286
Views
0
CrossRef citations to date
0
Altmetric
Review

A Comprehensive Narrative Review of Diagnostic Biomarkers in Human Primary Membranous Nephropathy

&
Pages 781-797 | Received 11 Mar 2017, Accepted 13 Jun 2017, Published online: 11 Sep 2017

References

  • Rychlík I , JančováE, TesařVet al. The Czech registry of renal biopsies. Occurrence of renal diseases in the years 1994–2000. Nephrol. Dial. Transplant.19(12), 3040–3049 (2004).
  • Hogan SL , MullerKE, JennetteJC, FalkRJ. A review of therapeutic studies of idiopathic membranous glomerulopathy. Am. J. Kidney Dis.25(6), 862–875 (1995).
  • Beck LH , SalantDJ. Membranous nephropathy: from models to man. J. Crit. Invest.124(6), 2307–2314 (2014).
  • Mcquarrie EP , MackinnonB, StewartGA, GeddesCC. Membranous nephropathy remains the commonest primary cause of nephrotic syndrome in a northern European Caucasian population. Nephrol. Dial. Transplant.25(3), 1009–1010 (2010).
  • Cambier J-F , RoncoP. Onco-nephrology: glomerular diseases with cancer. Clin. J. Am. Soc. Nephrol.7(10), 1701–1712 (2012).
  • Bacchetta J , JuillardL, CochatP, DrozJ-P. Paraneoplastic glomerular diseases and malignancies. Crit. Rev. Onc./Hem.70(1), 39–58 (2009).
  • Beck LH . Membranous nephropathy and malignancy. Semin. Nephrol.30(6), 635–644 (2010).
  • Kwatra IS , PrasherP. Pathogenesis of membranous nephropathy: update. J. Assoc. Phys. India61, 807–810 (2013).
  • Chadban S , AtkinsR. Glomerulonephritis. Lancet365(9473), 1797–1806 (2005).
  • Glassock RJ . Diagnosis and natural course of membranous nephropathy. Semin. Nephrol.23(4), 324–332 (2003).
  • Appel G . Renal biopsy. How effective, what technique and how safe?J. Nephrol.6, 4 (1993).
  • Parrish A . Complications of percutaneous renal biopsy: a review of 37 years’ experience. Clin. Nephrol.38(3), 135–141 (1992).
  • Lai WL , YehTH, ChenPMet al. Membranous nephropathy: a review on the pathogenesis, diagnosis, and treatment. J. Form. Med. Assoc.114(2), 102–111 (2015).
  • Lee BH , ChoHY, KangHGet al. Idiopathic membranous nephropathy in children. Ped. Nephrol.21(11), 1707–1715 (2006).
  • Bazzi C , RizzaV, CasellatoDet al. Fractional excretion of IgG in idiopathic membranous nephropathy with nephrotic syndrome: a predictive marker of risk and drug responsiveness. BMC Nephrol.15(1), 74 (2014).
  • Rodriguez E , CosioFG, NasrSHet al. The pathology and clinical features of early recurrent membranous glomerulonephritis. Am. J. Transplant.12(4), 1029–1038 (2012).
  • Ayalon R , BeckLH. Membranous nephropathy: not just a disease for adults. Ped. Nephrol.30(1), 31–39 (2015).
  • Segawa Y , HisanoS, MatsushitaMet al. IgG subclasses and complement pathway in segmental and global membranous nephropathy. Ped. Nephrol.25(6), 1091–1099 (2010).
  • Mellors RC , OrtegaLG, HolmanHR. Role of gamma globulins in pathogenesis of renal lesions in systemic lupus erythematosus and chronic membranous glomerulonephritis, with an observation on the lupus erythematosus cell reaction. J. Exp. Med.106(2), 191–202 (1957).
  • Huang CC , LehmanA, AlbawardiAet al. IgG subclass staining in renal biopsies with membranous glomerulonephritis indicates subclass switch during disease progression. Mod. Pathol.26(6), 799–805 (2013).
  • Wasserstein AG . Membranous glomerulonephritis. J. Am. Soc. Nephrol.8(4), 664–674 (1997).
  • Ronco P , DebiecH. Pathophysiological advances in membranous nephropathy: time for a shift in patient's care. Lancet385(9981), 1983–1992 (2015).
  • Walport MJ . Complement. First of two parts. N. Engl. J. Med.344(14), 1058–1066 (2001).
  • Topham PS , HaydarSA, KuphalR, LightfootJD, SalantDJ. Complement-mediated injury reversibly disrupts glomerular epithelial cell actin microfilaments and focal adhesions. Kidney Int.55(5), 1763–1775 (1999).
  • Petermann AT , KrofftR, BlonskiMet al. Podocytes that detach in experimental membranous nephropathy are viable. Kidney Int.64(4), 1222–1231 (2003).
  • Endo M , FukeY, TamanoMet al. Glomerular deposition and urinary excretion of complement factor H in idiopathic membranous nephropathy. Nephron. Clin. Pract.97(4), c147–c153 (2004).
  • Schulze M , DonadioJV, PruchnoCJet al. Elevated urinary excretion of the C5b-9 complex in membranous nephropathy. Kidney Int.40(3), 533–538 (1991).
