264
Views
0
CrossRef citations to date
0
Altmetric
Review

New β-Lactamases: A Paradigm for the Rapid Response of Bacterial Evolution in the Clinical Setting

&
Pages 295-308 | Published online: 09 Oct 2006

Bibliography

  • Medeiros AA : Evolution and dissemination of β-lactamases accelerated by generations of β-lactam antibiotics.Clin. Infect. Dis.24(Suppl. 1) , S19–S45 (1997).
  • Matagne A , DubusA, GalleniM, FrereJM: The β-lactamase cycle: a tale of selective pressure and bacterial ingenuity.Nat. Prod. Rep.16(1) , 1–19 (1999).
  • Jacoby GA , Munoz-PriceLS: The new β-lactamases.N. Engl. J. Med.352(4) , 380–391 (2005).
  • Livermore DM , WoodfordN: The β-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter.Trends Microbiol.14(9) , 413–420 (2006).
  • Paterson DL : Resistance in Gram-negative bacteria: Enterobacteriaceae.Am. J. Infect. Control34(5 Suppl. 1) , S20–S28 (2006).
  • Thomson JM , BonomoRA: The threat of antibiotic resistance in Gram-negative pathogenic bacteria: β-lactams in peril!Curr. Opin. Microbiol.8(5) , 518–524 (2005).
  • Bozdogan B , TristramS, AppelbaumPC: Combination of altered PBPs and expression of cloned extended-spectrum β-lactamases confers cefotaxime resistance in Haemophilus influenzae.J. Antimicrob. Chemother.57(4) , 747–749 (2006).
  • Rice LB : Antimicrobial resistance in Gram-positive bacteria.Am. J. Med.119(6 Suppl. 1) , S11–S19 (2006).
  • Appelbaum PC : Resistance among Streptococcus pneumoniae: implications for drug selection.Clin. Infect. Dis.34(12) , 1613–1620 (2002).
  • Styers D , SheehanDJ, HoganP, SahmDF: Laboratory-based surveillance of current antimicrobial resistance patterns and trends among Staphylococcus aureus: 2005 status in the United States.Ann. Clin. Microbiol. Antimicrob.5 , 2 (2006).
  • Knothe H , ShahP, KrcmeryV, AntalM, MitsuhashiS: Transferable resistance to cefotaxime, cefoxitin, cefamandole and cefuroxime in clinical isolates of Klebsiella pneumoniae and Serratia marcescens.Infection11(6) , 315–317 (1983).
  • Brun-Buisson C , LegrandP, PhilipponA, MontraversF, AnsquerM, DuvalJ: Transferable enzymatic resistance to third-generation cephalosporins during nosocomial outbreak of multiresistant Klebsiella pneumoniae.Lancet8554 , 302–306 (1987).
  • Paterson DL , BonomoRA: Extended-spectrum β-lactamases: a clinical update.Clin. Microbiol. Rev.18(4) , 657–686 (2005).
  • Winokur PL , CantonR, CasellasJM, LegakisN: Variations in the prevalence of strains expressing an extended-spectrum β-lactamase phenotype and characterization of isolates from Europe, the Americas, and the Western Pacific region.Clin. Infect. Dis.32(Suppl. 2) , S94–S103 (2001).
  • Edelstein M , PimkinM, PalaginI, Edelstein I, Stratchounski L: Prevalence and molecular epidemiology of CTX-M extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae in Russian hospitals. Antimicrob. Agents Chemother.47(12) , 3724–3732 (2003).
  • Bouchillon SK , JohnsonBM, HobanDJ et al.: Determining incidence of extended spectrum β-lactamase producing Enterobacteriaceae, vancomycin-resistant Enterococcus faecium and methicillin-resistant Staphylococcus aureus in 38 centres from 17 countries: the PEARLS study 2001‐2002. Int. J. Antimicrob. Agents24(2) , 119–124 (2004).
  • Hirakata Y , MatsudaJ, MiyazakiY et al.: Regional variation in the prevalence of extended-spectrum β-lactamase-producing clinical isolates in the Asia-Pacific region (SENTRY 1998–2002). Diagn. Microbiol. Infect. Dis.52(4) , 323–329 (2005).
  • Livermore DM : β-lactamases in laboratory and clinical resistance.Clin. Microbiol. Rev.8(4) , 557–584 (1995).
