216
Views
0
CrossRef citations to date
0
Altmetric
Review

Microenvironment-Related Biomarkers and Novel Targets in Classical Hodgkin’s Lymphoma

&
Pages 807-817 | Published online: 30 Jul 2015

References

  • Siegel R , MaJ, ZouZ, JemalA. Cancer statistics, 2014. CA Cancer J. Clin.64(1), 9–29 (2014).
  • Santoro A , BonadonnaG, ValagussaPet al. Long-term results of combined chemotherapy-radiotherapy approach in Hodgkin’s disease: superiority of ABVD plus radiotherapy versus MOPP plus radiotherapy. J. Clin. Oncol.5(1), 27–37 (1987).
  • Engert A , PlutschowA, EichHTet al. Reduced treatment intensity in patients with early-stage Hodgkin’s lymphoma. N. Engl. J. Med.363(7), 640–652 (2010).
  • Canellos GP , RosenbergSA, FriedbergJW, ListerTA, DevitaVT. Treatment of Hodgkin lymphoma: a 50-year perspective. J. Clin. Oncol.32(3), 163–168 (2014).
  • Linch DC , WinfieldD, GoldstoneAHet al. Dose intensification with autologous bone-marrow transplantation in relapsed and resistant Hodgkin’s disease: results of a BNLI randomised trial. Lancet341(8852), 1051–1054 (1993).
  • Brice P , DivineM, SimonDet al. Feasibility of tandem autologous stem-cell transplantation (ASCT) in induction failure or very unfavorable (UF) relapse from Hodgkin’s disease (HD). SFGM/GELA Study Group. Ann. Oncol.10(12), 1485–1488 (1999).
  • Moskowitz CH , NimerSD, ZelenetzADet al. A 2-step comprehensive high-dose chemoradiotherapy second-line program for relapsed and refractory Hodgkin disease: analysis by intent to treat and development of a prognostic model. Blood97(3), 616–623 (2001).
  • Schmitz N , PfistnerB, SextroMet al. Aggressive conventional chemotherapy compared with high-dose chemotherapy with autologous haemopoietic stem-cell transplantation for relapsed chemosensitive Hodgkin’s disease: a randomised trial. Lancet359(9323), 2065–2071 (2002).
  • Moskowitz CH , KewalramaniT, NimerSD, GonzalezM, ZelenetzAD, YahalomJ. Effectiveness of high dose chemoradiotherapy and autologous stem cell transplantation for patients with biopsy-proven primary refractory Hodgkin’s disease. Br. J. Hematol.124(5), 645–652 (2004).
  • Majhail NS , WeisdorfDJ, DeforTEet al. Long-term results of autologous stem cell transplantation for primary refractory or relapsed Hodgkin’s lymphoma. Biol. Blood Marrow Transplant.12(10), 1065–1072 (2006).
  • Gopal AK , MetcalfeTL, GooleyTAet al. High-dose therapy and autologous stem cell transplantation for chemoresistant Hodgkin lymphoma: the Seattle experience. Cancer113(6), 1344–1350 (2008).
  • Viviani S , Di NicolaM, BonfanteVet al. Long-term results of high-dose chemotherapy with autologous bone marrow or peripheral stem cell transplant as first salvage treatment for relapsed or refractory Hodgkin lymphoma: a single institution experience. Leukemia Lymphoma51(7), 1251–1259 (2010).
  • Younes A . Novel treatment strategies for patients with relapsed classical Hodgkin lymphoma. Hematology Am. Soc. Hematol. Educ. Program2009, 507–519 (2009).
  • Canellos GP . Brentuximab vedotin and panobinostat: new drugs for Hodgkin’s lymphoma – can they make one of medical oncology’s chemotherapy success stories more successful?J. Clin. Oncol.30(18), 2171–2172 (2012).
  • Moskowitz AJ , PeralesM-A, KewalramaniTet al. Outcomes for patients who fail high dose chemoradiotherapy and autologous stem cell rescue for relapsed and primary refractory Hodgkin lymphoma. Br. J. Hematol.146(2), 158–163 (2009).
  • Martinez C , CanalsC, SarinaBet al. Identification of prognostic factors predicting outcome in Hodgkin’s lymphoma patients relapsing after autologous stem cell transplantation. Ann. Oncol.24(9), 2430–2434 (2013).
  • Arai S , FanaleM, DevosSet al. Defining a Hodgkin lymphoma population for novel therapeutics after relapse from autologous hematopoietic cell transplant. Leukemia Lymphoma54(11), 2531–2533 (2013).
