. Br. Med. Bull. 53, 539–553 (1997)
  • Bieberich E: Integration of glycosphingolipid metabolism and cell-fate decisions in cancer and stem cells: review and hypothesis. Glycoconj. J. 21, 315–327 (2004)
  • Yanagisawa M, Yu RK: The expression and functions of glycoconjugates in neural stem cells. Glycobiology 17, R57–R74 (2007)
  • Hannun YA, Obeid LM: Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9, 139–150 (2008)
  • Krishnamurthy K, Wang G, Silva J, Condie BG, Bieberich E: Ceramide regulates atypical PKC / -mediated cell polarity in primitive ectoderm cells: a novel function of sphingolipids in morphogenesis. J. Biol. Chem. 282, 3379–3390 (2007)
  • Snook CF, Jones JA, Hannun YA: Sphingolipid-binding proteins. Biochim. Biophys. Acta 1761, 927–946 (2006)
  • Kubiseski TJ, Chook YM, Parris WE, Rozakis-Adcock M, Pawson T: High affinity binding of the pleckstrin homology domain of mSos1 to phosphatidylinositol (4,5)- bisphosphate. J. Biol. Chem. 272, 1799–1804 (1997)
  • Wang QJ, Fang TW, Yang D et al.: Ligand structure-activity requirements and phospholipid dependence for the binding of phorbol esters to protein kinase D. Mol. Pharmacol. 64, 1342–1348 (2003)
  • Houssa B, van Blitterswijk WJ: Specificity of cysteine-rich domains in diacylglycerol kinases and protein kinases C. Biochem. J. 331(Pt 2), 677–679 (1998)
  • Colon-Gonzalez F, Kazanietz MG: C1 domains exposed: from diacylglycerol binding to protein–protein interactions. Biochim. Biophys. Acta 1761, 827–837 (2006)
  • Giorgione J, Hysell M, Harvey DF, Newton AC: Contribution of the C1A and C1B domains to the membrane interaction of protein kinase C. Biochemistry 42, 11194–11202 (2003)
  • Feng H, Ren M, Chen L, Rubin CS: Properties, regulation and in vivo functions of a novel protein kinase D: C. elegans DKF-2 links diacylglycerol second messenger to the regulation of stress responses and lifespan. J. Biol. Chem. 282, 31273–31288 (2007)
  • Chalfant CE, Szulc Z, Roddy P, Bielawska A, Hannun YA: The structural requirements for ceramide activation of serine–threonine protein phosphatases. J. Lipid Res. 45, 496–506 (2004)
  • Dobrowsky RT, Hannun YA: Ceramide stimulates a cytosolic protein phosphatase. J. Biol. Chem. 267, 5048–5051 (1992)
  • Lozano J, Berra E, Municio MM et al.: Protein kinase C isoform is critical for B-dependent promoter activation by sphingomyelinase. J. Biol. Chem. 269, 19200–19202 (1994)
  • Muller G, Ayoub M, Storz P, Rennecke J, Fabbro D, Pfizenmaier K: PKC is a molecular switch in signal transduction of TNF- , bifunctionally regulated by ceramide and arachidonic acid. EMBO J. 14, 1961–1969 (1995)
  • Fox TE, Houck KL, O'Neill SM et al.: Ceramide recruits and activates protein kinase C (PKC ) within structured membrane microdomains. J. Biol. Chem. 282, 12450–12457 (2007)
  • Bourbon NA, Yun J, Kester M: Ceramide directly activates protein kinase C to regulate a stress-activated protein kinase signaling complex. J. Biol. Chem. 275, 35617–35623 (2000)
  • Wang G, Silva J, Krishnamurthy K, Tran E, Condie BG, Bieberich E: Direct binding to ceramide activates protein kinase C before the formation of a pro-apoptotic complex with PAR-4 in differentiating stem cells. J. Biol. Chem. 280, 26415–26424 (2005)
  • Bieberich E, Kawaguchi T, Yu RK: N-acylated serinol is a novel ceramide mimic inducing apoptosis in neuroblastoma cells. J. Biol. Chem. 275, 177–181 (2000)
  • Wang YM, Seibenhener ML, VandenplasML, Wooten MW: Atypical PKC is activated by ceramide, resulting in coactivation of NF- B/JNK kinase and cell survival. J. Neurosci. Res. 55, 293–302 (1999)
  • Liu J, Mathias S, Yang Z, Kolesnick RN: Renaturation and tumor necrosis factor- stimulation of a 97-kDa ceramide-activated protein kinase. J. Biol. Chem. 269, 3047–3052 (1994)
  • Mathias S, Dressler KA, Kolesnick RN: Characterization of a ceramide-activated protein kinase: stimulation by tumor necrosis factor . Proc. Natl Acad. Sci. USA 88, 10009–10013 (1991)
  • Feng H, Ren M, Chen L, Rubin CS: Properties, regulation and in vivo functions of a novel protein kinase D: C. elegans DKF-2 links diacylglycerol second messenger to the regulation of stress responses and lifespan. J. Biol. Chem. 282, 31273–31288 (2007)
  • Chalfant CE, Szulc Z, Roddy P, Bielawska A, Hannun YA: The structural requirements for ceramide activation of serine–threonine protein phosphatases. J. Lipid Res. 45, 496–506 (2004)
  • Dobrowsky RT, Hannun YA: Ceramide stimulates a cytosolic protein phosphatase. J. Biol. Chem. 267, 5048–5051 (1992)
  • Lozano J, Berra E, Municio MM et al.: Protein kinase C isoform is critical for B-dependent promoter activation by sphingomyelinase. J. Biol. Chem. 269, 19200–19202 (1994)
  • Muller G, Ayoub M, Storz P, Rennecke J, Fabbro D, Pfizenmaier K: PKC is a molecular switch in signal transduction of TNF- , bifunctionally regulated by ceramide and arachidonic acid. EMBO J. 14, 1961–1969 (1995)
  • Fox TE, Houck KL, O'Neill SM et al.: Ceramide recruits and activates protein kinase C (PKC ) within structured membrane microdomains. J. Biol. Chem. 282, 12450–12457 (2007)
  • Bourbon NA, Yun J, Kester M: Ceramide directly activates protein kinase C to regulate a stress-activated protein kinase signaling complex. J. Biol. Chem. 275, 35617–35623 (2000)
  • Wang G, Silva J, Krishnamurthy K, Tran E, Condie BG, Bieberich E: Direct binding to ceramide activates protein kinase C before the formation of a pro-apoptotic complex with PAR-4 in differentiating stem cells. J. Biol. Chem. 280, 26415–26424 (2005)
  • Bieberich E, Kawaguchi T, Yu RK: N-acylated serinol is a novel ceramide mimic inducing apoptosis in neuroblastoma cells. J. Biol. Chem. 275, 177–181 (2000)
  • Wang YM, Seibenhener ML, VandenplasML, Wooten MW: Atypical PKC is activated by ceramide, resulting in coactivation of NF- B/JNK kinase and cell survival. J. Neurosci. Res. 55, 293–302 (1999)
  • Liu J, Mathias S, Yang Z, Kolesnick RN: Renaturation and tumor necrosis factor- stimulation of a 97-kDa ceramide-activated protein kinase. J. Biol. Chem. 269, 3047–3052 (1994)
  • Mathias S, Dressler KA, Kolesnick RN: Characterization of a ceramide-activated protein kinase: stimulation by tumor necrosis factor . Proc. Natl Acad. Sci. USA 88, 10009–10013 (1991)
  • Kolesnick RN, Hemer MR: Characterization of a ceramide kinase activity from human leukemia (HL-60) cells. Separation from diacylglycerol kinase activity. J. Biol. Chem. 265, 18803–18808 (1990)
  • Chalfant CE, Rathman K, Pinkerman RL et al.: De novo ceramide regulates the alternative splicing of caspase 9 and Bcl-x in A549 lung adenocarcinoma cells. Dependence on protein phosphatase-1. J. Biol. Chem. 277, 12587–12595 (2002)
  • Ghosh N, Patel N, Jiang K et al.: Ceramideactivated protein phosphatase involvement in insulin resistance via Akt, serine/argininerich protein 40, and ribonucleic acid splicing in L6 skeletal muscle cells. Endocrinology 148, 1359–1366 (2007)
  • Marchesini N, Jones JA, Hannun YA: Confluence induced threonine41/serine45 phospho- -catenin dephosphorylation via ceramide-mediated activation of PP1c . Biochim. Biophys. Acta 1771, 1418–1428 (2007)
  • Ruvolo PP: Intracellular signal transduction pathways activated by ceramide and its metabolites. Pharmacol. Res. 47, 383–392 (2003)
  • Wu Y, Song P, Xu J, Zhang M, Zou MH: Activation of protein phosphatase 2A by palmitate inhibits AMP-activated protein kinase. J. Biol. Chem. 282, 9777–9788 (2007)
  • Ogretmen B, Schady D, Usta J et al.: Role of ceramide in mediating the inhibition of telomerase activity in A549 human lung adenocarcinoma cells. J. Biol. Chem. 276, 24901–24910 (2001)
  • Kraveka JM, Li L, Bielawski J, Obeid LM, Ogretmen B: Involvement of endogenous ceramide in the inhibition of telomerase activity and induction of morphologic differentiation in response to all-trans-retinoic acid in human neuroblastoma cells. Arch. Biochem. Biophys. 419, 110–119 (2003)
