228
Views
0
CrossRef citations to date
0
Altmetric
Review

High-Throughput and Targeted in-Depth Mass Spectrometry-Based Approaches for Biofluid Profiling and Biomarker Discovery

, &
Pages 541-565 | Published online: 17 Dec 2007

Bibliography

  • Aebersold R , MannM: Mass spectrometry-based proteomics.Nature422(6928), 198–207 (2003).
  • Qian WJ , JacobsJM, LiuT, CampDG, SmithRD: Advances and challenges in liquid chromatography-mass spectrometry-based proteomics profiling for clinical applications.Mol. Cell Proteomics5(10), 1727–1744 (2006).
  • McDonald WH , YatesJRIII: Shotgun proteomics: integrating technologies to answer biological questions.Curr. Opin. Mol. Ther.5(3), 302–309 (2003).
  • Hanash S : Disease proteomics.Nature422(6928), 226–232 (2003).
  • Hu S , LooJA, WongDT: Human body fluid proteome analysis.Proteomics6(23), 6326–6353 (2006).
  • Petricoin EF , BellucoC, AraujoRP, LiottaLA: The blood peptidome: a higher dimension of information content for cancer biomarker discovery.Nat. Rev. Cancer6(12), 961–967 (2006).
  • Anderson NL , AndersonNG: The human plasma proteome: history, character, and diagnostic prospects.Mol. Cell Proteomics1(11), 845–867 (2002).
  • Lee HJ , LeeEY, KwonMS, PaikYK: Biomarker discovery from the plasma proteome using multidimensional fractionation proteomics.Curr. Opin. Chem. Biol.10(1), 42–49 (2006).
  • Huang L , HarvieG, FeitelsonJSet al.: Immunoaffinity separation of plasma proteins by IgY microbeads: meeting the needs of proteomic sample preparation and analysis.Proteomics5(13), 3314–3328 (2005).
  • Liu T , QianWJ, MottazHMet al.: Evaluation of multiprotein immunoaffinity subtraction for plasma proteomics and candidate biomarker discovery using mass spectrometry.Mol. Cell Proteomics5(11), 2167–2174 (2006).
  • Adkins JN , VarnumSM, AuberryKJet al.: Toward a human blood serum proteome: analysis by multidimensional separation coupled with mass spectrometry.Mol. Cell Proteomics1(12), 947–955 (2002).
  • Veenstra TD : Global and targeted quantitative proteomics for biomarker discovery.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.847(1), 3–11 (2007).
  • Chertov O , SimpsonJT, BiragynA, ConradsTP, VeenstraTD, FisherRJ: Enrichment of low-molecular-weight proteins from biofluids for biomarker discovery.Expert Rev. Proteomics2(1), 139–145 (2005).
  • Villanueva J , TempstP: OvaCheck: let‘s not dismiss the concept.Nature430(7000), 611 (2004).
  • Zhang H , LiuAY, LoriauxPet al.: Mass spectrometric detection of tissue proteins in plasma.Mol. Cell Proteomics6(1), 64–71 (2007).
  • Issaq HJ , ConradsTP, PrietoDA, TirumalaiR,VeenstraTD: SELDI-TOF MS for diagnostic proteomics.Anal. Chem.75(7), 148A–155A (2003).
  • Petricoin EF , LiottaLA: SELDI-TOF-based serum proteomic pattern diagnostics for early detection of cancer.Curr. Opin. Biotechnol.15(1), 24–30 (2004).
  • Hortin GL : The MALDI-TOF mass spectrometric view of the plasma proteome and peptidome.Clin. Chem.52(7), 1223–1237 (2006).
  • Villanueva J , PhilipJ, EntenbergDet al.: Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry.Anal. Chem.76(6), 1560–1570 (2004).
  • Baumann S , CeglarekU, FiedlerGM, LembckeJ, LeichtleA, ThieryJ: Standardized approach to proteome profiling of human serum based on magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.Clin. Chem.51(6), 973–980 (2005).
  • West-Nielsen M , HogdallEV, MarchioriE, HogdallCK, SchouC, HeegaardNH: Sample handling for mass spectrometric proteomic investigations of human sera.Anal. Chem.77(16), 5114–5123 (2005).