  • Crump M . Management of Hodgkin lymphoma in relapse after autologous stem cell transplant. Hematology Am. Soc. Hematol. Educ. Program2008, 326–333 (2008).
  • Younes A . Beyond chemotherapy: new agents for targeted treatment of lymphoma. Nat. Rev. Clin. Oncol.8(2), 85–96 (2011).
  • Younes A , BartlettNL, LeonardJPet al. Brentuximab vedotin (SGN-35) for relapsed CD30-positive lymphomas. N. Engl. J. Med.363(19), 1812–1821 (2010).
  • Younes A , GopalAK, SmithSEet al. Results of a pivotal Phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J. Clin. Oncol.30(18), 2183–2189 (2012).
  • Carlo-Stella C , RicciF, DaltoSet al. Brentuximab Vedotin in patients with Hodgkin lymphoma and a failed allogeneic stem cell transplantation: results from a named patient programme at four Italian centers. Oncologist (2014) ( In Press).
  • Ansell SM , LesokhinAM, BorrelloIet al. PD-1 blockade with Nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med.372(4), 311–319 (2014).
  • Moskowitz AJ , HamlinPAJr, PeralesMAet al. Phase II study of bendamustine in relapsed and refractory Hodgkin lymphoma. J. Clin. Oncol.31(4), 456–460 (2013).
  • Anastasia A , Carlo-StellaC, CorradiniPet al. Bendamustine for Hodgkin lymphoma patients failing autologous or autologous and allogeneic stem cell transplantation: a retrospective study of the Fondazione Italiana Linfomi. Br. J. Hematol.166(1), 140–142 (2014).
  • Sarina B , CastagnaL, FarinaLet al. Allogeneic transplantation improves the overall and progression-free survival of Hodgkin lymphoma patients relapsing after autologous transplantation: a retrospective study based on the time of HLA typing and donor availability. Blood115(18), 3671–3677 (2010).
  • Sureda A , RobinsonS, CanalsCet al. Reduced-intensity conditioning compared with conventional allogeneic stem-cell transplantation in relapsed or refractory Hodgkin’s lymphoma: an analysis from the Lymphoma Working Party of the European Group for Blood and Marrow Transplantation. J. Clin. Oncol.26(3), 455–462 (2008).
  • Corradini P , SarinaB, FarinaL. Allogeneic transplantation for Hodgkin’s lymphoma. Br. J. Hematol.152(3), 261–272 (2011).
  • Kuppers R . The biology of Hodgkin’s lymphoma. Nat. Rev. Cancer9(1), 15–27 (2009).
  • Aldinucci D , LorenzonD, OlivoK, RapanaB, GatteiV. Interactions between tissue fibroblasts in lymph nodes and Hodgkin/Reed–Sternberg cells. Leukemia Lymphoma45(9), 1731–1739 (2004).
  • Falini B , FizzottiM, PucciariniAet al. A monoclonal antibody (MUM1p) detects expression of the MUM1/IRF4 protein in a subset of germinal center B cells, plasma cells, and activated T cells. Blood95(6), 2084–2092 (2000).
  • Aldinucci D , GloghiniA, PintoA, De FilippiR, CarboneA. The classical Hodgkin’s lymphoma microenvironment and its role in promoting tumour growth and immune escape. J. Pathol.221(3), 248–263 (2010).
  • Steidl C , ConnorsJM, GascoyneRD. Molecular pathogenesis of Hodgkin’s lymphoma: increasing evidence of the importance of the microenvironment. J. Clin. Oncol.29(14), 1812–1826 (2011).
  • Ma Y , VisserL, BlokzijlTet al. The CD4+CD26- T-cell population in classical Hodgkin’s lymphoma displays a distinctive regulatory T-cell profile. Lab. Invest.88(5), 482–490 (2008).
  • Maggio EM , Van Den BergA, VisserLet al. Common and differential chemokine expression patterns in rs cells of NLP, EBV positive and negative classical Hodgkin lymphomas. Int. J. Cancer99(5), 665–672 (2002).
  • Fischer M , JuremalmM, OlssonNet al. Expression of CCL5/RANTES by Hodgkin and Reed–Sternberg cells and its possible role in the recruitment of mast cells into lymphomatous tissue. Int. J. Cancer107(2), 197–201 (2003).