  • Wooten LG, Ogretmen B: Sp1/Sp3- dependent regulation of human telomerase reverse transcriptase promoter activity by the bioactive sphingolipid ceramide. J. Biol. Chem. 280, 28867–28876 (2005)
  • Wooten-Blanks LG, Song P, Senkal CE, Ogretmen B: Mechanisms of ceramidemediated repression of the human telomerase reverse transcriptase promoter via deacetylation of Sp3 by histone deacetylase 1. FASEB J. 21, 3386–3397 (2007)
  • Basu S, Bayoumy S, Zhang Y, Lozano J, Kolesnick R: BAD enables ceramide to signal apoptosis via Ras and Raf-1. J. Biol. Chem. 273, 30419–30426 (1998)
  • Kolesnick RN, Hemer MR: Characterization of a ceramide kinase activity from human leukemia (HL-60) cells. Separation from diacylglycerol kinase activity. J. Biol. Chem. 265, 18803–18808 (1990)
  • Chalfant CE, Rathman K, Pinkerman RL et al.: De novo ceramide regulates the alternative splicing of caspase 9 and Bcl-x in A549 lung adenocarcinoma cells. Dependence on protein phosphatase-1. J. Biol. Chem. 277, 12587–12595 (2002)
  • Ghosh N, Patel N, Jiang K et al.: Ceramideactivated protein phosphatase involvement in insulin resistance via Akt, serine/argininerich protein 40, and ribonucleic acid splicing in L6 skeletal muscle cells. Endocrinology 148, 1359–1366 (2007)
  • Marchesini N, Jones JA, Hannun YA: Confluence induced threonine41/serine45 phospho- -catenin dephosphorylation via ceramide-mediated activation of PP1c . Biochim. Biophys. Acta 1771, 1418–1428 (2007)
  • Ruvolo PP: Intracellular signal transduction pathways activated by ceramide and its metabolites. Pharmacol. Res. 47, 383–392 (2003)
  • Wu Y, Song P, Xu J, Zhang M, Zou MH: Activation of protein phosphatase 2A by palmitate inhibits AMP-activated protein kinase. J. Biol. Chem. 282, 9777–9788 (2007)
  • Ogretmen B, Schady D, Usta J et al.: Role of ceramide in mediating the inhibition of telomerase activity in A549 human lung adenocarcinoma cells. J. Biol. Chem. 276, 24901–24910 (2001)
  • Kraveka JM, Li L, Bielawski J, Obeid LM, Ogretmen B: Involvement of endogenous ceramide in the inhibition of telomerase activity and induction of morphologic differentiation in response to all-trans-retinoic acid in human neuroblastoma cells. Arch. Biochem. Biophys. 419, 110–119 (2003)
  • Wooten LG, Ogretmen B: Sp1/Sp3- dependent regulation of human telomerase reverse transcriptase promoter activity by the bioactive sphingolipid ceramide. J. Biol. Chem. 280, 28867–28876 (2005)
  • Wooten-Blanks LG, Song P, Senkal CE, Ogretmen B: Mechanisms of ceramidemediated repression of the human telomerase reverse transcriptase promoter via deacetylation of Sp3 by histone deacetylase 1. FASEB J. 21, 3386–3397 (2007)
  • Basu S, Bayoumy S, Zhang Y, Lozano J, Kolesnick R: BAD enables ceramide to signal apoptosis via Ras and Raf-1. J. Biol. Chem. 273, 30419–30426 (1998)
  • Hannun YA, Bell RM: Regulation of protein kinase C by sphingosine and lysosphingolipids. Clin. Chim. Acta 185, 333–345 (1989)
  • Kajimoto T, Shirai Y, Sakai N et al.: Ceramideinduced apoptosis by translocation, phosphorylation, and activation of protein kinase C in the Golgi complex. J. Biol. Chem. 279, 12668–12676 (2004)
  • Sanchez P, De Carcer G, Sandoval IV, Moscat J, Diaz-Meco MT: Localization of atypical protein kinase C isoforms into lysosome-targeted endosomes through interaction with p62. Mol. Cell. Biol. 18, 3069–3080 (1998)
  • Xia XJ, Gu XB, Sartorelli AC, Yu RK: Effects of inducers of differentiation on protein kinase C and CMP-Nacetylneuraminic acid:lactosylceramide sialyltransferase activities of HL-60 leukemia cells. J. Lipid Res. 30, 181–188 (1989)
  • Kanda T, Ariga T, Yamawaki M, Yu RK: GM3 regulates protein kinase systems in cultured brain microvascular endothelial cells. J. Neurochem. 61, 1969–1972 (1993)
  • Lee JY, Hannun YA, Obeid LM: Ceramide inactivates cellular protein kinase C . J. Biol. Chem. 271, 13169–13174 (1996)
  • Vaccarino F, Guidotti A, Costa E: Ganglioside inhibition of glutamatemediated protein kinase C translocation in primary cultures of cerebellar neurons. Proc. Natl Acad. Sci. USA 84, 8707–8711 (1987)
  • Bazzi MD, Nelsestuen GL: Mechanism of protein kinase C inhibition by sphingosine. Biochem. Biophys. Res. Commun. 146, 203–207 (1987)
  • Kitatani K, Idkowiak-Baldys J, Hannun YA: Mechanism of inhibition of sequestration of protein kinase C / II by ceramide. Roles of ceramide-activated protein phosphatases and phosphorylation/dephosphorylation of protein kinase C / II on threonine 638/641. J. Biol. Chem. 282, 20647–20656 (2007)
  • Bieberich E, Hu B, Silva J et al.: Synthesis and characterization of novel ceramide analogs for induction of apoptosis in human cancer cells. Cancer Lett. 181, 55–64 (2002)
  • Bieberich E, MacKinnon S, Silva J, Noggle S, Condie BG: Regulation of cell death in mitotic neural progenitor cells by asymmetric distribution of prostate apoptosis response 4 (PAR-4) and simultaneous elevation of endogenous ceramide. J. Cell Biol. 162, 469–479 (2003)
  • Bieberich E, MacKinnon S, Silva J, Yu RK: Regulation of apoptosis during neuronal differentiation by ceramide and B-series complex gangliosides. J. Biol. Chem. 276, 44396–44404 (2001)
  • Bieberich E, Silva J, Wang G, Krishnamurthy K, Condie BG: Selective apoptosis of pluripotent mouse and human stem cells by novel ceramide analogues prevents teratoma formation and enriches for neural precursors in ES cell-derived neural transplants. J. Cell Biol. 167, 723–734 (2004)
  • Moscat J, Diaz-Meco MT: The atypical protein kinase Cs. Functional specificity mediated by specific protein adapters. EMBO Rep. 1, 399–403 (2000)
  • Hirai T, Chida K: Protein kinase C (PKC ): activation mechanisms and cellular functions. J. Biochem. (Tokyo) 133, 1–7 (2003)
  • Suzuki A, Akimoto K, Ohno S: Protein kinase C / (PKC / ): a PKC isotype essential for the development of multicellular organisms. J. Biochem. (Tokyo) 133, 9–16 (2003)
  • Fields AP, Regala RP: Protein kinase C: human oncogene, prognostic marker and therapeutic target. Pharmacol. Res. 55, 487–497 (2007)
  • Liu XJ, He AB, Chang YS, Fang FD: Atypical protein kinase C in glucose metabolism. Cell. Signal. 18, 2071–2076 (2006)
  • Moscat J, Rennert P, Diaz-Meco MT: PKC at the crossroad of NF- B and Jak1/Stat6 signaling pathways. Cell Death Differ. 13, 702–711 (2006)
  • Farese RV, Sajan MP, Standaert ML: Atypical protein kinase C in insulin action and insulin resistance. Biochem. Soc. Trans. 33, 350–353 (2005)
  • Farese RV: Function and dysfunction of aPKC isoforms for glucose transport in insulin-sensitive and insulin-resistant states. Am. J. Physiol. Endocrinol. Metab. 283, E1–E11 (2002)
  • Imai F, Hirai S, Akimoto K et al.: Inactivation of aPKC results in the loss of adherens junctions in neuroepithelial cells without affecting neurogenesis in mouse neocortex. Development 133, 1735–1744 (2006)
  • Leitges M, Sanz L, Martin P et al.: Targeted disruption of the PKC gene results in the impairment of the NF- B pathway. Mol. Cell. 8, 771–780 (2001)
  • Martin P, Duran A, Minguet S et al.: Role of PKC in B-cell signaling and function. EMBO J. 21, 4049–4057 (2002)
  • Farese RV, Sajan MP, Yang H et al.: Musclespecific knockout of PKC- impairs glucose transport and induces metabolic and diabetic syndromes. J. Clin. Invest. 117, 2289–2301 (2007)
  • Liu WS, Heckman CA: The sevenfold way of PKC regulation. Cell. Signal. 10, 529–542 (1998)
  • van Blitterswijk WJ: Hypothesis: ceramide conditionally activates atypical protein kinases C, Raf-1 and KSR through binding to their cysteine-rich domains. Biochem. J. 331(Pt 2), 679–680 (1998)
  • Kashiwagi K, Shirai Y, Kuriyama M, Sakai N, Saito N: Importance of C1B domain for lipid messenger-induced targeting of protein kinase C. J. Biol. Chem. 277, 18037–18045 (2002)
