63
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Liver X receptors as therapeutic targets for managing cholesterol: implications for inflammatory conditions

, &
Pages 29-40 | Published online: 18 Jan 2017

Bibliography

  • Kannel WB, Castelli WP, Gordon T: Cholesterol in the prediction of atherosclerotic disease. New perspectives based on the Framingham study. Ann. Intern. Med. 90(1), 85–91 (1979)
  • Vuoristo M, Miettinen TA: Absorption, metabolism, and serum concentrations of cholesterol in vegetarians: effects of cholesterol feeding. Am. J. Clin. Nutr. 59(6), 1325–1331 (1994)
  • Brunner D, Weisbort J, Meshulam N et al.: Relation of serum total cholesterol and high-density lipoprotein cholesterol percentage to the incidence of definite coronary events: twenty-year follow-up of the Donolo-Tel Aviv Prospective Coronary Artery Disease Study. Am. J. Cardiol. 59(15), 1271–1276 (1987)
  • Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR: High density lipoprotein as a protective factor against coronary heart disease. The Framingham Study. Am. J. Med. 62(5), 707–714 (1977)
  • Grundy SM: Atherogenic dyslipidemia: lipoprotein abnormalities and implications for therapy. Am. J. Cardiol. 75(6), 45B–52B (1995)
  • Martin MJ, Hulley SB, Browner WS, Kuller LH, Wentworth D: Serum cholesterol, blood pressure, and mortality: implications from a cohort of 361,662 men. Lancet 2(8513), 933–936 (1986)
  • Hausenloy DJ, Yellon DM: Targeting residual cardiovascular risk: raising high-density lipoprotein cholesterol levels. Heart 94(6), 706–714 (2008).
  • Detailed review discussing the antiatherosclerotic properties of HDL-C and the pharmacological strategies for raising HDL-C levels.
  • Attie AD, Kastelein JP, Hayden MR: Pivotal role of ABCA1 in reverse cholesterol transport influencing HDL levels and susceptibility to atherosclerosis. J. Lipid Res. 42(11), 1717–1726 (2001)
  • Navab M, Hama SY, Anantharamaiah GM et al.: Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: steps 2 and 3. J. Lipid Res. 41(9), 1495–1508 (2000)
  • Navab M, Hama SY, Cooke CJ et al.: Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: step 1. J. Lipid Res. 41(9), 1481–1494 (2000)
  • Brown MS, Goldstein JL: Lipoprotein metabolism in the macrophage: implications for cholesterol deposition in atherosclerosis. Annu. Rev. Biochem. 52, 223–261 (1983)
  • Glass CK, Witztum JL: Atherosclerosis. The road ahead. Cell 104(4), 503–516 (2001).
  • Detailed review discussing the molecular mechanisms involved in atherosclerosis and the potential new therapeutic targets for prevention and treatment.
  • Casserly I, Topol E: Convergence of atherosclerosis and Alzheimer’s disease: inflammation, cholesterol, and misfolded proteins. Lancet 363(9415), 1139–1146 (2004)
  • Hotamisligil GS: Inflammation and metabolic disorders. Nature 444(7121), 860–867 (2006)
  • Chadban SJ, Atkins RC: Glomerulonephritis. Lancet 365(9473), 1797–1806 (2005)
  • Galli SJ, Tsai M, Piliponsky AM: The development of allergic inflammation. Nature 454(7203), 445–454 (2008)
  • Janowski BA, Grogan MJ, Jones SA et al.: Structural requirements of ligands for the oxysterol liver X receptors LXRβ and LXRα. Proc. Natl. Acad. Sci. USA 96(1), 266–271 (1999)
  • Kalaany NY, Mangelsdorf DJ: LXRS and FXR: the yin and yang of cholesterol and fat metabolism. Annu. Rev. Physiol. 68, 159–191 (2006)
  • Repa JJ, Mangelsdorf DJ: The role of orphan nuclear receptors in the regulation of cholesterol homeostasis. Annu. Rev. Cell Dev. Biol. 16, 459–481 (2000)
  • Willy PJ, Umesono K, Ong ES, Evans RM, Heyman RA, Mangelsdorf DJ: LXR, a nuclear receptor that defines a distinct retinoid response pathway. Genes Dev. 9(9), 1033–1045 (1995)
  • Wagner BL, Valledor AF, Shao G et al.: Promoter-specific roles for liver X receptor/ corepressor complexes in the regulation of ABCA1 and SREBP1 gene expression. Mol. Cell Biol. 23(16), 5780–5789 (2003)