  • Van Den Berg A , VisserL, PoppemaS. High expression of the CC chemokine TARC in Reed–Sternberg cells. A possible explanation for the characteristic T-cell infiltratein Hodgkin’s lymphoma. Am. J. Pathol.154(6), 1685–1691 (1999).
  • Ohshima K , TutiyaT, YamaguchiTet al. Infiltration of Th1 and Th2 lymphocytes around Hodgkin and Reed–Sternberg (H&RS) cells in Hodgkin disease: relation with expression of CXC and CC chemokines on H&RS cells. Int. J. Cancer98(4), 567–572 (2002).
  • Schreck S , FriebelD, BuettnerMet al. Prognostic impact of tumour-infiltrating Th2 and regulatory T cells in classical Hodgkin lymphoma. Hematol. Oncol.27(1), 31–39 (2009).
  • Yamamoto R , NishikoriM, KitawakiTet al. PD-1-PD-1 ligand interaction contributes to immunosuppressive microenvironment of Hodgkin lymphoma. Blood111(6), 3220–3224 (2008).
  • Marshall NA , ChristieLE, MunroLRet al. Immunosuppressive regulatory T cells are abundant in the reactive lymphocytes of Hodgkin lymphoma. Blood103(5), 1755–1762 (2004).
  • Shi L , ChenS, YangL, LiY. The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. J. Hematol. Oncol.6(1), 74 (2013).
  • Dukers DF , JasparsLH, VosWet al. Quantitative immunohistochemical analysis of cytokine profiles in Epstein–Barr virus-positive and -negative cases of Hodgkin’s disease. J. Pathol.190(2), 143–149 (2000).
  • Ma Y , VisserL, RoelofsenHet al. Proteomics analysis of Hodgkin lymphoma: identification of new players involved in the cross-talk between HRS cells and infiltrating lymphocytes. Blood111(4), 2339–2346 (2008).
  • Truman LA , FordCA, PasikowskaMet al. CX3CL1/fractalkine is released from apoptotic lymphocytes to stimulate macrophage chemotaxis. Blood112(13), 5026–5036 (2008).
  • Leng L , MetzCN, FangYet al. MIF signal transduction initiated by binding to CD74. J. Exp. Med.197(11), 1467–1476 (2003).
  • Stein R , QuZ, CardilloTMet al. Antiproliferative activity of a humanized anti-CD74 monoclonal antibody, hLL1, on B-cell malignancies. Blood104(12), 3705–3711 (2004).
  • Foss HD , HerbstH, GottsteinS, DemelG, AraujoI, SteinH. Interleukin-8 in Hodgkin’s disease. Preferential expression by reactive cells and association with neutrophil density. Am. J. Pathol.148(4), 1229–1236 (1996).
  • Kapp U , YehWC, PattersonBet al. Interleukin 13 is secreted by and stimulates the growth of Hodgkin and Reed–Sternberg cells. J. Exp. Med.189(12), 1939–1946 (1999).
  • Khnykin D , TroenG, BernerJM, DelabieJ. The expression of fibroblast growth factors and their receptors in Hodgkin’s lymphoma. J. Pathol.208(3), 431–438 (2006).
  • Ohshima K , AkaiwaM, UmeshitaR, SuzumiyaJ, IzuharaK, KikuchiM. Interleukin-13 and interleukin-13 receptor in Hodgkin’s disease: possible autocrine mechanism and involvement in fibrosis. Histopathology38(4), 368–375 (2001).
  • Jundt F , AnagnostopoulosI, BommertKet al. Hodgkin/Reed–Sternberg cells induce fibroblasts to secrete eotaxin, a potent chemoattractant for T cells and eosinophils. Blood94(6), 2065–2071 (1999).
  • Foss HD , HerbstH, OelmannEet al. Lymphotoxin, tumour necrosis factor and interleukin-6 gene transcripts are present in Hodgkin and Reed–Sternberg cells of most Hodgkin’s disease cases. Br. J. Hematol.84(4), 627–635 (1993).
  • Xerri L , BirgF, GuigouV, BouabdallahR, Poizot-MartinI, HassounJ. In situ expression of the IL-1-alpha and TNF-alpha genes by Reed–Sternberg cells in Hodgkin’s disease. Int. J. Cancer50(5), 689–693 (1992).
  • Bechtel D , KurthJ, UnkelC, KuppersR. Transformation of BCR-deficient germinal-center B cells by EBV supports a major role of the virus in the pathogenesis of Hodgkin and posttransplantation lymphomas. Blood106(13), 4345–4350 (2005).