  • Jimenez CR, El Filali Z, Knol JC et al.: Automated serum peptide profiling using novel magnetic C18 beads off-line coupled to MALDI-TOF-MS. Prot. Clin. Applic.1(6), 598–604 (2007).
  • Albrethsen J : Reproducibility in protein profiling by MALDI-TOF mass spectrometry.Clin. Chem.53(5), 852–858 (2007).
  • Koomen JM , LiD, XiaoLCet al.: Direct tandem mass spectrometry reveals limitations in protein profiling experiments for plasma biomarker discovery.J. Proteome Res.4(3), 972–981 (2005).
  • Rai AJ , StemmerPM, ZhangZet al.: Analysis of Human Proteome Organization Plasma Proteome Project (HUPO PPP) reference specimens using surface enhanced laser desorption/ionization-time of flight (SELDI-TOF) mass spectrometry: multi-institution correlation of spectra and identification of biomarkers.Proteomics5(13), 3467–3474 (2005).
  • Semmes OJ , FengZ, AdamBLet al.: Evaluation of serum protein profiling by surface-enhanced laser desorption/ionization time-of-flight mass spectrometry for the detection of prostate cancer: I. Assessment of platform reproducibility.Clin. Chem.51(1), 102–112 (2005).
  • Villanueva J , PhilipJ, DeNoyerL, TempstP: Data analysis of assorted serum peptidome profiles.Nat. Protoc.2(3), 588–602 (2007).
  • Villanueva J , LawlorK, Toledo-CrowR, TempstP: Automated serum peptide profiling.Nat. Protoc.1(2), 880–891 (2006).
  • Ferguson RE , HochstrasserDF, BanksRE: Impact of preanalytical variables on the analysis of biological fluids in proteomic studies.Prot. Clin. Applic.1(8), 739–746 (2007).
  • Petricoin EF , ArdekaniAM, HittBAet al.: Use of proteomic patterns in serum to identify ovarian cancer.Lancet359(9306), 572–577 (2002).
  • Diamandis EP : Serum proteomic profiling by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry for cancer diagnosis: next steps.Cancer Res.66(11), 5540–5541 (2006).
  • Diamandis EP : Mass spectrometry as a diagnostic and a cancer biomarker discovery tool: opportunities and potential limitations.Mol. Cell Proteomics3(4), 367–378 (2004).
  • Jimenez CR , Koel-SimmelinkM, PhamTVet al.: Endogeneous peptide profiling of cerebrospinal fluid by MALDI-TOF mass spectrometry: optimization of magnetic bead-based peptide capture and analysis of pre-analytical variables.Prot. Clin. Applic. (2007) (In press).
  • Ransohoff DF : Lessons from controversy: ovarian cancer screening and serum proteomics.J. Natl Cancer Inst.97(4), 315–319 (2005).
  • Ransohoff DF : Bias as a threat to the validity of cancer molecular-marker research.Nat. Rev. Cancer5(2), 142–149 (2005).
  • Drake SK , BowenRA, RemaleyAT, HortinGL: Potential interferences from blood collection tubes in mass spectrometric analyses of serum polypeptides.Clin. Chem.50(12), 2398–2401 (2004).
  • Banks RE , StanleyAJ, CairnsDAet al.: Influences of blood sample processing on low-molecular-weight proteome identified by surface-enhanced laser desorption/ionization mass spectrometry.Clin. Chem.51(9), 1637–1649 (2005).
  • Villanueva J , PhilipJ, ChaparroCAet al.: Correcting common errors in identifying cancer-specific serum peptide signatures.J. Proteome Res.4(4), 1060–1072 (2005).
  • Fiedler GM , BaumannS, LeichtleAet al.: Standardized peptidome profiling of human urine by magnetic bead separation and matrix-assisted laser desorption/ionization time-of-flight mass spectrometry.Clin. Chem.53(3), 421–428 (2007).
  • Jimenez CR , LiKW, DreisewerdKet al.: Pattern changes of pituitary peptides in rat after salt-loading as detected by means of direct, semiquantitative mass spectrometric profiling.Proc. Natl Acad. Sci. USA94(17), 9481–9486 (1997).
  • Jimenez CR , BurlingameAL: Ultramicroanalysis of peptide profiles in biological samples using MALDI mass spectrometry.Exp. Nephrol.6(5), 421–428 (1998).