  • Molteni V, Li X, Nabakka J et al.: N-acylthiadiazolines, a new class of liver X receptor agonists with selectivity for LXRβ. J. Med. Chem. 50(17), 4255–4259 (2007)
  • Bookout AL, Jeong Y, Downes M, Yu RT, Evans RM, Mangelsdorf DJ: Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell 126(4), 789–799 (2006)
  • Lehmann JM, Kliewer SA, Moore LB et al.: Activation of the nuclear receptor LXR by oxysterols defines a new hormone response pathway. J. Biol. Chem. 272(6), 3137–3140 (1997)
  • Peet DJ, Turley SD, Ma W et al.: Cholesterol and bile acid metabolism are impaired in mice lacking the nuclear oxysterol receptor LXRα. Cell 93(5), 693–704 (1998)
  • Zhang Y, Repa JJ, Gauthier K, Mangelsdorf DJ: Regulation of lipoprotein lipase by the oxysterol receptors, LXRα and LXRβ. J. Biol. Chem. 276(46), 43018–43024 (2001)
  • Hu X, Li S, Wu J, Xia C, Lala DS: Liver X receptors interact with corepressors to regulate gene expression. Mol. Endocrinol. 17(6), 1019–1026(2003)
  • Endo A: The discovery and development of HMG-CoA reductase inhibitors.J. Lipid Res. 33(11), 1569–1582 (1992)
  • Sudhop T, Lutjohann D, Kodal A et al.: Inhibition of intestinal cholesterol absorption by ezetimibe in humans. Circulation 106(15), 1943–1948 (2002)
  • Agellon LB, Drover VA, Cheema SK, Gbaguidi GF, Walsh A: Dietary cholesterol fails to stimulate the human cholesterol 7α-hydroxylase gene (CYP7A1) in transgenic mice. J. Biol. Chem. 277(23), 20131–20134 (2002)
  • Costet P, Luo Y, Wang N, Tall AR: Sterol-dependent transactivation of the ABC1 promoter by the liver X receptor/ retinoid X receptor. J. Biol. Chem. 275(36), 28240–28245 (2000)
  • Kennedy MA, Venkateswaran A, Tarr PT et al.: Characterization of the human ABCG1 gene: liver X receptor activates an internal promoter that produces a novel transcript encoding an alternative form of the protein. J. Biol. Chem. 276(42), 39438–39447 (2001)
  • Repa JJ, Berge KE, Pomajzl C, Richardson JA, Hobbs H, Mangelsdorf DJ: Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors α and β. J. Biol. Chem. 277(21), 18793–18800 (2002)
  • Repa JJ, Turley SD, Lobaccaro JA et al.: Regulation of absorption and ABC1- mediated efflux of cholesterol by RXR heterodimers. Science. 289(5484), 1524–1529 (2000)
  • Schwartz K, Lawn RM, Wade DP: ABC1 gene expression and ApoA-I-mediated cholesterol efflux are regulated by LXR. Biochem. Biophys. Res. Commun. 274(3), 794–802 (2000)
  • Singaraja RR, Bocher V, James ER et al.: Human ABCA1 BAC transgenic mice show increased high density lipoprotein cholesterol and ApoAI-dependent efflux stimulated by an internal promoter containing liver X receptor response elements in intron 1. J. Biol. Chem. 276(36), 33969–33979 (2001)
  • Venkateswaran A, Repa JJ, Lobaccaro JM, Bronson A, Mangelsdorf DJ, Edwards PA: Human white/murine ABC8 mRNA levels are highly induced in lipid-loaded macrophages. A transcriptional role for specific oxysterols. J. Biol. Chem. 275(19), 14700–14707 (2000)
  • Yu L, Gupta S, Xu F et al.: Expression of ABCG5 and ABCG8 is required for regulation of biliary cholesterol secretion. J. Biol. Chem. 280(10), 8742–8747 (2005)
  • Repa JJ, Liang G, Ou J et al.: Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRα and LXRβ. Genes Dev. 14(22), 2819–2830 (2000)
  • Cao G, Liang Y, Broderick CL et al.: Antidiabetic action of a liver X receptor agonist mediated by inhibition of hepatic gluconeogenesis. J. Biol. Chem. 278(2), 1131–1136 (2003)
  • Grefhorst A, van Dijk TH, Hammer A et al.: Differential effects of pharmacological liver X receptor activation on hepatic and peripheral insulin sensitivity in lean and ob/ ob mice. Am. J. Physiol. Endocrinol. Metab. 289(5), E829–E838 (2005)
  • Laffitte BA, Chao LC, Li J et al.: Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc. Natl Acad. Sci. USA 100(9), 5419–5424 (2003).