  • Knox JR : Extended-spectrum and inhibitor-resistant TEM-type β-lactamases: mutations, specificity, and three-dimensional structure.Antimicrob. Agents Chemother.39(12) , 2593–2601 (1995).
  • Bradford PA : Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat.Clin. Microbiol. Rev.14(4) , 933–951 (2001).
  • Raquet X , VanhoveM, Lamotte-BrasseurJ, GoussardS, CourvalinP, FrereJM: Stability of TEM β-lactamase mutants hydrolyzing third generation cephalosporins.Proteins23(1) , 63–72 (1995).
  • Wang X , MinasovG, ShoichetBK: Evolution of an antibiotic resistance enzyme constrained by stability and activity trade-offs.J. Mol. Biol.320(1) , 85–95 (2002).
  • Huang W , PalzkillT: A natural polymorphism in β-lactamase is a global suppressor.Proc. Natl Acad. Sci. USA94(16) , 8801–8806 (1997).
  • Poyart C , MugnierP, QuesneG, BercheP, Trieu-CuotP: A novel extended-spectrum TEM-type β-lactamase (TEM-52) associated with decreased susceptibility to moxalactam in Klebsiella pneumoniae.Antimicrob. Agents Chemother.42(1) , 108–113 (1998).
  • De Champs C , MonneC, BonnetR et al.: New TEM variant (TEM-92) produced by Proteus mirabilis and Providencia stuartii isolates. Antimicrob. Agents Chemother.45(4) , 1278–1280 (2001).
  • Perilli M , SegatoreB, De Massis MR et al.: TEM-72, a new extended-spectrum β-lactamase detected in Proteus mirabilis and Morganella morganii in Italy. Antimicrob. Agents Chemother.44(9) , 2537–2539 (2000).
  • Pai H , LyuS, LeeJH et al.: Survey of extended-spectrum β-lactamases in clinical isolates of Escherichia coli and Klebsiella pneumoniae: prevalence of TEM-52 in Korea. J. Clin. Microbiol.37(6) , 1758–1763 (1999).
  • Perilli M , Dell‘AmicoE, SegatoreB et al.: Molecular characterization of extended-spectrum β-lactamases produced by nosocomial isolates of Enterobacteriaceae from an Italian nationwide survey. J. Clin. Microbiol.40(2) , 611–614 (2002).
  • Tzouvelekis LS , BonomoRA: SHV-type β-lactamases.Curr. Pharm. Des.5(11) , 847–864 (1999).
  • Nukaga M , MayamaK, HujerAM, BonomoRA, KnoxJR: Ultrahigh resolution structure of a class A β-lactamase: on the mechanism and specificity of the extended-spectrum SHV-2 enzyme.J. Mol. Biol.328(1) , 289–301 (2003).
  • Majiduddin FK , PalzkillT: An analysis of why highly similar enzymes evolve differently.Genetics163(2) , 457–466 (2003).
  • Bonnet R : Growing group of extended-spectrum β-lactamases: the CTX-M enzymes.Antimicrob. Agents Chemother.48(1) , 1–14 (2004).
  • Livermore DM , HawkeyPM: CTX-M: changing the face of ESBLs in the UK.J. Antimicrob. Chemother.56(3) , 451–454 (2005).
  • Hernandez JR , Martinez-MartinezL, CantonR, CoqueTM, PascualA: Nationwide study of Escherichia coli and Klebsiella pneumoniae producing extended-spectrum β-lactamases in Spain.Antimicrob. Agents Chemother.49(5) , 2122–2125 (2005).
  • Luzzaro F , MezzatestaM, MugnaioliC et al.: Trends in production of extended-spectrum β-lactamases among enterobacteria of medical interest: report of the second Italian nationwide survey. J. Clin. Microbiol.44(5) , 1659–1664 (2006).
  • Poirel L , KampferP, NordmannP: Chromosome-encoded Ambler class A β-lactamase of Kluyvera georgiana, a probable progenitor of a subgroup of CTX-M extended-spectrum β-lactamases.Antimicrob. Agents Chemother.46(12) , 4038–4040 (2002).
  • Humeniuk C , ArletG, GautierV, Grimont P, Labia R, Philippon A: β-lactamases of Kluyvera corbata, probable progenitors of some plasmid-encoded CTX-M types. Antimicrob. Agents Chemother.46(9) , 3045–3049 (2002).
  • Rodriguez MM , PowerP, RadiceM et al.: Chromosome-encoded CTX-M-3 from Kluyvera ascorbata: a possible origin of plasmid-borne CTX-M-1-derived cefotaximases. Antimicrob. Agents Chemother.48(12) , 4895–4897 (2004).