  • Omenn GS : Strategies for plasma proteomic profiling of cancers.Proteomics6(20), 5662–5673 (2006).
  • Liotta LA , PetricoinEF: Serum peptidome for cancer detection: spinning biologic trash into diagnostic gold.J. Clin. Invest.116(1), 26–30 (2006).
  • Villanueva J , ShafferDR, PhilipJet al.: Differential exoprotease activities confer tumor-specific serum peptidome patterns.J. Clin. Invest.116(1), 271–284 (2006).
  • Lopez MF , MikulskisA, KuzdzalSet al.: A novel, high-throughput workflow for discovery and identification of serum carrier protein-bound peptide biomarker candidates in ovarian cancer samples.Clin. Chem.53(6), 1067–1074 (2007).
  • Lopez MF , MikulskisA, KuzdzalSet al.: High-resolution serum proteomic profiling of Alzheimer disease samples reveals disease-specific, carrier-protein-bound mass signatures.Clin. Chem.51(10), 1946–1954 (2005).
  • Lowenthal MS , MehtaAI, FrogaleKet al.: Analysis of albumin-associated peptides and proteins from ovarian cancer patients.Clin. Chem.51(10), 1933–1945 (2005).
  • Tirumalai RS , ChanKC, PrietoDA, IssaqHJ,ConradsTP,VeenstraTD: Characterization of the low molecular weight human serum proteome.Mol. Cell Proteomics2(10), 1096–1103 (2003).
  • Ruetschi U , RosenA, KarlssonGet al.: Proteomic analysis using protein chips to detect biomarkers in cervical and amniotic fluid in women with intra-amniotic inflammation.J. Proteome Res.4(6), 2236–2242 (2005).
  • Yuan X , DesiderioDM: Proteomics analysis of human cerebrospinal fluid.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.815(1–2), 179–189 (2005).
  • Davidsson P , SjogrenM: The use of proteomics in biomarker discovery in neurodegenerative diseases.Dis. Markers21(2), 81–92 (2005).
  • Simonsen AH , McGuireJ, PodustVNet al.: Identification of a novel panel of cerebrospinal fluid biomarkers for Alzheimer‘s disease.Neurobiol. Aging (2007) (Epub ahead of print).
  • West-Norager M , KelstrupCD, SchouC, HogdallEV, HogdallCK, HeegaardNH: Unravelling in vitro variables of major importance for the outcome of mass spectrometry-based serum proteomics.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.847(1), 30–37 (2007).
  • Domon B , AebersoldR: Mass spectrometry and protein analysis.Science312(5771), 212–217 (2006).
  • Ong SE , MannM: Stable isotope labeling by amino acids in cell culture for quantitative proteomics.Methods Mol. Biol.359, 37–52 (2007).
  • Ong SE , BlagoevB, KratchmarovaIet al.: Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics.Mol. Cell Proteomics1(5), 376–386 (2002).
  • Gygi SP , RistB, GerberSA, TurecekF, GelbMH,AebersoldR: Quantitative analysis of complex protein mixtures using isotope-coded affinity tags.Nat. Biotechnol.17(10), 994–999 (1999).
  • Aggarwal K , ChoeLH, LeeKH: Shotgun proteomics using the iTRAQ isobaric tags.Brief Funct. Genomic Proteomic5(2), 112–120 (2006).
  • Washburn MP , UlaszekR, DeciuC, SchieltzDM, Yates JRIII: Analysis of quantitative proteomic data generated via multidimensional protein identification technology.Anal. Chem.74(7), 1650–1657 (2002).
  • May D , FitzgibbonM, LiuYet al.: A platform for accurate mass and time analyses of mass spectrometry data.J. Proteome Res.6(7), 2685–2694 (2007).
  • Zhang B , VerBerkmoesNC, LangstonMA, UberbacherE, HettichRL, SamatovaNF: Detecting differential and correlated protein expression in label-free shotgun proteomics.J. Proteome Res.5(11), 2909–2918 (2006).
  • Old WM , Meyer-ArendtK, veline-WolfLet al.: Comparison of label-free methods for quantifying human proteins by shotgun proteomics.Mol. Cell Proteomics4(10), 1487–1502 (2005).