  • In vivo and in vitro studies demonstrating that liver X recpeptor (LXR) modulates genes involved in glucose metabolism and activation of LXR improves glucose tolerance in a diet-induced obesity and insulin-resistance model.
  • Grempler R, Gunther S, Steffensen KR et al.: Evidence for an indirect transcriptional regulation of glucose-6- phosphatase gene expression by liver X receptors. Biochem. Biophys. Res. Commun. 338(2), 981–986 (2005)
  • Herzog B, Hallberg M, Seth A, Woods A, White R, Parker MG: The nuclear receptor cofactor, receptor-interacting protein 140, is required for the regulation of hepatic lipid and glucose metabolism by liver X receptor. Mol. Endocrinol. 21(11), 2687–2697 (2007)
  • Stulnig TM, Oppermann U, Steffensen KR, Schuster GU, Gustafsson JA: Liver X receptors downregulate 11β-hydroxysteroid dehydrogenase type 1 expression and activity. Diabetes 51(8), 2426–2433 (2002)
  • Lee MH, Lu K, Patel SB: Genetic basis of sitosterolemia. Curr. Opin. Lipidol. 12(2), 141–149 (2001)
  • Kruit JK, Groen AK, van Berkel TJ, Kuipers F: Emerging roles of the intestine in control of cholesterol metabolism. World J. Gastroenterol. 12(40), 6429–6439 (2006)
  • Kruit JK, Plosch T, Havinga R et al.: Increased fecal neutral sterol loss upon liver X receptor activation is independent of biliary sterol secretion in mice. Gastroenterology 128(1), 147–156 (2005)
  • Mulligan JD, Flowers MT, Tebon A et al.: ABCA1 is essential for efficient basolateral cholesterol efflux during the absorption of dietary cholesterol in chickens. J. Biol. Chem. 278(15), 13356–13366 (2003)
  • Murthy S, Born E, Mathur SN, Field FJ: LXR/RXR activation enhances basolateral efflux of cholesterol in CaCo-2 cells. J. Lipid Res. 43(7), 1054–1064 (2002)
  • Brunham LR, Kruit JK, Pape TD, Parks JS, Kuipers F, Hayden MR: Tissue-specific induction of intestinal ABCA1 expression with a liver X receptor agonist raises plasma HDL cholesterol levels. Circ. Res. 99(7), 672–674 (2006)
  • Laffitte BA, Repa JJ, Joseph SB et al.: LXRs control lipid-inducible expression of the apolipoprotein E gene in macrophages and adipocytes. Proc. Natl Acad. Sci. USA 98(2), 507–512 (2001)
  • Joseph SB, McKilligin E, Pei L et al.: Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc. Natl Acad. Sci. USA 99(11), 7604–7609 (2002)
  • Levin N, Bischoff ED, Daige CL et al.: Macrophage liver X receptor is required for antiatherogenic activity of LXR agonists. Arterioscler. Thromb. Vasc. Biol. 25(1), 135–142 (2005)
  • Terasaka N, Hiroshima A, Koieyama T et al.: T-0901317, a synthetic liver X receptor ligand, inhibits development of atherosclerosis in LDL receptor-deficient mice. FEBS Lett. 536(1–3), 6–11 (2003)
  • Kennedy MA, Barrera GC, Nakamura K et al.: ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab. 1(2), 121–131 (2005)
  • Sabol SL, Brewer HB Jr, Santamarina-Fojo S: The human ABCG1 gene: identification of LXR response elements that modulate expression in macrophages and liver. J. Lipid Res. 46(10), 2151–2167 (2005)
  • Venkateswaran A, Laffitte BA, Joseph SB et al.: Control of cellular cholesterol efflux by the nuclear oxysterol receptor LXR α. Proc. Natl Acad. Sci. USA 97(22), 12097–12102 (2000)
  • Naik SU, Wang X, Da Silva JS et al.: Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Circulation 113(1), 90–97 (2006).
  • Elegant in vivo radiotracer experiment demonstrating that activation of LXR promotes reverse cholesterol transport from macrophages to feces for elimination.