  • Sawai H, Okazaki T, Takeda Y et al.: Ceramide-induced translocation of protein kinase C- and - to the cytosol. Implications in apoptosis. J. Biol. Chem. 272, 2452–2458 (1997)
  • Gulbins E, Grassme H: Ceramide and cell death receptor clustering. Biochim. Biophys. Acta 1585, 139–145 (2002)
  • Heinrich M, Wickel M, Schneider-Brachert W et al.: Cathepsin D targeted by acid sphingomyelinase-derived ceramide. EMBO J. 18, 5252–5263 (1999)
  • Fox TE, Houck KL, O'Neill SM et al.: Ceramide recruits and activates PKC within structured membrane microdomains. J. Biol. Chem. 282(17), 12450–12457 (2007)
  • Megha, Sawatzki P, Kolter T, Bittman R, London E: Effect of ceramide N-acyl chain and polar headgroup structure on the properties of ordered lipid domains (lipid rafts). Biochim. Biophys. Acta 1768, 2205–2212 (2007)
  • Chiantia S, Kahya N, Schwille P: Raft domain reorganization driven by short- and long-chain ceramide: a combined AFM and FCS study. Langmuir 23, 7659–7665 (2007)
  • Johnston I, Johnston LJ: Ceramide promotes restructuring of model raft membranes. Langmuir 22, 11284–11289 (2006)
  • Cremesti A, Paris F, Grassme H et al.: Ceramide enables fas to cap and kill. J. Biol. Chem. 276, 23954–23961 (2001)
  • Grassme H, Cremesti A, Kolesnick R, Gulbins E: Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 22, 5457–5470 (2003)
  • Gulbins E, Dreschers S, Wilker B, Grassme H: Ceramide, membrane rafts and infections. J. Mol. Med. 82, 357–363 (2004)
  • Munro S: Lipid rafts: elusive or illusive? Cell 115, 377–388 (2003)
  • Ohanian J, Ohanian V: Sphingolipids in mammalian cell signalling. Cell. Mol. Life Sci. 58, 2053–2068 (2001)
  • Barenholz Y: Sphingomyelin and cholesterol: from membrane biophysics and rafts to potential medical applications. Subcell. Biochem. 37, 167–215 (2004)
  • Gombos I, Steinbach G, Pomozi I et al.: Some new faces of membrane microdomains: a complex confocal fluorescence, differential polarization, and FCS imaging study on live immune cells. Cytometry A 73, 220–229 (2008)
  • Garner AE, Smith DA, Hooper NM: Visualization of detergent solubilization of membranes: implications for the isolation of rafts. Biophys. J. 94, 1326–1340 (2008)
  • Polozov IV, Gawrisch K: Characterization of the liquid-ordered state by proton MAS NMR. Biophys. J. 90, 2051–2061 (2006)
  • Mishra S, Joshi PG: Lipid raft heterogeneity: an enigma. J. Neurochem. 103(Suppl. 1), 135–142 (2007)
  • Sengupta P, Baird B, Holowka D: Lipid rafts, fluid/fluid phase separation, and their relevance to plasma membrane structure and function. Semin. Cell Dev. Biol. 18, 583–590 (2007)
  • Jacobson K, Mouritsen OG, Anderson RG: Lipid rafts: at a crossroad between cell biology and physics. Nat. Cell Biol. 9, 7–14 (2007)
  • Allen JA, Halverson-Tamboli RA, Rasenick MM: Lipid raft microdomains and neurotransmitter signalling. Nat. Rev. Neurosci. 8, 128–140 (2007)
  • Mayor S, Rao M: Rafts: scale-dependent, active lipid organization at the cell surface. Traffic 5, 231–240 (2004)
  • Pike LJ: Rafts defined: a report on the Keystone Symposium on Lipid Rafts and Cell Function. J. Lipid Res. 47, 1597–1598 (2006)
  • Pike LJ: Lipid rafts: bringing order to chaos. J. Lipid Res. 44, 655–667 (2003)
  • Butters TD, Hughes RC: Solubilization and fractionation of glycoproteins and glycolipids of KB cell membranes. Biochem. J. 140, 469–478 (1974)
  • Gurd JW, Evans WH, Perkins HR: Chemical characterization of the proteins and glycoproteins of mouse liver plasma membranes solubilized by sequential extraction with aqueous and organic solvents. Biochem. J. 126, 459–466 (1972)
  • Okada Y, Mugnai G, Bremer EG, Hakomori S: Glycosphingolipids in detergent-insoluble substrate attachment matrix (DISAM) prepared from substrate attachment material (SAM). Their possible role in regulating cell adhesion. Exp. Cell Res. 155, 448–456 (1984)
  • Coulombe J, Traiffort E, Loulier K, Faure H, Ruat M: Hedgehog interacting protein in the mature brain: membraneassociated and soluble forms. Mol. Cell. Neurosci. 25, 323–333 (2004)
  • Resh MD: Membrane targeting of lipid modified signal transduction proteins. Subcell. Biochem. 37, 217–232 (2004)
  • Yamazaki S, Iwama A, Morita Y, Eto K, Ema H, Nakauchi H: Cytokine signaling, lipid raft clustering, and HSC hibernation. Ann. NY Acad. Sci. 1106, 54–63 (2007)
  • Bollinger CR, Teichgraber V, Gulbins E: Ceramide-enriched membrane domains. Biochim. Biophys. Acta 1746, 284–294 (2005)
  • Ikonen E, Vainio S: Lipid microdomains and insulin resistance: is there a connection? Sci. STKE 2005(268), pe3 (2005)
  • Golub T, Wacha S, Caroni P: Spatial and temporal control of signaling through lipid rafts. Curr. Opin. Neurobiol. 14, 542–550 (2004)
  • Karpen HE, Bukowski JT, Hughes T, Gratton JP, Sessa WC, Gailani MR: The sonic hedgehog receptor patched associates with caveolin-1 in cholesterol-rich microdomains of the plasma membrane. J. Biol. Chem. 276, 19503–19511 (2001)
  • Wang TY, Silvius JR: Different sphingolipids show differential partitioning into sphingolipid/cholesterol-rich domains in lipid bilayers. Biophys. J. 79, 1478–1489 (2000)
  • Shaw JE, Epand RF, Epand RM, Li Z, Bittman R, Yip CM: Correlated fluorescenceatomic force microscopy of membrane domains: structure of fluorescence probes determines lipid localization. Biophys. J. 90, 2170–2178 (2006)
  • Dietrich C, Bagatolli LA, Volovyk ZN et al.: Lipid rafts reconstituted in model membranes. Biophys. J. 80, 1417–1428 (2001)
  • Hinkovska-Galcheva V, Boxer LA, Kindzelskii A et al.: Ceramide 1-phosphate, a mediator of phagocytosis. J. Biol. Chem. 280, 26612–26621 (2005)
  • Gaus K, Chklovskaia E, Fazekas de St Groth B, Jessup W, Harder T: Condensation of the plasma membrane at the site of T lymphocyte activation. J. Cell Biol. 171, 121–131 (2005)
  • Gaus K, Zech T, Harder T: Visualizing membrane microdomains by Laurdan 2- photon microscopy. Mol. Membr. Biol. 23, 41–48 (2006)
  • Kim HM, Choo HJ, Jung SY et al.: A twophoton fluorescent probe for lipid raft imaging: C-laurdan. Chembiochem 8, 553–559 (2007)
  • Hullin-Matsuda F, Kobayashi T: Monitoring the distribution and dynamics of signaling microdomains in living cells with lipidspecific probes. Cell. Mol. Life Sci. 64, 2492–2504 (2007)
  • Harder T, Scheiffele P, Verkade P, Simons K: Lipid domain structure of the plasma membrane revealed by patching of membrane components. J. Cell Biol. 141, 929–942 (1998)
  • Baumann CA, Ribon V, Kanzaki M et al.: CAP defines a second signalling pathway required for insulin-stimulated glucose transport. Nature 407, 202–207 (2000)
  • Dermine JF, Duclos S, Garin J et al.: Flotillin-1-enriched lipid raft domains accumulate on maturing phagosomes. J. Biol. Chem. 276, 18507–18512 (2001)
  • Hakomori SI: Inaugural article: the glycosynapse. Proc. Natl Acad. Sci. USA 99, 225–232 (2002)
  • Hakomori S: Glycosynapses: microdomains controlling carbohydrate-dependent cell adhesion and signaling. An. Acad. Bras. Cienc. 76, 553–572 (2004)
  • Taieb N, Yahi N, Fantini J: Rafts and related glycosphingolipid-enriched microdomains in the intestinal epithelium: bacterial targets linked to nutrient absorption. Adv. Drug Deliv. Rev. 56, 779–794 (2004)
  • Kilkus J, Goswami R, Testai FD, Dawson G: Ceramide in rafts (detergentinsoluble fraction) mediates cell death in neurotumor cell lines. J. Neurosci. Res. 72, 65–75 (2003)
  • Gulbins E, Kolesnick R: Raft ceramide in molecular medicine. Oncogene 22, 7070–7077 (2003)
  • Rotolo JA, Zhang J, Donepudi M, Lee H, Fuks Z, Kolesnick R: Caspase-dependent and -independent activation of acid sphingomyelinase signaling. J. Biol. Chem. 280, 26425–26434 (2005)
  • Wang TY, Silvius JR: Sphingolipid partitioning into ordered domains in cholesterol-free and cholesterol-containing lipid bilayers. Biophys. J. 84, 367–378 (2003)
  • Silva LC, de Almeida RF, Castro BM, Fedorov A, Prieto M: Ceramide-domain formation and collapse in lipid rafts: membrane reorganization by an apoptotic lipid. Biophys. J. 92, 502–516 (2007)