  • Wiener MC , SachsJR, DeyanovaEG, YatesNA: Differential mass spectrometry: a label-free LC-MS method for finding significant differences in complex peptide and protein mixtures.Anal. Chem.76(20), 6085–6096 (2004).
  • Radulovic D , JelvehS, RyuSet al.: Informatics platform for global proteomic profiling and biomarker discovery using liquid chromatography-tandem mass spectrometry.Mol. Cell Proteomics3(10), 984–997 (2004).
  • Leptos KC , SarracinoDA, JaffeJD, KrastinsB, ChurchGM: MapQuant: open-source software for large-scale protein quantification.Proteomics6(6), 1770–1782 (2006).
  • Katajamaa M , MiettinenJ, OresicM: MZmine: toolbox for processing and visualization of mass spectrometry based molecular profile data.Bioinformatics22(5), 634–636 (2006).
  • Bellew M , CoramM, FitzgibbonMet al.: A suite of algorithms for the comprehensive analysis of complex protein mixtures using high-resolution LC-MS. Bioinformatics22(15), 1902–1909 (2006).
  • Kohlbacher O , ReinertK, GroplCet al.: TOPP – the OpenMS proteomics pipeline. Bioinformatics23(2), E191–E197 (2007).
  • Codrea MC , JimenezCR, HeringaJ, MarchioriE: Tools for computational processing of LC-MS datasets: a user‘s perspective.Comput. Methods Programs Biomed.86(3), 281–290 (2007).
  • Jaffe JD , ManiDR, LeptosKC, ChurchGM, GilletteMA, CarrSA: PEPPeR, a platform for experimental proteomic pattern recognition.Mol. Cell Proteomics5(10), 1927–1941 (2006).
  • Kreunin P , ZhaoJ, RosserC, UrquidiV, LubmanDM, GoodisonS: Bladder cancer associated glycoprotein signatures revealed by urinary proteomic profiling.J. Proteome Res.6(7), 2631–2639 (2007).
  • Wang L , LiF, SunWet al.: Concanavalin A-captured glycoproteins in healthy human urine. Mol. Cell Proteomics5(3), 560–562 (2006).
  • Pan S , WangY, QuinnJFet al.: Identification of glycoproteins in human cerebrospinal fluid with a complementary proteomic approach. J. Proteome Res.5(10), 2769–2779 (2006).
  • Ramachandran P , BoontheungP, XieY, SondejM, WongDT, LooJA: Identification of N-linked glycoproteins in human saliva by glycoprotein capture and mass spectrometry.J. Proteome Res.5(6), 1493–1503 (2006).
  • Shaw JL , SmithCR, DiamandisEP: Proteomic analysis of human cervico-vaginal fluid.J. Proteome Res.6(7), 2859–2865 (2007).
  • Pan S , ZhuD, QuinnJFet al.: A combined dataset of human cerebrospinal fluid proteins identified by multi-dimensional chromatography and tandem mass spectrometry. Proteomics7(3), 469–473 (2007).
  • Rai AJ , GelfandCA, HaywoodBCet al.: HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples. Proteomics5(13), 3262–3277 (2005).
  • Tammen H , SchulteI, HessRet al.: Peptidomic analysis of human blood specimens: comparison between plasma specimens and serum by differential peptide display. Proteomics5(13), 3414–3422 (2005).
  • Tammen H , SchulteI, HessR, MenzelC, KellmannM, Schulz-KnappeP: Prerequisites for peptidomic analysis of blood samples: I. Evaluation of blood specimen qualities and determination of technical performance characteristics.Comb. Chem. High Throughput Screen.8(8), 725–733 (2005).
  • Chertov O , BiragynA, KwakLWet al.: Organic solvent extraction of proteins and peptides from serum as an effective sample preparation for detection and identification of biomarkers by mass spectrometry. Proteomics4(4), 1195–1203 (2004).
  • Geho DH , LiottaLA, PetricoinEF, ZhaoW, AraujoRP: The amplified peptidome: the new treasure chest of candidate biomarkers.Curr. Opin. Chem. Biol.10(1), 50–55 (2006).