  • Hansson GK, Robertson AK, Soderberg-Naucler C: Inflammation and atherosclerosis. Annu. Rev. Pathol. 1, 297–329 (2006)
  • Castrillo A, Joseph SB, Vaidya SA et al.: Crosstalk between LXR and toll-like receptor signaling mediates bacterial and viral antagonism of cholesterol metabolism. Mol. Cell. 12(4), 805–816 (2003)
  • Joseph SB, Castrillo A, Laffitte BA, Mangelsdorf DJ, Tontonoz P: Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat. Med. 9(2), 213–219 (2003)
  • Joseph SB, Bradley MN, Castrillo A et al.: LXR-dependent gene expression is important for macrophage survival and the innate immune response. Cell 119(2), 299–309 (2004)
  • Blaschke F, Leppanen O, Takata Y et al.: Liver X receptor agonists suppress vascular smooth muscle cell proliferation and inhibit neointima formation in ballooninjured rat carotid arteries. Circ. Res. 95(12), E110–E123 (2004)
  • Imayama I, Ichiki T, Patton D et al.: Liver X receptor activator downregulates angiotensin II type 1 receptor expression through dephosphorylation of Sp1. Hypertension 51(6), 1631–1636 (2008)
  • Cummins CL, Volle DH, Zhang Y et al.: Liver X receptors regulate adrenal cholesterol balance. J. Clin. Invest. 116(7), 1902–1912 (2006)
  • Nilsson M, Stulnig TM, Lin CY et al.: Liver X receptors regulate adrenal steroidogenesis and hypothalamic– pituitary–adrenal feedback. Mol. Endocrinol. 21(1), 126–137 (2007)
  • Steffensen KR, Neo SY, Stulnig TM et al.: Genome-wide expression profiling; a panel of mouse tissues discloses novel biological functions of liver X receptors in adrenals. J. Mol. Endocrinol. 33(3), 609–622 (2004)
  • Robertson KM, Schuster GU, Steffensen KR et al.: The liver X receptor-β is essential for maintaining cholesterol homeostasis in the testis. Endocrinology 146(6), 2519–2530 (2005)
  • Steffensen KR, Robertson K, Gustafsson JA, Andersen CY: Reduced fertility and inability of oocytes to resume meiosis in mice deficient of the Lxr genes. Mol. Cell. Endocrinol. 256(1–2), 9–16 (2006)
  • Volle DH, Mouzat K, Duggavathi R et al.: Multiple roles of the nuclear receptors for oxysterols liver X receptor to maintain male fertility. Mol. Endocrinol. 21(5), 1014–1027 (2007)
  • Gong H, Guo P, Zhai Y et al.: Estrogen deprivation and inhibition of breast cancer growth in vivo through activation of the orphan nuclear receptor liver X receptor. Mol. Endocrinol. 21(8), 1781–1790 (2007)
  • Kolsch H, Lutjohann D, Ludwig M et al.: Polymorphism in the cholesterol 24S-hydroxylase gene is associated with Alzheimer’s disease. Mol. Psychiatry 7(8), 899–902 (2002)
  • Lutjohann D, von Bergmann K: 24S-hydroxycholesterol: a marker of brain cholesterol metabolism. Pharmacopsychiatry 36 (Suppl. 2), S102–S106 (2003)
  • Liang Y, Lin S, Beyer TP et al.: A liver X receptor and retinoid X receptor heterodimer mediates apolipoprotein E expression, secretion and cholesterol homeostasis in astrocytes. J. Neurochem. 88(3), 623–634 (2004)
  • Sun Y, Yao J, Kim TW, Tall AR: Expression of liver X receptor target genes decreases cellular amyloid β peptide secretion. J. Biol. Chem. 278(30), 27688–27694 (2003)
  • Whitney KD, Watson MA, Collins JL et al.: Regulation of cholesterol homeostasis by the liver X receptors in the central nervous system. Mol. Endocrinol. 16(6), 1378–1385 (2002)
  • Burns MP, Vardanian L, Pajoohesh-Ganji A et al.: The effects of ABCA1 on cholesterol efflux and Aβ levels in vitro and in vivo. J. Neurochem. 98(3), 792–800 (2006)
  • Koldamova R, Staufenbiel M, Lefterov I: Lack of ABCA1 considerably decreases brain ApoE level and increases amyloid deposition in APP23 mice. J. Biol. Chem. 280(52), 43224–43235 (2005)
  • Zelcer N, Khanlou N, Clare R et al.: Attenuation of neuroinflammation and Alzheimer’s disease pathology by liver X receptors. Proc. Natl Acad. Sci. USA 104(25), 10601–10606 (2007).