  • Olson AB , SilvermanM, BoydDA et al.: Identification of a progenitor of the CTX-M-9 group of extended-spectrum β-lactamases from Kluyvera georgiana isolated in Guyana. Antimicrob. Agents Chemother.49(5) , 2112–2115 (2005).
  • Abbott SL : Klebsiella, Enterobacter, Citrobacter, Serratia, Plesiomonas, and other Enterobacteriaceae. In:Manual of Clinical Microbiology (8th Edition). Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH (Eds). ASM Press, Washington DC, USA, 684–700 (2003).
  • Poirel L , LartigueMF, DecousserJW, NordmannP: ISEcp1B-mediated transposition of blaCTX-M in Escherichia coli.Antimicrob. Agents Chemother.49(1) , 447–450 (2005).
  • Toleman MA , BennettPM, WalshTR: ISCR elements: novel gene-capturing systems of the 21st century?Microbiol. Mol. Biol. Rev.70(2) , 296–316 (2006).
  • Oliver A , CoqueTM, AlonsoD, ValverdeA, BaqueroF, CantonR: CTX-M-10 linked to a phage-related element is widely disseminated among Enterobacteriaceae in a Spanish hospital.Antimicrob. Agents Chemother.49(4) , 1567–1571 (2005).
  • Ibuka AS , IshiiY, GalleniM et al.: Crystal structure of extended-spectrum β-lactamase Toho-1: insights into the molecular mechanism for catalytic reaction and substrate specificity expansion. Biochemistry42(36) , 10634–10643 (2003).
  • Chen Y , DelmasJ, SirotJ, ShoichetB, BonnetR: Atomic resolution structures of CTX-M β-lactamases: extended spectrum activities from increased mobility and decreased stability.J. Mol. Biol.348(2) , 349–362 (2005).
  • Kimura S , IshiguroM, IshiiY, AlbaJ, YamaguchiK: Role of a mutation at position 167 of CTX-M-19 in ceftazidime hydrolysis.Antimicrob. Agents Chemother.48(5) , 1454–1460 (2004).
  • Hanson ND : AmpC β-lactamases: what do we need to know for the future?J. Antimicrob. Chemother.52(1) , 2–4 (2003).
  • Philippon A , ArletG, JacobyGA: Plasmid-determined AmpC-type β-lactamases.Antimicrob. Agents Chemother.46(1) , 1–11 (2002).
  • Miriagou V , TzouvelekisLS, VillaL et al.: CMY-13, a novel inducible cephalosporinase encoded by an Escherichia coli plasmid. Antimicrob. Agents Chemother.48(8) , 3172–3174 (2004).
  • Kang MS , BesserTE, CallDR: Variability in the region downstream of the blaCMY-2 β-lactamase gene in Escherichia coli and Salmonella enterica plasmids.Antimicrob. Agents Chemother.50(4) , 1590–1593 (2006).
  • Verdet C , BenzeraraY, GautierV, AdamO, Ould-HocineZ, ArletG: Emergence of DHA-1-producing Klebsiella spp. in the Parisian region: genetic organization of the ampC and ampR genes originating from Morganella morganii.Antimicrob. Agents Chemother.50(2) , 607–617 (2006).
  • Wachino J , KurokawaH, SuzukiS et al.: Horizontal transfer of blaCMY-bearing plasmids among clinical Escherichia coli and Klebsiella pneumoniae isolates and emergence of cefepime-hydrolyzing CMY-19. Antimicrob. Agents Chemother.50(2) , 534–541 (2006).
  • Mammeri H , PoirelL, BemerP, DrugeonH, NordmannP: Resistance to cefepime and cefpirome due to a 4-amino-acid deletion in the chromosome-encoded AmpC β-lactamase of a Serratia marcescens clinical isolate.Antimicrob. Agents Chemother.48(3) , 716–720 (2004).
  • Doi Y , WachinoJ, IshiguroM et al.: Inhibitor-sensitive AmpC β-lactamase variant produced by an Escherichia coli clinical isolate resistant to oxyiminocephalosporins and cephamycins. Antimicrob. Agents Chemother.48(7) , 2652–2658 (2004).
  • Barnaud G , BenzeraraY, GravisseJ et al.: Selection during cefepime treatment of a new cephalosporinase variant with extended-spectrum resistance to cefepime in an Enterobacter aerogenes clinical isolate. Antimicrob. Agents Chemother.48(3) , 1040–1042 (2004).