  • Liu T , QianWJ, GritsenkoMAet al.: Human plasma N-glycoproteome analysis by immunoaffinity subtraction, hydrazide chemistry, and mass spectrometry. J. Proteome Res.4(6), 2070–2080 (2005).
  • Zhang H , YiEC, LiXJet al.: High throughput quantitative analysis of serum proteins using glycopeptide capture and liquid chromatography mass spectrometry. Mol. Cell Proteomics4(2), 144–155 (2005).
  • Zhang H , LiXJ, MartinDB, AebersoldR: Identification and quantification of N-linked glycoproteins using hydrazide chemistry, stable isotope labeling and mass spectrometry.Nat. Biotechnol.21(6), 660–666 (2003).
  • Drake RR , SchweglerEE, MalikGet al.: Lectin capture strategies combined with mass spectrometry for the discovery of serum glycoprotein biomarkers. Mol. Cell Proteomics5(10), 1957–1967 (2006).
  • Comunale MA , MattuTS, LowmanMAet al.: Comparative proteomic analysis of de-N-glycosylated serum from hepatitis B carriers reveals polypeptides that correlate with disease status. Proteomics4(3), 826–838 (2004).
  • Hathout Y : Approaches to the study of the cell secretome.Expert Rev. Proteomics4(2), 239–248 (2007).
  • Celis JE , GromovP, CabezonTet al.: Proteomic characterization of the interstitial fluid perfusing the breast tumor microenvironment: a novel resource for biomarker and therapeutic target discovery. Mol. Cell Proteomics3(4), 327–344 (2004).
  • Martin DB , GiffordDR, WrightMEet al.: Quantitative proteomic analysis of proteins released by neoplastic prostate epithelium. Cancer Res.64(1), 347–355 (2004).
  • Zwickl H , TraxlerE, StaettnerSet al.: A novel technique to specifically analyze the secretome of cells and tissues. Electrophoresis26(14), 2779–2785 (2005).
  • Volmer MW , StuhlerK, ZapatkaMet al.: Differential proteome analysis of conditioned media to detect Smad4 regulated secreted biomarkers in colon cancer. Proteomics5(10), 2587–2601 (2005).
  • Xiao T , YingW, LiLet al.: An approach to studying lung cancer-related proteins in human blood. Mol. Cell Proteomics4(10), 1480–1486 (2005).
  • Celis JE , MoreiraJM, CabezonTet al.: Identification of extracellular and intracellular signaling components of the mammary adipose tissue and its interstitial fluid in high risk breast cancer patients: toward dissecting the molecular circuitry of epithelial-adipocyte stromal cell interactions. Mol. Cell Proteomics4(4), 492–522 (2005).
  • Gronborg M , KristiansenTZ, IwahoriAet al.: Biomarker discovery from pancreatic cancer secretome using a differential proteomic approach.Mol. Cell Proteomics5(1), 157–171 (2006).
  • Khwaja FW , SvobodaP, ReedM, PohlJ, PyrzynskaB, Van MeirEG: Proteomic identification of the wt-p53-regulated tumor cell secretome.Oncogene25(58), 7650–7661 (2006).
  • Pellitteri-Hahn MC , WarrenMC, DidierDNet al.: Improved mass spectrometric proteomic profiling of the secretome of rat vascular endothelial cells.J. Proteome Res.5(10), 2861–2864 (2006).
  • Mbeunkui F , FodstadO, PannellLK: Secretory protein enrichment and analysis: an optimized approach applied on cancer cell lines using 2D LC-MS/MS.J. Proteome Res.5(4), 899–906 (2006).
  • Huang LJ , ChenSX, HuangYet al.: Proteomics-based identification of secreted protein dihydrodiol dehydrogenase as a novel serum markers of non-small cell lung cancer. Lung Cancer54(1), 87–94 (2006).
  • Chen Y , ZhangH, XuAet al.: Elevation of serum l-lactate dehydrogenase B correlated with the clinical stage of lung cancer. Lung Cancer54(1), 95–102 (2006).
  • Chevallet M , DiemerH, VanDA, VilliersC, RabilloudT: Toward a better analysis of secreted proteins: the example of the myeloid cells secretome.Proteomics7(11), 1757–1770 (2007).