  • In vivo study showing that loss of LXRs in APP/PS1 AD-transgenic mice resulted in increased amyloid deposition owing to the defects in cholesterol homeostasis and inflammatory responses in the brain. It further identified LXRs as therapeutic targets in Alzheimer’s disease.
  • Muscat GE, Wagner BL, Hou J et al.: Regulation of cholesterol homeostasis and lipid metabolism in skeletal muscle by liver X receptors. J. Biol. Chem. 277(43), 40722–40728 (2002)
  • Delvecchio CJ, Bilan P, Nair P, Capone JP: LXR-induced reverse cholesterol transport in human airway smooth muscle is mediated exclusively by ABCA1. Am. J. Physiol. Lung Cell. Mol. Physiol. 295(5), L949–L957 (2008)
  • Delvecchio CJ, Bilan P, Radford K et al.: Liver X receptor stimulates cholesterol efflux and inhibits expression of proinflammatory mediators in human airway smooth muscle cells. Mol. Endocrinol. 21(6), 1324–1334 (2007).
  • 2Birrell MA, Catley MC, Hardaker E et al.: Novel role for the liver X nuclear receptor in the suppression of lung inflammatory responses. J. Biol. Chem. 282(44), 31882–31890 (2007)
  • Birrell MA, De Alba J, Catley MC et al.: Liver X receptor agonists increase airway reactivity in a model of asthma via increasing airway smooth muscle growth. J. Immunol. 181(6), 4265–4271 (2008)
  • Morello F, de Boer RA, Steffensen KR et al.: Liver X receptors α and β regulate renin expression in vivo. J. Clin. Invest. 115(7), 1913–1922 (2005)
  • Proctor G, Jiang T, Iwahashi M, Wang Z, Li J, Levi M: Regulation of renal fatty acid and cholesterol metabolism, inflammation, and fibrosis in Akita and OVE26 mice with Type 1 diabetes. Diabetes 55(9), 2502–2509 (2006)
  • Baigent C, Keech A, Kearney PM et al.: Efficacy and safety of cholesterol-lowering treatment: prospective meta-ana lysis of data from 90,056 participants in 14 randomised trials of statins. Lancet 366(9493), 1267–1278 (2005)
  • Groot PH, Pearce NJ, Yates JW et al.: Synthetic LXR agonists increase LDL in CETP species. J. Lipid Res. 46(10), 2182–2191 (2005)
  • Luo Y, Tall AR: Sterol upregulation of human CETP expression in vitro and in transgenic mice by an LXR element. J. Clin. Invest. 105(4), 513–520 (2000)
  • Quinet EM, Savio DA, Halpern AR, Chen L, Miller CP, Nambi P: Geneselective modulation by a synthetic oxysterol ligand of the liver X receptor. J. Lipid Res. 45(10), 1929–1942 (2004)
  • Kratzer A, Buchebner M, Pfeifer T et al.: Synthetic LXR agonist attenuates plaque formation in apoE-deficient mice without inducing liver steatosis and hypertriglyceridemia. J. Lipid Res. DOI:10.1194/jlr.M800376-JLR200 (2008) (Epub ahead of print)
  • Hu B, Quinet E, Unwalla R et al.: Carboxylic acid based quinolines as liver X receptor modulators that have LXRβ receptor binding selectivity. Bioorg. Med. Chem. Lett. 18(1), 54–59 (2008)
  • Lund EG, Peterson LB, Adams AD et al.: Different roles of liver X receptor α and β in lipid metabolism: effects of an α-selective and a dual agonist in mice deficient in each subtype. Biochem. Pharmacol. 71(4), 453–463 (2006)
  • Quinet EM, Savio DA, Halpern AR et al.: Liver X receptor (LXR)-β regulation in LXRα-deficient mice: implications for therapeutic targeting. Mol. Pharmacol. 70(4), 1340–1349 (2006)
  • Bradley MN, Hong C, Chen M et al.: Ligand activation of LXR β reverses atherosclerosis and cellular cholesterol overload in mice lacking LXR α and apoE. J. Clin. Invest. 117(8), 2337–2346 (2007).
  • In vivo mechanistic study supporting drug development strategies targeting LXR β for the treatment of atherosclerosis.
  • Beyea MM, Heslop CL, Sawyez CG et al.: Selective up-regulation of LXR-regulated genes ABCA1, ABCG1, and APOE in macrophages through increased endogenous synthesis of 24(S),25-epoxycholesterol. J. Biol. Chem. 282(8), 5207–5216 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.