  • Merrill AH Jr, Wang E: Enzymes of ceramide biosynthesis. Methods Enzymol. 209, 427–437 (1992)
  • van Echten-Deckert G, Herget T: Sphingolipid metabolism in neural cells. Biochim. Biophys. Acta 1758, 1978–1994 (2006)
  • Futerman AH, Riezman H: The ins and outs of sphingolipid synthesis. Trends Cell Biol. 15, 312–318 (2005)
  • Merrill AH Jr: De novo sphingolipid biosynthesis: a necessary, but dangerous, pathway. J. Biol. Chem. 277, 25843–25846 (2002)
  • Sandhoff K, Kolter T: Biosynthesis and degradation of mammalian glycosphingolipids. Philos. Trans. R Soc. Lond. B Biol. Sci. 358, 847–861 (2003)
  • Linn SC, Kim HS, Keane EM, Andras LM, Wang E, Merrill AH Jr: Regulation of de novo sphingolipid biosynthesis and the toxic consequences of its disruption. Biochem. Soc. Trans. 29, 831–815 (2001)
  • Yasuda S, Nishijima M, Hanada K: Localization, topology, and function of the LCB1 subunit of serine palmitoyltransferase in mammalian cells. J. Biol. Chem. 278, 4176–4183 (2003)
  • Hanada K: Serine palmitoyltransferase, a key enzyme of sphingolipid metabolism. Biochim. Biophys. Acta 1632, 16–30 (2003)
  • Batheja AD, Uhlinger DJ, Carton JM, Ho G, D'Andrea MR: Characterization of serine palmitoyltransferase in normal human tissues. J. Histochem. Cytochem. 51, 687–696 (2003)
  • Merrill AH Jr: Characterization of serine palmitoyltransferase activity in Chinese hamster ovary cells. Biochim. Biophys. Acta 754, 284–291 (1983)
  • Yard BA, Carter LG, Johnson KA et al.: The structure of serine palmitoyltransferase; gateway to sphingolipid biosynthesis. J. Mol. Biol. 370, 870–886 (2007)
  • Hojjati MR, Li Z, Jiang XC: Serine palmitoyl-CoA transferase (SPT) deficiency and sphingolipid levels in mice. Biochim. Biophys. Acta 1737, 44–51 (2005)
  • Hanada K, Nishijima M: Purification of mammalian serine palmitoyltransferase, a hetero-subunit enzyme for sphingolipid biosynthesis, by affinity-peptide chromatography. Methods Mol. Biol. 228, 163–174 (2003)
  • Hornemann T, Wei Y, von Eckardstein A: Is the mammalian serine palmitoyltransferase a high-molecular-mass complex? Biochem. J. 405, 157–164 (2007)
  • Fyrst H, Herr DR, Harris GL, Saba JD: Characterization of free endogenous C14 and C16 sphingoid bases from Drosophila melanogaster. J. Lipid Res. 45, 54–62 (2004)
  • Jenkins GM, Richards A, Wahl T, Mao C, Obeid L, Hannun Y: Involvement of yeast sphingolipids in the heat stress response of Saccharomyces cerevisiae. J. Biol. Chem. 272, 32566–32572 (1997)
  • Adachi-Yamada T, Gotoh T, Sugimura I et al.: De novo synthesis of sphingolipids is required for cell survival by down-regulating c-Jun N-terminal kinase in Drosophila imaginal discs. Mol. Cell. Biol. 19, 7276–7286 (1999)
  • Acharya U, Acharya JK: Enzymes of sphingolipid metabolism in Drosophila melanogaster. Cell. Mol. Life Sci. 62, 128–142 (2005)
  • Chen M, Han G, Dietrich CR, Dunn TM, Cahoon EB: The essential nature of sphingolipids in plants as revealed by the functional identification and characterization of the Arabidopsis LCB1 subunit of serine palmitoyltransferase. Plant Cell 18, 3576–3593 (2006)
  • Cheng J, Park TS, Fischl AS, Ye XS: Cell cycle progression and cell polarity require sphingolipid biosynthesis in Aspergillus nidulans. Mol. Cell. Biol. 21, 6198–6209 (2001)
  • Bejaoui K, Wu C, Scheffler MD et al.: SPTLC1 is mutated in hereditary sensory neuropathy, type 1. Nat. Genet. 27, 261–262 (2001)
  • Dawkins JL, Hulme DJ, Brahmbhatt SB, Auer-Grumbach M, Nicholson GA: Mutations in SPTLC1, encoding serine palmitoyltransferase, long chain base subunit-1, cause hereditary sensory neuropathy type I. Nat. Genet. 27, 309–312 (2001)
  • McCampbell A, Truong D, Broom DC et al.: Mutant SPTLC1 dominantly inhibits serine palmitoyltransferase activity in vivo and confers an age-dependent neuropathy. Hum. Mol. Genet. 14, 3507–3521 (2005)
  • Houlden H, King R, Blake J et al.: Clinical, pathological and genetic characterization of hereditary sensory and autonomic neuropathy type 1 (HSAN I). Brain 129, 411–425 (2006)
  • Bi H, Gao Y, Yao S, Dong M, Headley AP, Yuan Y: Hereditary sensory and autonomic neuropathy type I in a Chinese family: British C133W mutation exists in the Chinese. Neuropathology 27, 429–433 (2007)
  • Hong KK, Cho HR, Ju WC, Cho Y, Kim NI: A study on altered expression of serine palmitoyltransferase and ceramidase in psoriatic skin lesion. J. Korean Med. Sci. 22, 862–867 (2007)
  • Holleran WM, Takagi Y, Uchida Y: Epidermal sphingolipids: metabolism, function, and roles in skin disorders. FEBS Lett. 580, 5456–5466 (2006)
  • Bismuth J, Lin P, Yao Q, Chen C: Ceramide: a common pathway for atherosclerosis? Atherosclerosis 196, 497–504 (2008)
  • Yang J, Yu Y, Sun S, Duerksen-Hughes PJ: Ceramide and other sphingolipids in cellular responses. Cell Biochem. Biophys. 40, 323–350 (2004)
  • Schenck M, Carpinteiro A, Grassme H, Lang F, Gulbins E: Ceramide: physiological and pathophysiological aspects. Arch. Biochem. Biophys. 462, 171–175 (2007)
  • Modrak DE, Gold DV, Goldenberg DM: Sphingolipid targets in cancer therapy. Mol. Cancer Ther. 5, 200–208 (2006)
  • Jaffrezou JP, Laurent G: Ceramide: a new target in anticancer research? Bull. Cancer 91, E133–E161 (2004)
  • Brady RO: Disorders of lipid metabolism. Biochem. Soc. Symp. 35, 113–127 (1972)
  • Fujita T, Inoue K, Yamamoto S et al.: Fungal metabolites. Part 11. A potent immunosuppressive activity found in Isaria sinclairii metabolite. J. Antibiot. (Tokyo) 47, 208–215 (1994)
  • He Q, Johnson VJ, Osuchowski MF, Sharma RP: Inhibition of serine palmitoyltransferase by myriocin, a natural mycotoxin, causes induction of c-Myc in mouse liver. Mycopathologia 157, 339–347 (2004)
  • Hanada K, Nishijima M, Fujita T, Kobayashi S: Specificity of inhibitors of serine palmitoyltransferase (SPT), a key enzyme in sphingolipid biosynthesis, in intact cells. A novel evaluation system using an SPT-defective mammalian cell mutant. Biochem. Pharmacol. 59, 1211–1216 (2000)
  • Miyake Y, Kozutsumi Y, Nakamura S, Fujita T, Kawasaki T: Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-1/myriocin. Biochem. Biophys. Res. Commun. 211, 396–403 (1995)
  • Kluepfel D, Bagli J, Baker H, Charest MP, Kudelski A: Myriocin, a new antifungal antibiotic from Myriococcum albomyces. J. Antibiot. (Tokyo) 25, 109–115 (1972)
  • Desai K, Sullards MC, Allegood J et al.: Fumonisins and fumonisin analogs as inhibitors of ceramide synthase and inducers of apoptosis. Biochim. Biophys. Acta 1585, 188–192 (2002)
  • Riley RT, Wang E, Schroeder JJ et al.: Evidence for disruption of sphingolipid metabolism as a contributing factor in the toxicity and carcinogenicity of fumonisins. Nat. Toxins 4, 3–15 (1996)
  • Riley RT, Hinton DM, Chamberlain WJ et al.: Dietary fumonisin B1 induces disruption of sphingolipid metabolism in Sprague-Dawley rats: a new mechanism of nephrotoxicity. J. Nutr. 124, 594–603 (1994)
  • Yang J, Yu Y, Sun S, Duerksen-Hughes PJ: Ceramide and other sphingolipids in cellular responses. Cell Biochem. Biophys. 40, 323–350 (2004)
  • Schenck M, Carpinteiro A, Grassme H, Lang F, Gulbins E: Ceramide: physiological and pathophysiological aspects. Arch. Biochem. Biophys. 462, 171–175 (2007)
  • Modrak DE, Gold DV, Goldenberg DM: Sphingolipid targets in cancer therapy. Mol. Cancer Ther. 5, 200–208 (2006)
  • Jaffrezou JP, Laurent G: Ceramide: a new target in anticancer research? Bull. Cancer 91, E133–E161 (2004)
  • Brady RO: Disorders of lipid metabolism. Biochem. Soc. Symp. 35, 113–127 (1972)
  • Fujita T, Inoue K, Yamamoto S et al.: Fungal metabolites. Part 11. A potent immunosuppressive activity found in Isaria sinclairii metabolite. J. Antibiot. (Tokyo) 47, 208–215 (1994)
  • He Q, Johnson VJ, Osuchowski MF, Sharma RP: Inhibition of serine palmitoyltransferase by myriocin, a natural mycotoxin, causes induction of c-Myc in mouse liver. Mycopathologia 157, 339–347 (2004)