  • Barnaud G , LabiaR, RaskineL, Sanson-Le Pors MJ, Philippon A, Arlet G: Extension of resistance to cefepime and cefpirome associated to a six amino acid deletion in the H-10 helix of the cephalosporinase of an Enterobacter cloacae clinical isolate. FEMS Microbiol. Lett.195(2) , 185–190 (2001).
  • Kim JY , JungHI, AnYJ et al.: Structural basis for the extended substrate spectrum of CMY-10, a plasmid-encoded class C β-lactamase. Mol. Microbiol.60(4) , 907–916 (2006).
  • Clissold SP , ToddPA, Campoli-RichardsDM: Imipenem/cilastatin. A review of its antibacterial activity, pharmacokinetic properties and therapeutic efficacy.Drugs33(3) , 183–241 (1987).
  • Livermore DM , WoodfordN: Carbapenemases: a problem in waiting?Curr. Opin. Microbiol.3(5) , 489–495 (2000).
  • Nordmann P , PoirelL: Emerging carbapenemases in Gram-negative aerobes.Clin. Microbiol. Infect.8(6) , 321–331 (2002).
  • Livermore DM : Of Pseudomonas, porins, pumps and carbapenems.J. Antimicrob. Chemother.47(3) , 247–250 (2001).
  • Poirel L , HeritierC, PodglajenI, Sougakoff W, Gutmann L, Nordmann P: Emergence in Klebsiella pneumoniae of a chromosome-encoded SHV β-lactamase that compromises the efficacy of imipenem. Antimicrob. Agents Chemother.47(2) , 755–758 (2003).
  • Poirel L , WeldhagenGF, NaasT, De Champs C, Dove MG, Nordmann P: GES-2, a class A β-lactamase from Pseudomonas aeruginosa with increased hydrolysis of imipenem. Antimicrob. Agents Chemother.45(9) , 2598–2603 (2001).
  • Aubron C , PoirelL, AshRJ, NordmannP: Carbapenemase-producing Enterobacteriaceae, US rivers.Emerg. Infect. Dis.11(2) , 260–264 (2005).
  • Yu YS , DuXX, ZhouZH, ChenYG, LiLJ: First isolation of blaIMI-2 in an Enterobacter cloacae clinical isolate from China.Antimicrob. Agents Chemother.50(4) , 1610–1611 (2006).
  • Bratu S , LandmanD, HaagR et al.: Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City: a new threat to our antibiotic armamentarium. Arch. Intern. Med.165(12) , 1430–1435 (2005).
  • Woodford N , TiernoPM Jr, Young K et al.: Outbreak of Klebsiella pneumoniae producing a new carbapenem-hydrolyzing class A β-lactamase, KPC-3, in a New York Medical Center. Antimicrob. Agents Chemother.48(12) , 4793–4799 (2004).
  • Yigit H , QueenanAM, RasheedJK et al.: Carbapenem-resistant strain of Klebsiella oxytoca harboring carbapenem-hydrolyzing β-lactamase KPC-2. Antimicrob. Agents Chemother.47(12) , 3881–3889 (2003).
  • Poirel L , HeritierC, TolunV, NordmannP: Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae.Antimicrob. Agents Chemother.48(1) , 15–22 (2004).
  • Walther-Rasmussen J , HoibyN: OXA-type carbapenemases.J. Antimicrob. Chemother.57(3) , 373–383 (2006).
  • Poirel L , HeritierC, NordmannP: Chromosome-encoded ambler class D β-lactamase of Shewanella oneidensis as a progenitor of carbapenem-hydrolyzing oxacillinase.Antimicrob. Agents Chemother.48(1) , 348–351 (2004).
  • Brown S , YoungHK, AmyesSG: Characterisation of OXA-51, a novel class D carbapenemase found in genetically unrelated clinical strains of Acinetobacter baumannii from Argentina.Clin. Microbiol. Infect.11(1) , 15–23 (2005).
  • Heritier C , PoirelL, FournierPE, Claverie JM, Raoult D, Nordmann P: Characterization of the naturally occurring oxacillinase of Acinetobacter baumannii. Antimicrob. Agents Chemother.49(10) , 4174–4179 (2005).
  • Turton JF , WardME, WoodfordN et al.: The role of ISAba1 in expression of OXA carbapenemase genes in Acinetobacter baumannii. FEMS Microbiol. Lett.258(1) , 72–77 (2006).
