757
Views
0
CrossRef citations to date
0
Altmetric
Short Communication

Magnetic Resonance-Guided Ultrasound Hyperthermia for Prostate Cancer Radiotherapy: An Immobilization Device Embedding the Ultrasound Applicator

ORCID Icon, , , , , , , , & show all
Pages 55-67 | Received 04 Aug 2021, Accepted 15 Feb 2022, Published online: 08 Mar 2022

References

  • Ssrpm . Report number 11, Revision 2014. Quality control of medical electron accelerators. ISBN 3 908 125 57 X (2014) ( Epub ahead of print).
  • Carrie C , MagneN, Burban-ProvostPet al. Short-term androgen deprivation therapy combined with radiotherapy as salvage treatment after radical prostatectomy for prostate cancer (GETUG-AFU 16): a 112-month follow-up of a phase III, randomised trial. Lancet Oncol.20(12), 1740–1749 (2019).
  • Achard V , PanjeCM, EngelerD, ZilliT, PutoraPM. Localized and locally advanced prostate cancer: treatment options. Oncology. 99(7), 413–421 (2021).
  • Tendulkar RD , AgrawalS, GaoTet al. Contemporary update of a multi-institutional predictive nomogram for salvage radiotherapy after radical prostatectomy. J. Clin. Oncol.34(30), 3648–3654 (2016).
  • Dal Pra A , PanjeC, ZilliTet al. Salvage radiotherapy for macroscopic local recurrences after radical prostatectomy: a national survey on patterns of practice. Strahlenther. Onkol.194(1), 9–16 (2018).
  • Zilli T , JorcanoS, PeguretNet al. Results of dose-adapted salvage radiotherapy after radical prostatectomy based on an endorectal MRI target definition model. Am. J. Clin. Oncol.40(2), 194–199 (2017).
  • Zilli T , JorcanoS, PeguretNet al. Dose-adapted salvage radiotherapy after radical prostatectomy based on an erMRI target definition model: toxicity analysis. Acta Oncol.53(1), 96–102 (2014).
  • Picardi C , PerretI, MiralbellR, ZilliT. Hypofractionated radiotherapy for prostate cancer in the postoperative setting: what is the evidence so far. Cancer Treat. Rev.62, 91–96 (2018).
  • Richter A , ExnerF, WeickSet al. Evaluation of intrafraction prostate motion tracking using the Clarity Autoscan system for safety margin validation. Z. Med. Phys.30(2), 135–141 (2020).
  • Dewhirst MW , VujaskovicZ, JonesE, ThrallD. Re-setting the biologic rationale for thermal therapy. Int. J. Hyperthermia21(8), 779–790 (2005).
  • Datta NR , PuricE, KlingbielD, GomezS, BodisS. Hyperthermia and radiation therapy in locoregional recurrent breast cancers: a systematic review and meta-analysis. Int. J. Radiat. Oncol. Biol. Phys.94(5), 1073–1087 (2016).
  • Datta NR , RogersS, OrdonezSG, PuricE, BodisS. Hyperthermia and radiotherapy in the management of head and neck cancers: a systematic review and meta-analysis. Int. J. Hyperthermia32(1), 31–40 (2016).
  • Datta NR , StutzE, GomezS, BodisS. Efficacy and safety evaluation of the various therapeutic options in locally advanced cervix cancer: a systematic review and network meta-analysis of randomized clinical trials. Int. J. Radiat. Oncol. Biol. Phys.103(2), 411–437 (2019).
  • Crezee J , Van LeeuwenCM, OeiALet al. Biological modelling of the radiation dose escalation effect of regional hyperthermia in cervical cancer. Radiat. Oncol.11, 14 (2016).
  • Beck M , GhadjarP, MehrhofFet al. Salvage-radiation therapy and regional hyperthermia for biochemically recurrent prostate cancer after radical prostatectomy (results of the planned interim analysis). Cancers (Basel)13(5), 1133 (2021).
  • Kok HP , CrezeeJ, FrankenNA, StalpersLJ, BarendsenGW, BelA. Quantifying the combined effect of radiation therapy and hyperthermia in terms of equivalent dose distributions. Int. J. Radiat. Oncol. Biol. Phys.88(3), 739–745 (2014).
  • Guillemin PC , GuiL, LortonOet al. Mild hyperthermia by MR-guided focused ultrasound in an ex vivo model of osteolytic bone tumour: optimization of the spatio–temporal control of the delivered temperature. J. Transl. Med.17(1), 350 (2019).
  • Zhu L , LamD, PaciaCPet al. Characterization of magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-induced large-volume hyperthermia in deep and superficial targets in a porcine model. Int. J. Hyperthermia37(1), 1159–1173 (2020).
  • Baust JM , RabinY, PolascikTJet al. Defeating cancers’ adaptive defensive strategies using thermal therapies: examining cancer’s therapeutic resistance, ablative, and computational modeling strategies as a means for improving therapeutic outcome. Technol. Cancer Res. Treat.17, 1533033818762207 (2018).
  • Jolesz FA . MRI-guided focused ultrasound surgery. Annu. Rev. Med.60, 417–430 (2009).