  • Hanada K, Nishijima M, Fujita T, Kobayashi S: Specificity of inhibitors of serine palmitoyltransferase (SPT), a key enzyme in sphingolipid biosynthesis, in intact cells. A novel evaluation system using an SPT-defective mammalian cell mutant. Biochem. Pharmacol. 59, 1211–1216 (2000)
  • Miyake Y, Kozutsumi Y, Nakamura S, Fujita T, Kawasaki T: Serine palmitoyltransferase is the primary target of a sphingosine-like immunosuppressant, ISP-1/myriocin. Biochem. Biophys. Res. Commun. 211, 396–403 (1995)
  • Kluepfel D, Bagli J, Baker H, Charest MP, Kudelski A: Myriocin, a new antifungal antibiotic from Myriococcum albomyces. J. Antibiot. (Tokyo) 25, 109–115 (1972)
  • Desai K, Sullards MC, Allegood J et al.: Fumonisins and fumonisin analogs as inhibitors of ceramide synthase and inducers of apoptosis. Biochim. Biophys. Acta 1585, 188–192 (2002)
  • Riley RT, Wang E, Schroeder JJ et al.: Evidence for disruption of sphingolipid metabolism as a contributing factor in the toxicity and carcinogenicity of fumonisins. Nat. Toxins 4, 3–15 (1996)
  • Riley RT, Hinton DM, Chamberlain WJ et al.: Dietary fumonisin B1 induces disruption of sphingolipid metabolism in Sprague-Dawley rats: a new mechanism of nephrotoxicity. J. Nutr. 124, 594–603 (1994)
  • Toman RE, Movsesyan V, Murthy SK, Milstien S, Spiegel S, Faden AI: Ceramideinduced cell death in primary neuronal cultures: upregulation of ceramide levels during neuronal apoptosis. J. Neurosci. Res. 68, 323–330 (2002)
  • Wang H, Giuliano AE, Cabot MC: Enhanced de novo ceramide generation through activation of serine palmitoyltransferase by the P-glycoprotein antagonist SDZ PSC 833 in breast cancer cells. Mol. Cancer Ther. 1, 719–726 (2002)
  • Perry DK, Carton J, Shah AK, Meredith F, Uhlinger DJ, Hannun YA: Serine palmitoyltransferase regulates de novo ceramide generation during etoposideinduced apoptosis. J. Biol. Chem. 275, 9078–9084 (2000)
  • Jarvis WD, Grant S, Kolesnick RN: Ceramide and the induction of apoptosis. Clin. Cancer Res. 2, 1–6 (1996)
  • Wang H, Charles AG, Frankel AJ, Cabot MC: Increasing intracellular ceramide: an approach that enhances the cytotoxic response in prostate cancer cells. Urology 61, 1047–1052 (2003)
  • Gouaze V, Liu YY, Prickett CS, Yu JY, Giuliano AE, Cabot MC: Glucosylceramide synthase blockade down-regulates P-glycoprotein and resensitizes multidrugresistant breast cancer cells to anticancer drugs. Cancer Res. 65, 3861–3867 (2005)
  • Bleicher RJ, Cabot MC: Glucosylceramide synthase and apoptosis. Biochim. Biophys. Acta 1585, 172–178 (2002)
  • Huwiler A, Zangemeister-Wittke U: Targeting the conversion of ceramide to sphingosine 1-phosphate as a novel strategy for cancer therapy. Crit. Rev. Oncol. Hematol. 63, 150–159 (2007)
  • Holman DH, Turner LS, El-Zawahry A et al.: Lysosomotropic acid ceramidase inhibitor induces apoptosis in prostate cancer cells. Cancer Chemother. Pharmacol. 61, 231–242 (2008)
  • Selzner M, Bielawska A, Morse MA et al.: Induction of apoptotic cell death and prevention of tumor growth by ceramide analogues in metastatic human colon cancer. Cancer Res. 61, 1233–1240 (2001)
  • Stover T, Kester M: Liposomal delivery enhances short-chain ceramide-induced apoptosis of breast cancer cells. J. Pharmacol. Exp. Ther. 307, 468–475 (2003)
  • Stover TC, Kim YS, Lowe TL, Kester M: Thermoresponsive and biodegradable lineardendritic nanoparticles for targeted and sustained release of a pro-apoptotic drug. Biomaterials 29, 359–369 (2008)
  • Senkal CE, Ponnusamy S, Rossi MJ et al.: Potent antitumor activity of a novel cationic pyridinium-ceramide alone or in combination with gemcitabine against human head and neck squamous cell carcinomas in vitro and in vivo. J. Pharmacol. Exp. Ther. 317, 1188–1199 (2006)
  • Stoffel W, Assmann G, Bister K: Metabolism of sphingosine bases. XVII. Stereospecificities in the introduction of the 4t-double bond into sphinganine yielding 4t-sphingenine (sphingosine). Hoppe Seylers Z Physiol. Chem. 352, 1531–1544 (1971)
  • Ong DE, Brady RN: In vivo studies on the introduction of the 4-t-double bond of the sphingenine moiety of rat brain ceramides. J. Biol. Chem. 248, 3884–3888 (1973)
  • Stoffel W, Melzner I: Studies in vitro on the biosynthesis of ceramide and sphingomyelin. A reevaluation of proposed pathways. Hoppe Seylers Z Physiol. Chem. 361, 755–771 (1980)
  • Rother J, van Echten G, Schwarzmann G, Sandhoff K: Biosynthesis of sphingolipids: dihydroceramide and not sphinganine is desaturated by cultured cells. Biochem. Biophys. Res. Commun. 189, 14–20 (1992)
  • Kitatani K, Idkowiak-Baldys J, Hannun YA: The sphingolipid salvage pathway in ceramide metabolism and signaling. Cell. Signal. DOI: 10.1016/j.cellsig.2007.12.006 (2007) (Epub ahead of print)
  • Mizutani Y, Kihara A, Igarashi Y: Mammalian Lass6 and its related family members regulate synthesis of specific ceramides. Biochem. J. 390, 263–271 (2005)
  • Pewzner-Jung Y, Ben-Dor S, Futerman AH: When do Lasses (longevity assurance genes) become CerS (ceramide synthases)?: insights into the regulation of ceramide synthesis. J. Biol. Chem. 281, 25001–25005 (2006)
  • Lahiri S, Futerman AH: LASS5 is a bona fide dihydroceramide synthase that selectively utilizes palmitoyl-CoA as acyl donor. J. Biol. Chem. 280, 33735–33738 (2005)
  • Riebeling C, Allegood JC, Wang E, Merrill AH Jr, Futerman AH: Two mammalian longevity assurance gene (LAG1) family members, trh1 and trh4, regulate dihydroceramide synthesis using different fatty acyl-CoA donors. J. Biol. Chem. 278, 43452–43459 (2003)
  • Wang G, Silva J, Dasgupta S, Bieberich E: Long-chain ceramide is elevated in presenilin 1 (PS1M146V) mouse brain and induces apoptosis in PS1 astrocytes. Glia 56, 449–456 (2008)
  • Kumagai K, Yasuda S, Okemoto K, Nishijima M, Kobayashi S, Hanada K: CERT mediates intermembrane transfer of various molecular species of ceramides. J. Biol. Chem. 280, 6488–6495 (2005)
  • Hanada K, Kumagai K, Yasuda S et al.: Molecular machinery for non-vesicular trafficking of ceramide. Nature 426, 803–809 (2003)
  • Kudo N, Kumagai K, Tomishige N et al.: Structural basis for specific lipid recognition by CERT responsible for nonvesicular trafficking of ceramide. Proc. Natl Acad. Sci. USA 105, 488–493 (2008)
  • Stiban J, Caputo L, Colombini M: Ceramide synthesis in the endoplasmic reticulum can permeabilize mitochondria to pro-apoptotic proteins. J. Lipid Res. 49, 625–634 (2007)
  • Rizzuto R, Pinton P, Ferrari D et al.: Calcium and apoptosis: facts and hypotheses. Oncogene 22, 8619–8627 (2003)
  • Pinton P, Ferrari D, Rapizzi E, Di Virgilio F, Pozzan T, Rizzuto R: The Ca2+ concentration of the endoplasmic reticulum is a key determinant of ceramide-induced apoptosis: significance for the molecular mechanism of Bcl-2 action. EMBO J. 20, 2690–2701 (2001)
  • Krishnamurthy K, Dasgupta S, Bieberich E: Development and characterization of a novel anti-ceramide antibody. J. Lipid Res. 48, 968–975 (2007)
  • Ledeen RW, Wu G: Sphingolipids of the nucleus and their role in nuclear signaling. Biochim. Biophys. Acta 1761, 588–598 (2006)
  • Ledeen RW, Wu G: Nuclear sphingolipids: metabolism and signaling. J. Lipid Res. DOI: 10.1194/jlr.R800009-JLR200 (2008) (Epub ahead of print)
  • Albi E, Lazzarini R, Viola Magni M: Phosphatidylcholine/sphingomyelin metabolism crosstalk inside the nucleus. Biochem. J. 410, 381–389 (2008)
  • Albi E, Cataldi S, Bartoccini E et al.: Nuclear sphingomyelin pathway in serum deprivation-induced apoptosis of embryonic hippocampal cells. J. Cell Physiol. 206, 189–195 (2006)
  • Bionda C, Portoukalian J, Schmitt D, Rodriguez-Lafrasse C, Ardail D: Subcellular compartmentalization of ceramide metabolism: MAM (mitochondriaassociated membrane) and/or mitochondria? Biochem. J. 382, 527–533 (2004)