  • Walsh TR , TolemanMA, PoirelL, NordmannP: Metallo-β-lactamases: the quiet before the storm?Clin. Microbiol. Rev.18(2) , 306–325 (2005).
  • Lee K , YumJH, YongD et al.: Novel acquired metallo-β-lactamase gene, blaSIM-1, in a class 1 integron from Acinetobacter baumannii clinical isolates from Korea. Antimicrob. Agents Chemother.49(11) , 4485–4491 (2005).
  • Rossolini GM : Acquired metallo-β-lactamases: an increasing clinical threat.Clin. Infect. Dis.41(11) , 1557–1558 (2005).
  • Koradi R , BilleterM, WuthrichK: MOLMOL: a program for display and analysis of macromolecular structures.J. Mol. Graph.14(1) , 51–32 (1996).
  • Poirel L , NaasT, Le T-I, Karim A, Bingen E, Nordmann P: CTX-M-type extended-spectrum β-lactamase that hydrolyzes ceftazidime through a single amino acid substitution in the omega loop. Antimicrob. Agents Chemother.45(12) , 3355–3361 (2001).
  • Poirel L , NaasT, Le T-I, Karim A, Bingen E, Nordmann P: CTX-M-type extended-spectrum β-lactamase that hydrolyzes ceftazidime through a single amino acid substitution in the omega loop. Antimicrob. Agents Chemother.45(12) , 3355–3361 (2001).
  • Cartelle M , del Mar TM, Molina F, Moure R, Villanueva R, Bou G: High-level resistance to ceftazidime conferred by a novel enzyme, CTX-M-32, derived from CTX-M-1 through a single Asp240-Gly substitution. Antimicrob. Agents Chemother.48(6) , 2308–2313 (2004).
  • Alvarez M , TranJH, ChowN, JacobyGA: Epidemiology of conjugative plasmid-mediated AmpC β-lactamases in the United States.Antimicrob. Agents Chemother.48(2) , 533–537 (2004).
  • Literacka E , EmpelJ, BaraniakA, SadowyE, HryniewiczW, GniadkowskiM: Four variants of the Citrobacter freundii AmpC-type cephalosporinases, including novel enzymes CMY-14 and CMY-15, in a Proteus mirabilis clone widespread in Poland.Antimicrob. Agents Chemother.48(11) , 4136–4143 (2004).
  • D‘Andrea MM , NucleoE, LuzzaroF et al.: CMY-16, a novel acquired AmpC-type β-lactamase of the CMY/LAT lineage in multifocal monophyletic isolates of Proteus mirabilis from northern Italy. Antimicrob. Agents Chemother.50(2) , 618–624 (2006).
  • Song W , KimJS, KimHS et al.: Increasing trend in the prevalence of plasmid-mediated AmpC β-lactamases in Enterobacteriaceae lacking chromosomal ampC gene at a Korean university hospital from 2002 to 2004. Diagn. Microbiol. Infect. Dis.55(3) , 219–224 (2006).
  • Ohana S , LeflonV, RoncoE et al.: Spread of a Klebsiella pneumoniae strain producing a plasmid-mediated ACC-1 AmpC β-lactamase in a teaching hospital admitting disabled patients. Antimicrob. Agents Chemother.49(5) , 2095–2097 (2005).
  • Lee SH , JeongSH, ParkYM: Characterization of blaCMY-10 a novel, plasmid-encoded AmpC-type β-lactamase gene in a clinical isolate of Enterobacter aerogenes.J. Appl. Microbiol.95(4) , 744–752 (2003).
  • Fosse T , Giraud-MorinC, MadinierI, Labia R: Sequence analysis and biochemical characterisation of chromosomal CAV-1 (Aeromonas caviae), the parental cephalosporinase of plasmid-mediated AmpC ‘FOX‘ cluster. FEMS Microbiol. Lett.222(1) , 93–98 (2003).
  • Cresti S , D‘AndreaMM, LenziD, TomasiniB, ZaniS, RossoliniGM: A new plasmid-mediated AmpC-type β-lactamase (FOX-7) produced by Klebsiella pneumoniae and Enterobacter cloacae isolates from a neonatal ICU in Italy.Proceedings of the 44th Interscience Conference on Antimicrobial Agents and Chemotherapy. Washington, DC, USA, 30 Oct–2 Nov 2004.

Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.