  • Melodelima D , SalomirR, MougenotCet al. Intraluminal ultrasound applicator compatible with magnetic resonance imaging “real-time” temperature mapping for the treatment of oesophageal tumours: an ex vivo study. Med. Phys.31(2), 236–244 (2004).
  • Moonen CT , QuessonB, SalomirRet al. Thermal therapies in interventional MR imaging. Focused ultrasound. Neuroimaging Clin. N. Am.11(4), 737–747 (2001).
  • Zhou YF . High intensity focused ultrasound in clinical tumor ablation. World J. Clin. Oncol.2(1), 8–27 (2011).
  • Marien A , GillI, UkimuraO, BetrouniN, VillersA. Target ablation--image-guided therapy in prostate cancer. Urol. Oncol.32(6), 912–923 (2014).
  • Rueff LE , RamanSS. Clinical and technical aspects of MR-guided high intensity focused ultrasound for treatment of symptomatic uterine fibroids. Semin. Intervent. Radiol.30(4), 347–353 (2013).
  • Ellis S , RiekeV, KohiM, WestphalenAC. Clinical applications for magnetic resonance guided high intensity focused ultrasound (MRgHIFU): present and future. J. Med. Imaging Radiat. Oncol.57(4), 391–399 (2013).
  • Guilhon E , QuessonB, Moraud-GaudryFet al. Image-guided control of transgene expression based on local hyperthermia. Mol. Imaging2(1), 11–17 (2003).
  • Zhu L , HuangY, LamDet al. Targetability of cervical cancer by magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-mediated hyperthermia (HT) for patients receiving radiation therapy. Int. J. Hyperthermia38(1), 498–510 (2021).
  • Zhu L , PartanenA, TalcottMRet al. Feasibility and safety assessment of magnetic resonance-guided high-intensity focused ultrasound (MRgHIFU)-mediated mild hyperthermia in pelvic targets evaluated using an in vivo porcine model. Int. J. Hyperthermia36(1), 1147–1159 (2019).
  • Ghadjar P , FiorinoC, MunckAf Rosenschold P, PinkawaM, ZilliT, VanDer Heide UA. ESTRO ACROP consensus guideline on the use of image guided radiation therapy for localized prostate cancer. Radiother. Oncol.141, 5–13 (2019).
  • Moser T , CreedM, WalkerR, MeierG. Radiotherapy tattoos: women’s skin as a carrier of personal memory – what do we cause by tattooing our patients? Breast J.26(2), 316–318 (2020).
  • Sun J , PichlerP, DowlingJet al. MR simulation for prostate radiation therapy: effect of coil mounting position on image quality. Br. J. Radiol.87(1042), 20140325 (2014).
  • Feddersen TV , Hernandez-TamamesJA, FranckenaM, Van RhoonGC, PaulidesMM. Clinical performance and future potential of magnetic resonance thermometry in hyperthermia. Cancers (Basel)13(1), 33 (2020).
  • Dipasquale G , PoirierA, SprungerY, UiterwijkJWE, MiralbellR. Improving 3D-printing of megavoltage X-rays radiotherapy bolus with surface-scanner. Radiat. Oncol.13(1), 203 (2018).
  • Fahimian B , YuV, HorstK, XingL, HristovD. Trajectory modulated prone breast irradiation: a LINAC-based technique combining intensity modulated delivery and motion of the couch. Radiother. Oncol.109(3), 475–481 (2013).
  • Schmidhalter D , FixMK, WyssMet al. Evaluation of a new six degrees of freedom couch for radiation therapy. Med. Phys.40(11), 111710 (2013).
  • Schoffel PJ , HarmsW, Sroka-PerezG, SchlegelW, KargerCP. Accuracy of a commercial optical 3D-surface imaging system for realignment of patients for radiotherapy of the thorax. Phys. Med. Biol.52(13), 3949–3963 (2007).
  • Bartoncini S , FiandraC, RuoRedda MG, AllisS, MunozF, RicardiU. Target registration errors with surface imaging system in conformal radiotherapy for prostate cancer: study on 19 patients. Radiol. Med.117(8), 1419–1428 (2012).
  • Chiesa S , PlacidiL, AzarioLet al. Adaptive optimization by 6 DOF robotic couch in prostate volumetric IMRT treatment: rototranslational shift and dosimetric consequences. J. Appl. Clin. Med. Phys.16(5), 35–45 (2015).
  • Li W , JiangZ, ChuK, JinJ, GeY, CaiJ. A noninvasive method to reduce radiotherapy positioning error caused by respiration for patients with abdominal or pelvic cancers. Technol. Cancer Res. Treat.18, 1533033819825865 (2019).
  • Mcpartlin AJ , LiXA, KershawLEet al. MRI-guided prostate adaptive radiotherapy – a systematic review. Radiother. Oncol.119(3), 371–380 (2016).
  • Grimwood A , McnairHA, O’sheaTPet al. In vivo validation of Elekta’s clarity autoscan for ultrasound-based intrafraction motion estimation of the prostate during radiation therapy. Int. J. Radiat. Oncol. Biol. Phys.102(4), 912–921 (2018).
  • Wang L , CmelakAJ, DingGX. A simple technique to improve calculated skin dose accuracy in a commercial treatment planning system. J. Appl. Clin. Med. Phys.19(2), 191–197 (2018).