  • Pardo M , GarciaA, AntrobusR, BlancoMJ, DwekRA, ZitzmannN: Biomarker discovery from uveal melanoma secretomes: identification of gp100 and cathepsin D in patient serum.J. Proteome Res.6(7), 2802–2811 (2007).
  • Gross M , TopI, LauxIet al.: β-2-microglobulin is an androgen-regulated secreted protein elevated in serum of patients with advanced prostate cancer. Clin. Cancer Res.13(7), 1979–1986 (2007).
  • Sze SK , de KleijnDP, LaiRCet al.: Elucidating the secretion proteome of human ESC-derived mesenchymal stem cells.Mol. Cell Proteomics6(10), 1680–1689 (2007).
  • Sardana G , MarshallJ, DiamandisEP: Discovery of candidate tumor markers for prostate cancer via proteomic analysis of cell culture-conditioned medium.Clin. Chem.53(3), 429–437 (2007).
  • Kim SW , CheonK, KimCHet al.: Proteomics-based identification of proteins secreted in apical surface fluid of squamous metaplastic human tracheobronchial epithelial cells cultured by three-dimensional organotypic air-liquid interface method. Cancer Res.67(14), 6565–6573 (2007).
  • Mbeunkui F , MetgeBJ, ShevdeLA, PannellLK: Identification of differentially secreted biomarkers using LC-MS/MS in isogenic cell lines representing a progression of breast cancer.J. Proteome Res.6(8), 2993–3002 (2007).
  • Kulasingam V , DiamandisEP: Proteomic analysis of conditioned media from three breast cancer cell lines: a mine for biomarkers and therapeutic targets.Mol. Cell Proteomics6(11), 1997–2011 (2007).
  • Li H , DesouzaLV, GhannySet al.: Identification of candidate biomarker proteins released by human endometrial and cervical cancer cells using two-dimensional liquid chromatography/tandem mass spectrometry. J. Proteome Res.6(7), 2615–2622 (2007).
  • Alvarez-Llamas G , SzalowskaE, de VriesMPet al.: Characterization of the human visceral adipose tissue secretome.Mol. Cell Proteomics6(4), 589–600 (2007).
  • Zvonic S , LefevreM, KilroyGet al.: Secretome of primary cultures of human adipose-derived stem cells: modulation of serpins by adipogenesis. Mol. Cell Proteomics6(1), 18–28 (2007).
  • Kohn EC , TraversLA, KassisJ, BroomeU, KlominekJ: Malignant effusions are sources of fibronectin and other promigratory and proinvasive components.Diagn. Cytopathol.33(5), 300–308 (2005).
  • Portelius E , Westman-BrinkmalmA, ZetterbergH, BlennowK: Determination of β-amyloid peptide signatures in cerebrospinal fluid using immunoprecipitation-mass spectrometry.J. Proteome Res.5(4), 1010–1016 (2006).
  • Portelius E , ZetterbergH, AndreassonUet al.: An Alzheimer‘s disease-specific β-amyloid fragment signature in cerebrospinal fluid. Neurosci. Lett.409(3), 215–219 (2006).
  • Anderson L , HunterCL: Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins.Mol. Cell Proteomics5(4), 573–588 (2006).
  • Liao H , WuJ, KuhnEet al.: Use of mass spectrometry to identify protein biomarkers of disease severity in the synovial fluid and serum of patients with rheumatoid arthritis. Arthritis Rheum.50(12), 3792–3803 (2004).
  • Anderson NL , AndersonNG, HainesLR, HardieDB, OlafsonRW, PearsonTW: Mass spectrometric quantitation of peptides and proteins using Stable Isotope Standards and Capture by Anti-Peptide Antibodies (SISCAPA).J. Proteome Res.3(2), 235–244 (2004).
  • Whiteaker JR , ZhaoL, ZhangHYet al.: Antibody-based enrichment of peptides on magnetic beads for mass-spectrometry-based quantification of serum biomarkers. Anal. Biochem.362(1), 44–54 (2007).
  • Gillette MA , ManiDR, CarrSA: Place of pattern in proteomic biomarker discovery.J. Proteome Res.4(4), 1143–1154 (2005).
  • Rifai N , GilletteMA, CarrSA: Protein biomarker discovery and validation: the long and uncertain path to clinical utility.Nat. Biotechnol.24(8), 971–983 (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.