  • Siskind LJ, Kolesnick RN, Colombini M: Ceramide forms channels in mitochondrial outer membranes at physiologically relevant concentrations. Mitochondrion 6, 118–125 (2006)
  • Tafesse FG, Ternes P, Holthuis JC: The multigenic sphingomyelin synthase family. J. Biol. Chem. 281, 29421–29425 (2006)
  • Ding T, Li Z, Hailemariam T et al.: SMS overexpression and knockdown: impact on cellular sphingomyelin and diacylglycerol metabolism, and cell apoptosis. J. Lipid Res. 49, 376–385 (2008)
  • Guillen N, Navarro MA, Surra JC et al.: Cloning, characterization, expression and comparative analysis of pig Golgi membrane sphingomyelin synthase 1. Gene 388, 117–124 (2007)
  • Huitema K, van den Dikkenberg J, Brouwers JF, Holthuis JC: Identification of a family of animal sphingomyelin synthases. EMBO J. 23, 33–44 (2004)
  • Vos JP, Giudici ML, van der Bijl P et al.: Sphingomyelin is synthesized at the plasma membrane of oligodendrocytes and by purified myelin membranes: a study with fluorescent- and radio-labelled ceramide analogues. FEBS Lett. 368, 393–396 (1995)
  • Tsao FH, Zachman RD: Phosphatidylcholinelysophosphatidylcholine cycle pathway enzymes in rabbit lung. II. Marked differences in the effect of gestational age on activity compared to the CDP-choline pathway. Pediatr. Res. 11, 858–861 (1977)
  • Marggraf WD, Anderer FA, Kanfer JN: The formation of sphingomyelin from phosphatidylcholine in plasma membrane preparations from mouse fibroblasts. Biochim. Biophys. Acta 664, 61–73 (1981)
  • Zimmermann LJ, Hogan M, Carlson KS, Smith BT, Post M: Regulation of phosphatidylcholine synthesis in fetal type II cells by CTP:phosphocholine cytidylyltransferase. Am. J. Physiol. 264, L575–L580 (1993)
  • Vance JE, Pan D, Campenot RB, Bussiere M, Vance DE: Evidence that the major membrane lipids, except cholesterol, are made in axons of cultured rat sympathetic neurons. J. Neurochem. 62, 329–337 (1994)
  • Kent C: CTP:phosphocholine cytidylyltransferase. Biochim. Biophys. Acta 1348, 79–90 (1997)
  • Adibhatla RM, Hatcher JF: Role of lipids in brain injury and diseases. Future Lipidol. 2, 403–422 (2007)
  • Vos JP, de Haas CG, van Golde LM, Lopes-Cardozo M: Relationships between phosphatidylcholine, phosphatidylethanolamine, and sphingomyelin metabolism in cultured oligodendrocytes. J. Neurochem. 68, 1252–1260 (1997)
  • Vos JP, Giudici ML, van der Bijl P, Lopes-Cardozo M: Synthesis of sphingomyelin by oligodendrocytes – how and where? J. Lipid Mediat. Cell. Signal. 14, 313–319 (1996)
  • Fisher MC, Zeisel SH, Mar MH, Sadler TW: Perturbations in choline metabolism cause neural tube defects in mouse embryos in vitro. FASEB J. 16, 619–621 (2002)
  • Fisher MC, Zeisel SH, Mar MH, Sadler TW: Inhibitors of choline uptake and metabolism cause developmental abnormalities in neurulating mouse embryos. Teratology 64, 114–122 (2001)
  • Adibhatla RM, Hatcher JF: Cytidine 5´- diphosphocholine (CDP-choline) in stroke and other CNS disorders. Neurochem. Res. 30, 15–23 (2005)
  • Silva J, Beckedorf A, Bieberich E: Osteoblast-derived oxysterol is a migrationinducing factor for human breast cancer cells. J. Biol. Chem. 278, 25376–25385 (2003)
  • Perry RJ, Ridgway ND: Molecular mechanisms and regulation of ceramide transport. Biochim. Biophys. Acta 1734, 220–234 (2005)
  • Silva J, Dasgupta S, Wang G, Krishnamurthy K, Ritter E, Bieberich E: Lipids isolated from bone induce the migration of human breast cancer cells. J. Lipid Res. 47, 724–733 (2006)
  • Jean-Louis S, Akare S, Ali MA, Mash EA Jr, Meuillet E, Martinez JD: Deoxycholic acid induces intracellular signaling through membrane perturbations. J. Biol. Chem. 281, 14948–14960 (2006)
  • Becker S, Reinehr R, Grether-Beck S, Eberle A, Haussinger D: Hydrophobic bile salts trigger ceramide formation through endosomal acidification. Biol. Chem. 388, 185–196 (2007)
  • Dobrowsky RT, Werner MH, Castellino AM, Chao MV, Hannun YA: Activation of the sphingomyelin cycle through the low-affinity neurotrophin receptor. Science 265, 1596–1599 (1994)
  • Hannun YA: The sphingomyelin cycle and the second messenger function of ceramide. J. Biol. Chem. 269, 3125–3128 (1994)
  • Marchesini N, Hannun YA: Acid and neutral sphingomyelinases: roles and mechanisms of regulation. Biochem. Cell Biol. 82, 27–44 (2004)
  • Dumitru CA, Zhang Y, Li X, Gulbins E: Ceramide: a novel player in reactive oxygen species-induced signaling? Antioxid. Redox Signal. 9, 1535–1540 (2007)
  • Castillo SS, Levy M, Thaikoottathil JV, Goldkorn T: Reactive nitrogen and oxygen species activate different sphingomyelinases to induce apoptosis in airway epithelial cells. Exp. Cell Res. 313, 2680–2686 (2007)
  • Sillence DJ: Apoptosis and signalling in acid sphingomyelinase deficient cells. BMC Cell Biol. 2, 24 (2001)
  • Romsicki Y, Sharom FJ: Phospholipid flippase activity of the reconstituted P-glycoprotein multidrug transporter. Biochemistry 40, 6937–6947 (2001)
  • Tepper AD, Ruurs P, Wiedmer T, Sims PJ, Borst J, van Blitterswijk WJ: Sphingomyelin hydrolysis to ceramide during the execution phase of apoptosis results from phospholipid scrambling and alters cell-surface morphology. J. Cell Biol. 150, 155–164 (2000)
  • Brann AB, Scott R, Neuberger Y et al.: Ceramide signaling downstream of the p75 neurotrophin receptor mediates the effects of nerve growth factor on outgrowth of cultured hippocampal neurons. J. Neurosci. 19, 8199–8206 (1999)
  • Brann AB, Tcherpakov M, Williams IM, Futerman AH, Fainzilber M: Nerve growth factor-induced p75-mediated death of cultured hippocampal neurons is agedependent and transduced through ceramide generated by neutral sphingomyelinase. J. Biol. Chem. 277, 9812–9818 (2002)
  • Costantini C, Weindruch R, Della Valle G, Puglielli L: A TrkA-to-p75NTR molecular switch activates amyloid -peptide generation during aging. Biochem. J. 391, 59–67 (2005)
  • Barker PA: p75NTR: a study in contrasts. Cell Death Differ. 5, 346–356 (1998)
  • Roux PP, Barker PA: Neurotrophin signaling through the p75 neurotrophin receptor. Prog. Neurobiol. 67, 203–233 (2002)
  • Barker PA: p75NTR is positively promiscuous: novel partners and new insights. Neuron 42, 529–533 (2004)
  • Barker PA: High affinity not in the vicinity? Neuron 53, 1–4 (2007)
  • Costantini C, Scrable H, Puglielli L: An aging pathway controls the TrkA to p75NTR receptor switch and amyloid -peptide generation. EMBO J. 25, 1997–2006 (2006)
  • Yaar M, Zhai S, Pilch PF et al.: Binding of -amyloid to the p75 neurotrophin receptor induces apoptosis. A possible mechanism for Alzheimer's disease. J. Clin. Invest. 100, 2333–2340 (1997)
  • Kuner P, Hertel C: NGF induces apoptosis in a human neuroblastoma cell line expressing the neurotrophin receptor p75NTR. J. Neurosci. Res. 54, 465–474 (1998)
  • Naumann T, Casademunt E, Hollerbach E et al.: Complete deletion of the neurotrophin receptor p75NTR leads to long-lasting increases in the number of basal forebrain cholinergic neurons. J. Neurosci. 22, 2409–2418 (2002)
  • Dawbarn D, Allen SJ: Neurotrophins and neurodegeneration. Neuropathol. Appl. Neurobiol. 29, 211–230 (2003)
  • Counts SE, Mufson EJ: The role of nerve growth factor receptors in cholinergic basal forebrain degeneration in prodromal Alzheimer disease. J. Neuropathol. Exp. Neurol. 64, 263–272 (2005)
  • Coulson EJ: Does the p75 neurotrophin receptor mediate A -induced toxicity in Alzheimer's disease? J. Neurochem. 98, 654–660 (2006)
  • Hatchett CS, Tyler S, Armstrong D, Dawbarn D, Allen SJ: Familial Alzheimer's disease presenilin 1 mutation M146V increases secretase cutting of p75NTR in vitro. Brain Res. 1147, 248–255 (2007)
  • Niederhauser O, Mangold M, Schubenel R, Kusznir EA, Schmidt D, Hertel C: NGF ligand alters NGF signaling via p75(NTR) and TrkA. J. Neurosci. Res. 61, 263–272 (2000)
  • Diolaiti D, Bernardoni R, Trazzi S et al.: Functional cooperation between TrkA and p75(NTR) accelerates neuronal differentiation by increased transcription of GAP-43 and p21(CIP/WAF) genes via ERK1/2 and AP-1 activities. Exp. Cell Res. 313, 2980–2992 (2007)