  • Chaganti S , BellAI, PastorNBet al. Epstein–Barr virus infection in vitro can rescue germinal center B cells with inactivated immunoglobulin genes. Blood106(13), 4249–4252 (2005).
  • Mancao C , AltmannM, JungnickelB, HammerschmidtW. Rescue of “crippled” germinal center B cells from apoptosis by Epstein–Barr virus. Blood106(13), 4339–4344 (2005).
  • Marshall NA , CulliganDJ, TigheJ, JohnstonPW, BarkerRN, VickersMA. The relationships between Epstein–Barr virus latent membrane protein 1 and regulatory T cells in Hodgkin’s lymphoma. Exp. Hematol.35(4), 596–604 (2007).
  • Maggio E , Van Den BergA, DiepstraA, KluiverJ, VisserL, PoppemaS. Chemokines, cytokines and their receptors in Hodgkin’s lymphoma cell lines and tissues. Ann. Oncol.13(Suppl. 1), 52–56 (2002).
  • Uchihara JN , KrenskyAM, MatsudaTet al. Transactivation of the CCL5/RANTES gene by Epstein–Barr virus latent membrane protein 1. Int. J. Cancer114(5), 747–755 (2005).
  • Baumforth KR , BirgersdotterA, ReynoldsGMet al. Expression of the Epstein–Barr virus-encoded Epstein–Barr virus nuclear antigen 1 in Hodgkin’s lymphoma cells mediates Up-regulation of CCL20 and the migration of regulatory T cells. Am. J. Pathol.173(1), 195–204 (2008).
  • Chetaille B , BertucciF, FinettiPet al. Molecular profiling of classical Hodgkin lymphoma tissues uncovers variations in the tumor microenvironment and correlations with EBV infection and outcome. Blood113(12), 2765–3775 (2009).
  • Skinnider BF , MakTW. The role of cytokines in classical Hodgkin lymphoma. Blood99(12), 4283–4297 (2002).
  • Mathas S , JohrensK, JoosSet al. Elevated NF-kappaB p50 complex formation and Bcl-3 expression in classical Hodgkin, anaplastic large-cell, and other peripheral T-cell lymphomas. Blood106(13), 4287–4293 (2005).
  • Schmitz R , HansmannML, BohleVet al. TNFAIP3 (A20) is a tumor suppressor gene in Hodgkin lymphoma and primary mediastinal B cell lymphoma. J. Exp. Med.206(5), 981–989 (2009).
  • Emmerich F , TheurichS, HummelMet al. Inactivating I kappa B epsilon mutations in Hodgkin/Reed–Sternberg cells. J. Pathol.201(3), 413–420 (2003).
  • Leonard WJ . Role of Jak kinases and STATs in cytokine signal transduction. Int. J. Hematol.73(3), 271–277 (2001).
  • Karin M , GallagherE. TNFR signaling: ubiquitin-conjugated TRAFfic signals control stop-and-go for MAPK signaling complexes. Immunol. Rev.228(1), 225–240 (2009).
  • Manning G , WhyteDB, MartinezR, HunterT, SudarsanamS. The protein kinase complement of the human genome. Science298(5600), 1912–1934 (2002).
  • Messineo C , JamersonMH, HunterEet al. Gene expression by single Reed–Sternberg cells: pathways of apoptosis and activation. Blood91(7), 2443–2451 (1998).
  • Fiumara P , SnellV, LiYet al. Functional expression of receptor activator of nuclear factor kappaB in Hodgkin disease cell lines. Blood98(9), 2784–2790 (2001).
  • Hedvat CV , JaffeES, QinJet al. Macrophage-derived chemokine expression in classical Hodgkin’s lymphoma: application of tissue microarrays. Mod. Pathol.14(12), 1270–1276 (2001).
  • Aldinucci D , LorenzonD, CattaruzzaLet al. Expression of CCR5 receptors on Reed–Sternberg cells and Hodgkin lymphoma cell lines: involvement of CCL5/Rantes in tumor cell growth and microenvironmental interactions. Int. J. Cancer122(4), 769–776 (2008).
  • Cattaruzza L , GloghiniA, OlivoKet al. Functional coexpression of Interleukin (IL)-7 and its receptor (IL-7R) on Hodgkin and Reed–Sternberg cells: involvement of IL-7 in tumor cell growth and microenvironmental interactions of Hodgkin’s lymphoma. Int. J. Cancer125(5), 1092–1101 (2009).