  • Micera A, Lambiase A, Stampachiacchiere B, Bonini S, Bonini S, Levi-Schaffer F: Nerve growth factor and tissue repair remodeling: TrkA(NGFR) and p75(NTR), two receptors one fate. Cytokine Growth Factor Rev. 18, 245–256 (2007)
  • Wehrman T, He X, Raab B, Dukipatti A, Blau H, Garcia KC: Structural and mechanistic insights into nerve growth factor interactions with the TrkA and p75 receptors. Neuron 53, 25–38 (2007)
  • Verdi JM, Birren SJ, Ibanez CF et al.: p75LNGFR regulates Trk signal transduction and NGF-induced neuronal differentiation in MAH cells. Neuron 12, 733–745 (1994)
  • Heumann R: Neurotrophin signalling. Curr. Opin. Neurobiol. 4, 668–679 (1994)
  • Chao MV, Hempstead BL: p75 and Trk: a two-receptor system. Trends Neurosci. 18, 321–326 (1995)
  • Casaccia-Bonnefil P, Carter BD, Dobrowsky RT, Chao MV: Death of oligodendrocytes mediated by the interaction of nerve growth factor with its receptor p75. Nature 383, 716–719 (1996)
  • Greene LA, Kaplan DR: Early events in neurotrophin signalling via Trk and p75 receptors. Curr. Opin. Neurobiol. 5, 579–587 (1995)
  • Culmsee C, Gerling N, Lehmann M et al.: Nerve growth factor survival signaling in cultured hippocampal neurons is mediated through TrkA and requires the common neurotrophin receptor P75. Neuroscience 115, 1089–1108 (2002)
  • Plo I, Bono F, Bezombes C, Alam A, Bruno A, Laurent G: Nerve growth factorinduced protein kinase C stimulation contributes to TrkA-dependent inhibition of p75 neurotrophin receptor sphingolipid signaling. J. Neurosci. Res. 77, 465–474 (2004)
  • Gowrishankar K, Zeidler MG, Vincenz C: Release of a membrane-bound death domain by -secretase processing of the p75NTR homolog NRADD. J. Cell Sci. 117, 4099–4111 (2004)
  • Ito Y, Ishii A, Passmore AP, McIlroy SP: Analysis of alteration of p75NTR processing and signalling by PS2 mutation and -secretase inhibition. Neurobiol. Dis. 27, 258–264 (2007)
  • Pepinsky RB, Zeng C, Wen D et al.: Identification of a palmitic acid-modified form of human Sonic hedgehog. J. Biol. Chem. 273, 14037–14045 (1998)
  • Kieran MW, Packer RJ, Onar A et al.: Phase I and pharmacokinetic study of the oral farnesyltransferase inhibitor lonafarnib administered twice daily to pediatric patients with advanced central nervous system tumors using a modified continuous reassessment method: a Pediatric Brain Tumor Consortium Study. J. Clin. Oncol. 25, 3137–3143 (2007)
  • Mesa RA, Camoriano JK, Geyer SM et al.: A Phase II trial of tipifarnib in myelofibrosis: primary, post-polycythemia vera and post-essential thrombocythemia. Leukemia 21, 1964–1970 (2007)
  • Harousseau JL, Lancet JE, Reiffers J et al.: A Phase 2 study of the oral farnesyltransferase inhibitor tipifarnib in patients with refractory or relapsed acute myeloid leukemia. Blood 109, 5151–5156 (2007)
  • Glynn SA, O'Sullivan D, Eustace AJ, Clynes M, O'Donovan N: The 3-hydroxy- 3-methylglutaryl-coenzyme A reductase inhibitors, simvastatin, lovastatin and mevastatin inhibit proliferation and invasion of melanoma cells. BMC Cancer 8, 9 (2008)
  • Demierre MF, Higgins PD, Gruber SB, Hawk E, Lippman SM: Statins and cancer prevention. Nat. Rev. Cancer 5, 930–942 (2005)
  • Shirai T, Tanaka K, Terada Y et al.: Specific detection of phosphatidylinositol 3,4,5- trisphosphate binding proteins by the PIP3 analogue beads: an application for rapid purification of the PIP3 binding proteins. Biochim. Biophys. Acta 1402, 292–302 (1998)
  • Van Keymeulen A, Wong K, Knight ZA et al.: To stabilize neutrophil polarity, PIP3 and Cdc42 augment RhoA activity at the back as well as signals at the front. J. Cell Biol. 174, 437–445 (2006)
  • Lemmon MA: Pleckstrin homology (PH) domains and phosphoinositides. Biochem. Soc. Symp. 74, 81–93 (2007)
  • Musacchio A, Gibson T, Rice P, Thompson J, Saraste M: The domain PH: a common piece in the structural patchwork of signalling proteins. Trends Biochem. Sci. 18, 343–348 (1993)
  • Barnett SF, Bilodeau MT, Lindsley CW: The Akt/PKB family of protein kinases: a review of small molecule inhibitors and progress towards target validation. Curr. Top. Med. Chem. 5, 109–125 (2005)
  • Tong J, Nguyen L, Vidal A, Simon SA, Skene JH, McIntosh TJ: Role of GAP-43 in sequestering phosphatidylinositol 4,5- bisphosphate to raft bilayers. Biophys. J. 94, 125–133 (2008)
  • Chen L, Liao G, Yang L et al.: Cdc42 deficiency causes Sonic hedgehogindependent holoprosencephaly. Proc. Natl Acad. Sci. USA 103, 16520–16525 (2006)
  • Comer FI, Parent CA: Phosphoinositides specify polarity during epithelial organ development. Cell 128, 239–240 (2007)
  • Etienne-Manneville S, Hall A: Cdc42 regulates GSK-3 and adenomatous polyposis coli to control cell polarity. Nature 421, 753–756 (2003)
  • Kim SK: Cell polarity: new PARtners for Cdc42 and Rac. Nat. Cell Biol. 2, E143–E145 (2000)
  • Wang HR, Zhang Y, Ozdamar B et al.: Regulation of cell polarity and protrusion formation by targeting RhoA for degradation. Science 302, 1775–1779 (2003)
  • Welchman DP, Mathies LD, Ahringer J: Similar requirements for CDC-42 and the PAR-3/PAR-6/PKC-3 complex in diverse cell types. Dev. Biol. 305, 347–357 (2007)
  • Martin-Belmonte F, Gassama A, Datta A et al.: PTEN-mediated apical segregation of phosphoinositides controls epithelial morphogenesis through Cdc42. Cell 128, 383–397 (2007)
  • Solier S, De Cian MC, Bettaieb A, Desoche L, Solary E, Corcos L: PKC controls DNA topoisomerase-dependent human caspase-2 pre-mRNA splicing. FEBS Lett. 582, 372–378 (2008)
  • Croci C, Brandstatter JH, Enz R: ZIP3, a new splice variant of the PKC- -interacting protein family, binds to GABAreceptors C, PKC- , and Kv 2. J. Biol. Chem. 278, 6128–6135 (2003)
  • Sacktor TC, Osten P, Valsamis H, Jiang X, Naik MU, Sublette E: Persistent activation of the isoform of protein kinase C in the maintenance of long-term potentiation. Proc. Natl Acad. Sci. USA 90, 8342–8346 (1993)
  • Sells SF, Wood DP Jr, Joshi-Barve SS et al.: Commonality of the gene programs induced by effectors of apoptosis in androgendependent and -independent prostate cells. Cell Growth Differ. 5, 457–466 (1994)
  • Diaz-Meco MT, Municio MM, Frutos S et al.: The product of par-4, a gene induced during apoptosis, interacts selectively with the atypical isoforms of protein kinase C. Cell 86, 777–786 (1996)
  • Johnstone RW, Wang J, Tommerup N, Vissing H, Roberts T, Shi Y: Ciao 1 is a novel WD40 protein that interacts with the tumor suppressor protein WT1. J. Biol. Chem. 273, 10880–10887 (1998)
  • Jiang H, Guo W, Liang X, Rao Y: Both the establishment and the maintenance of neuronal polarity require active mechanisms: critical roles of GSK-3 and its upstream regulators. Cell 120, 123–135 (2005)
  • Duan W, Rangnekar VM, Mattson MP: Prostate apoptosis response-4 production in synaptic compartments following apoptotic and excitotoxic insults: evidence for a pivotal role in mitochondrial dysfunction and neuronal degeneration. J. Neurochem. 72, 2312–2322 (1999)
  • Mattson MP, Culmsee C, Yu Z, Camandola S: Roles of nuclear factor B in neuronal survival and plasticity. J. Neurochem. 74, 443–456 (2000)
  • Mattson MP, Meffert MK: Roles for NF- B in nerve cell survival, plasticity, and disease. Cell Death Differ. 13(5), 852–860 (2006)
  • Mattson MP, Duan W, Chan SL, Camandola S: Par-4: an emerging pivotal player in neuronal apoptosis and neurodegenerative disorders. J. Mol. Neurosci. 13, 17–30 (1999)
  • Rankin CA, Sun Q, Gamblin TC: Tau phosphorylation by GSK-3 promotes tangle-like filament morphology. Mol. Neurodegener. 2, 12 (2007)
  • Ikeda S, Kishida M, Matsuura Y, Usui H, Kikuchi A: GSK-3 -dependent phosphorylation of adenomatous polyposis coli gene product can be modulated by -catenin and protein phosphatase 2A complexed with Axin. Oncogene 19, 537–545 (2000)
  • van Noort M, Meeldijk J, van der Zee R, Destree O, Clevers H: Wnt signaling controls the phosphorylation status of -catenin. J. Biol. Chem. 277, 17901–17905 (2002)
  • Gartner A, Huang X, Hall A: Neuronal polarity is regulated by glycogen synthase kinase-3 (GSK-3 ) independently of Akt/PKB serine phosphorylation. J. Cell Sci. 119, 3927–3934 (2006)
  • Takashima A: GSK-3 is essential in the pathogenesis of Alzheimer's disease. J. Alzheimers Dis. 9, 309–317 (2006)
  • Wang JZ, Grundke-Iqbal I, Iqbal K: Kinases and phosphatases and tau sites involved in Alzheimer neurofibrillary degeneration. Eur. J. Neurosci. 25, 59–68 (2007)
  • Leclerc S, Garnier M, Hoessel R et al.: Indirubins inhibit glycogen synthase kinase-3 and CDK5/p25, two protein kinases involved in abnormal tau phosphorylation in Alzheimer's disease. A property common to most cyclindependent kinase inhibitors? J. Biol. Chem. 276, 251–260 (2001)
  • Schlessinger K, McManus EJ, Hall A: Cdc42 and noncanonical Wnt signal transduction pathways cooperate to promote cell polarity. J. Cell Biol. 178, 355–361 (2007)
  • Liu GP, Zhang Y, Yao XQ et al.: Activation of glycogen synthase kinase-3 inhibits protein phosphatase-2A and the underlying mechanisms. Neurobiol. Aging (2007) (Epub ahead of print)
  • Lin CF, Chen CL, Chiang CW, Jan MS, Huang WC, Lin YS: GSK-3 acts downstream of PP2A and the PI 3-kinase-Akt pathway, and upstream of caspase-2 in ceramide-induced mitochondrial apoptosis. J. Cell Sci. 120, 2935–2943 (2007)
  • Xie J, Chang X, Zhang X, Guo Q: Aberrant induction of Par-4 is involved in apoptosis of hippocampal neurons in presenilin-1 M146V mutant knock-in mice. Brain Res. 915, 1–10 (2001)
  • Zhao Y, Burikhanov R, Qiu S et al.: Cancer resistance in transgenic mice expressing the SAC module of Par-4. Cancer Res. 67, 9276–9285 (2007)
  • Alemany R, van Koppen CJ, Danneberg K, Ter Braak M, Meyer Zu Heringdorf D: Regulation and functional roles of sphingosine kinases. Naunyn Schmiedebergs Arch. Pharmacol. 374, 413–428 (2007)
  • Spiegel S, Cuvillier O, Edsall LC et al.: Sphingosine-1-phosphate in cell growth and cell death. Ann. NY Acad. Sci. 845, 11–18 (1998)
  • Mizugishi K, Yamashita T, Olivera A, Miller GF, Spiegel S, Proia RL: Essential role for sphingosine kinases in neural and vascular development. Mol. Cell. Biol. 25, 11113–11121 (2005)
  • Hait NC, Oskeritzian CA, Paugh SW, Milstien S, Spiegel S: Sphingosine kinases, sphingosine 1-phosphate, apoptosis and diseases. Biochim. Biophys. Acta 1758, 2016–2026 (2006)
  • Huwiler A, Pfeilschifter J: Altering the sphingosine-1-phosphate/ceramide balance: a promising approach for tumor therapy. Curr. Pharm. Des. 12, 4625–4635 (2006)
  • Spiegel S, Milstien S: Functions of the multifaceted family of sphingosine kinases and some close relatives. J. Biol. Chem. 282, 2125–2129 (2007)
  • Maceyka M, Sankala H, Hait NC et al.: SphK1 and SphK2, sphingosine kinase isoenzymes with opposing functions in sphingolipid metabolism. J. Biol. Chem. 280, 37118–37129 (2005)
  • Sanna MG, Liao J, Jo E et al.: Sphingosine 1-phosphate (S1P) receptor subtypes S1P1 and S1P3, respectively, regulate lymphocyte recirculation and heart rate. J. Biol. Chem. 279, 13839–13848 (2004)
  • Hla T, Lee MJ, Ancellin N et al.: Sphingosine-1-phosphate signaling via the EDG-1 family of G-protein-coupled receptors. Ann. NY Acad. Sci. 905, 16–24 (2000)
  • Lee MJ, Evans M, Hla T: The inducible G protein-coupled receptor edg-1 signals via the G(i)/mitogen-activated protein kinase pathway. J. Biol. Chem. 271, 11272–11279 (1996)
  • Colombaioni L, Garcia-Gil M: Sphingolipid metabolites in neural signalling and function. Brain Res. Brain Res. Rev. 46, 328–355 (2004)
  • Le Stunff H, Galve-Roperh I, Peterson C, Milstien S, Spiegel S: Sphingosine-1- phosphate phosphohydrolase in regulation of sphingolipid metabolism and apoptosis. J. Cell Biol. 158, 1039–1049 (2002)
  • Rakhit S, Conway AM, Tate R, Bower T, Pyne NJ, Pyne S: Sphingosine 1-phosphate stimulation of the p42/p44 mitogenactivated protein kinase pathway in airway smooth muscle. Role of endothelial differentiation gene 1, c-Src tyrosine kinase and phosphoinositide 3-kinase. Biochem. J. 338(Pt 3), 643–649 (1999)
  • Hsieh HL, Wu CB, Sun CC, Liao CH, Lau YT, Yang CM: Sphingosine-1- phosphate induces COX-2 expression via PI3K/Akt and p42/p44 MAPK pathways in rat vascular smooth muscle cells. J. Cell Physiol. 207, 757–766 (2006)
  • Harada J, Foley M, Moskowitz MA, Waeber C: Sphingosine-1-phosphate induces proliferation and morphological changes of neural progenitor cells. J. Neurochem. 88, 1026–1039 (2004)
  • Gonzalez-Cabrera PJ, Hla T, Rosen H: Mapping pathways downstream of S1P1 by differential chemical perturbation and proteomics. J. Biol. Chem. DOI: 10.1074/jbc.M610581200 (2007) (Epub ahead of print)
  • Oh JE, So KS, Lim SJ, Kim MY: Induction of apoptotic cell death by a ceramide analog in PC-3 prostate cancer cells. Arch. Pharm. Res. 29, 1140–1146 (2006)
  • Stoica BA, Movsesyan VA, Lea PM 4th, Faden AI: Ceramide-induced neuronal apoptosis is associated with dephosphorylation of Akt, BAD, FKHR, GSK-3 , and induction of the mitochondrial-dependent intrinsic caspase pathway. Mol. Cell Neurosci. 22, 365–382 (2003)
  • Jarvis WD, Fornari FA Jr, Auer KL et al.: Coordinate regulation of stress- and mitogen-activated protein kinases in the apoptotic actions of ceramide and sphingosine. Mol. Pharmacol. 52, 935–947 (1997)
  • Coelho RP, Payne SG, Bittman R, Spiegel S, Sato-Bigbee C: The immunomodulator FTY720 has a direct cytoprotective effect in oligodendrocyte progenitors. J. Pharmacol. Exp. Ther. 323, 626–635 (2007)
  • Dev KK, Mullershausen F, Mattes H et al.: Brain sphingosine-1-phosphate receptors: implication for FTY720 in the treatment of multiple sclerosis. Pharmacol. Ther. 117, 77–93 (2008)
  • Bieberich E: Smart drugs for smarter stem cells: making SENSe (sphingolipidenhanced neural stem cells) of ceramide. Neurosignals 16, 124–139 (2008)
  • Mimeault M, Hauke R, Batra SK: Stem cells: a revolution in therapeutics-recent advances in stem cell biology and their therapeutic applications in regenerative medicine and cancer therapies. Clin. Pharmacol. Ther. 82, 252–264 (2007)
  • Mimeault M, Batra SK: Concise review: recent advances on the significance of stem cells in tissue regeneration and cancer therapies. Stem Cells 24, 2319–2345 (2006)
  • Gardner RL: Stem cells and regenerative medicine: principles, prospects and problems. C R Biol. 330, 465–473 (2007)
  • Hentze H, Graichen R, Colman A: Cell therapy and the safety of embryonic stem cell-derived grafts. Trends Biotechnol. 25, 24–32 (2007)
  • Milstien S, Spiegel S: Targeting sphingosine- 1-phosphate: a novel avenue for cancer therapeutics. Cancer Cell 9, 148–150 (2006)
  • Maceyka M, Payne SG, Milstien S, Spiegel S: Sphingosine kinase, sphingosine- 1-phosphate, and apoptosis. Biochim. Biophys. Acta 1585, 193–201 (2002)
  • Sarkar S, Maceyka M, Hait NC et al.: Sphingosine kinase 1 is required for migration, proliferation and survival of MCF-7 human breast cancer cells. FEBS Lett. 579, 5313–5317 (2005)
  • Shirahama T, Sweeney EA, Sakakura C et al.: In vitro and in vivo induction of apoptosis by sphingosine and N, N-dimethylsphingosine in human epidermoid carcinoma KB-3–1 and its multidrug-resistant cells. Clin. Cancer Res. 3, 257–264 (1997)
  • Endo K, Igarashi Y, Nisar M, Zhou QH, Hakomori S: Cell membrane signaling as target in cancer therapy: inhibitory effect of N,N-dimethyl and N,N,N-trimethyl sphingosine derivatives on in vitro and in vivo growth of human tumor cells in nude mice. Cancer Res. 51, 1613–1618 (1991)
  • French KJ, Upson JJ, Keller SN, Zhuang Y, Yun JK, Smith CD: Antitumor activity of sphingosine kinase inhibitors. J. Pharmacol. Exp. Ther. 318, 596–603 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.