  • Tanijiri T , ShimizuT, UehiraKet al. Hodgkin’s Reed–Sternberg cell line (KM-H2) promotes a bidirectional differentiation of CD4+CD25+Foxp3+ T cells and CD4+ cytotoxic T lymphocytes from CD4+ naive T cells. J. Leukoc. Biol.82(3), 576–584 (2007).
  • Kadin ME , AgnarssonBA, EllingsworthLR, NewcomSR. Immunohistochemical evidence of a role for transforming growth factor beta in the pathogenesis of nodular sclerosing Hodgkin’s disease. Am. J. Pathol.136(6), 1209–1214 (1990).
  • Kim LH , EowGI, PehSC, PoppemaS. The role of CD30, CD40 and CD95 in the regulation of proliferation and apoptosis in classical Hodgkin’s lymphoma. Pathology35(5), 428–435 (2003).
  • Gandhi MK , MollG, SmithCet al. Galectin-1 mediated suppression of Epstein–Barr virus specific T-cell immunity in classic Hodgkin lymphoma. Blood110(4), 1326–1329 (2007).
  • Green MR , MontiS, RodigSJet al. Integrative analysis reveals selective 9p24.1 amplification, increased PD-1 ligand expression, and further induction via JAK2 in nodular sclerosing Hodgkin lymphoma and primary mediastinal large B-cell lymphoma. Blood116(17), 3268–3277 (2010).
  • Diepstra A , Van ImhoffGW, Karim-KosHEet al. HLA class II expression by Hodgkin Reed–Sternberg cells is an independent prognostic factor in classical Hodgkin’s lymphoma. J. Clin. Oncol.25(21), 3101–3108 (2007).
  • Poppema S . Immunobiology and pathophysiology of Hodgkin lymphomas. Hematology Am. Soc. Hematol. Educ. Program2005, 231–238 (2005).
  • Reichel J , ChadburnA, RubinsteinPGet al. Flow-sorting and exome sequencing reveals the oncogenome of primary Hodgkin and Reed–Sternberg cells. Blood125(7), 1061–1072 (2015).
  • Steidl C , LeeT, ShahSPet al. Tumor-associated macrophages and survival in classic Hodgkin’s lymphoma. N. Engl. J. Med.362(10), 875–885 (2010).
  • Klein JL , NguyenTT, Bien-WillnerGAet al. CD163 immunohistochemistry is superior to CD68 in predicting outcome in classical Hodgkin lymphoma. Am. J. Clin. Pathol.141(3), 381–387 (2014).
  • Kamper P , BendixK, Hamilton-DutoitS, HonoreB, NyengaardJR, D’amoreF. Tumor-infiltrating macrophages correlate with adverse prognosis and Epstein–Barr virus status in classical Hodgkin’s lymphoma. Haematologica96(2), 269–276 (2011).
  • Harris JA , JainS, RenQ, ZarinehA, LiuC, IbrahimS. CD163 versus CD68 in tumor associated macrophages of classical Hodgkin lymphoma. Diagn. Pathol.7, 12 (2012).
  • Azambuja D , NatkunamY, BiasoliIet al. Lack of association of tumor-associated macrophages with clinical outcome in patients with classical Hodgkin’s lymphoma. Ann. Oncol.23(3), 736–742 (2012).
  • Van Gorp H , DelputtePL, NauwynckHJ. Scavenger receptor CD163, a Jack-of-all-trades and potential target for cell-directed therapy. Mol. Immunol.47(7–8), 1650–1660 (2010).
  • Mantovani A , GermanoG, MarchesiF, LocatelliM, BiswasSK. Cancer-promoting tumor-associated macrophages: new vistas and open questions. Eur. J. Immunol.41(9), 2522–2525 (2011).
  • Tan KL , ScottDW, HongFet al. Tumor-associated macrophages predict inferior outcomes in classic Hodgkin lymphoma: a correlative study from the E2496 Intergroup trial. Blood120(16), 3280–3287 (2012).
  • Germano G , FrapolliR, BelgiovineCet al. Role of macrophage targeting in the antitumor activity of trabectedin. Cancer Cell23(2), 249–262 (2013).
  • Weihrauch MR , ManzkeO, BeyerMet al. Elevated serum levels of CC thymus and activation-related chemokine (TARC) in primary Hodgkin’s disease: potential for a prognostic factor. Cancer Res.65(13), 5516–5519 (2005).
  • Plattel WJ , Van Den BergA, VisserLet al. Plasma thymus and activation-regulated chemokine as an early response marker in classical Hodgkin’s lymphoma. Haematologica97(3), 410–415 (2012).
  • Sauer M , PlutschowA, JachimowiczRDet al. Baseline serum TARC levels predict therapy outcome in patients with Hodgkin lymphoma. Am. J. Hematol.88(2), 113–115 (2013).
  • Mestre F , GutierrezA, RamosRet al. Expression of COX-2 on Reed–Sternberg cells is an independent unfavorable prognostic factor in Hodgkin lymphoma treated with ABVD. Blood119(25), 6072–6079 (2012).
  • Younes A , OkiY, BociekRGet al. Mocetinostat for relapsed classical Hodgkin’s lymphoma: an open-label, single-arm, Phase 2 trial. Lancet Oncol.12(13), 1222–1228 (2011).
  • Younes A , SuredaA, Ben-YehudaDet al. Panobinostat in patients with relapsed/refractory Hodgkin’s lymphoma after autologous stem-cell transplantation: results of a Phase II study. J. Clin. Oncol.30(18), 2197–2203 (2012).
  • Johnston PB , InwardsDJ, ColganJPet al. A Phase II trial of the oral mTOR inhibitor everolimus in relapsed Hodgkin lymphoma. Am. J. Hematol.85(5), 320–324 (2010).
  • Guidetti A , Carlo-StellaC, LocatelliSLet al. Phase II study of sorafenib in patients with relapsed or refractory lymphoma. Br. J. Hematol.158(1), 108–119 (2012).
  • Greenwald DR , LiH, LugerSMet al. A Phase II study of sorafenib (BAY 43–9006) in recurrent diffuse large B cell lymphoma: an eastern cooperative oncology group study (E1404). J. Hematol. Oncol.6, 46 (2013).
  • Guidetti A , Carlo-StellaC, LocatelliSLet al. Phase II study of perifosine and sorafenib dual-targeted therapy in patients with relapsed or refractory lymphoproliferative diseases. Clin. Cancer. Res.20(22), 5641–5651 (2014).
  • Fehniger TA , LarsonS, TrinkausKet al. A Phase 2 multicenter study of lenalidomide in relapsed or refractory classical Hodgkin lymphoma. Blood118(19), 5119–5125 (2011).
  • Chen R , PalmerJM, TsaiNCet al. Brentuximab vedotin is associated with improved progression-free survival after allogeneic transplantation for hodgkin lymphoma. Biol. Blood Marrow Transplant.20(11), 1864–1868 (2014).
  • Gopal AK , RamchandrenR, O’connorOAet al. Safety and efficacy of brentuximab vedotin for Hodgkin lymphoma recurring after allogeneic stem cell transplantation. Blood120(3), 560–568 (2012).
  • Green MR , RodigS, JuszczynskiPet al. Constitutive AP-1 activity and EBV infection induce PD-L1 in Hodgkin lymphomas and posttransplant lymphoproliferative disorders: implications for targeted therapy. Clin. Cancer. Res.18(6), 1611–1618 (2012).
  • Locatelli SL , ClerisL, StirparoGGet al. BIM upregulation and ROS-dependent necroptosis mediate the antitumor effects of the HDACi givinostat and sorafenib in Hodgkin lymphoma cell line xenografts. Leukemia28(9), 1861–1871 (2014).
  • Locatelli SL , GiacominiA, GuidettiAet al. Perifosine and sorafenib combination induces mitochondrial cell death and antitumor effects in NOD/SCID mice with Hodgkin lymphoma cell line xenografts. Leukemia27(8), 1677–1687 (2013).
  • Younes A , ProB, FayadL. Experience with bortezomib for the treatment of patients with relapsed classical Hodgkin lymphoma. Blood107(4), 1731–1732 (2006).
  • Younes A , OkiY, MclaughlinPet al. Phase 2 study of rituximab plus ABVD in patients with newly diagnosed classical Hodgkin lymphoma. Blood119(18), 4123–4128 (2012).
  • Kasamon YL , JaceneHA, GockeCDet al. Phase 2 study of rituximab-ABVD in classical Hodgkin lymphoma. Blood119(18), 4129–4132 (2012).
  • Smith SM , SchoderH, JohnsonJLet al. The anti-CD80 primatized monoclonal antibody, galiximab, is well-tolerated but has limited activity in relapsed Hodgkin lymphoma: Cancer and Leukemia Group B 50602 (Alliance). Leukemia Lymphoma54(7), 1405–1410 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.