  • Ma H , SandorDG, BeckLH. The role of complement in membranous nephropathy. Semin. Nephrol.33(6), 531–542 (2013).
  • Salant DJ . Genetic variants in membranous nephropathy: perhaps a perfect storm rather than a straightforward conformeropathy?J. Am. Soc. Nephrol.24(4), 525–528 (2013).
  • Beck LH Jr , BonegioRG, LambeauGet al. M-type phospholipase A2 receptor as target antigen in idiopathic membranous nephropathy. N. Engl. J. Med.361(1), 11–21 (2009).
  • Hofstra JM , BeckLH, BeckDM, WetzelsJF, SalantDJ. Anti-phospholipase A2 receptor antibodies correlate with clinical status in idiopathic membranous nephropathy. Clin. J. Am. Soc. Nephrol.6(6), 1286–1291 (2011).
  • Qin W , BeckLH, ZengCet al. Anti-phospholipase A2 receptor antibody in membranous nephropathy. J. Am. Soc. Nephrol.22(6), 1137–1143 (2011).
  • Debiec H , HanoyM, FrancoisAet al. Recurrent membranous nephropathy in an allograft caused by IgG3κ targeting the PLA2 receptor. J. Am. Soc. Nephrol.23(12), 1949–1954 (2012).
  • Du Y , LiJ, HeFet al. The diagnosis accuracy of PLA2R-AB in the diagnosis of idiopathic membranous nephropathy: a meta-analysis. PLoS ONE9(8), e104936 (2014).
  • Dai H , ZhangH, HeY. Diagnostic accuracy of PLA2R autoantibodies and glomerular staining for the differentiation of idiopathic and secondary membranous nephropathy: an updated meta-analysis. Sci. Rep.5, 8803 (2015).
  • Tomas NM , BeckLHJr, Meyer-SchwesingerCet al. Thrombospondin type-1 domain-containing 7A in idiopathic membranous nephropathy. N. Engl. J. Med.371(24), 2277–2287 (2014).
  • Tomas NM , HoxhaE, ReinickeATet al. Autoantibodies against thrombospondin type 1 domain-containing 7A induce membranous nephropathy. J. Clin. Invest.126(7), 2519 (2016).
  • Hoxha E , BeckLH, WiechTet al. An indirect immunofluorescence method facilitates detection of thrombospondin type 1 domain-containing 7A-specific antibodies in membranous nephropathy. J. Am. Soc. Nephrol.28(2), 520–531 (2016).
  • Debiec H , GuigonisV, MougenotBet al. Antenatal membranous glomerulonephritis due to anti-neutral endopeptidase antibodies. N. Engl. J. Med.346(26), 2053–2060 (2002).
  • Debiec H , NautaJ, CouletFet al. Role of truncating mutations in MME gene in fetomaternal alloimmunisation and antenatal glomerulopathies. Lancet364(9441), 1252–1259 (2004).
  • Yue H , TurnerAJ. Old enzyme with new interest: review of newly understood NEP functions and its potential regulators. Zhongguo Shengwu Huaxue yu Fenzi Shengwu Xuebao23(2), 85–92 (2007).
  • Woodard GE , RosadoJA. Recent advances in natriuretic peptide research. J. Cell. Mol. Med.11(6), 1263–1271 (2007).
  • Hu P , XuanQ, HuB, LuL, QinYH. Anti-neutral endopeptidase, natriuretic peptides disarrangement, and proteinuria onset in membranous nephropathy. Mol. Biol. Rep.40(4), 2963–2967 (2013).
  • Lin L , WangWM, PanXXet al. Biomarkers to detect membranous nephropathy in Chinese patients. Oncotarget7(42), 67868–67879 (2016).
  • Kozioł M , SikoraA, Kozioł-MontewkaMet al. Preliminary results of research on a new marker of idiopathic membranous nephropathy: anti-PLA2R. Pol. Merkur. Lekarski.36(213), 171–174 (2014).
  • Svobodova B , HonsovaE, RoncoP, TesarV, DebiecH. Kidney biopsy is a sensitive tool for retrospective diagnosis of PLA2R-related membranous nephropathy. Nephrol. Dial. Transplant.28(7), 1839–1844 (2012).
  • Oh YJ , YangSH, KimDK, KangS-W, KimYS. Autoantibodies against phospholipase A 2 receptor in Korean patients with membranous nephropathy. PLoS ONE8(4), e62151 (2013).
  • Ardalan M-R , NasriH. Anti-phospholipase A2 receptor antibody in idiopathic membranous nephropathy: new concepts. J. Res. Med. Sci.18(6), 459 (2013).
  • Larsen CP , CosseyLN, BeckLH. THSD7A staining of membranous glomerulopathy in clinical practice reveals cases with dual autoantibody positivity. Mod. Pathol.29(4), 421–426 (2016).
  • Iwakura T , OhashiN, KatoA, BabaS, YasudaH. Prevalence of enhanced granular expression of thrombospondin type-1 domain-containing 7A in the glomeruli of Japanese patients with idiopathic membranous nephropathy. PLoS ONE10(9), e0138841 (2015).
  • Hill PA , McraeJL, DwyerKM. PLA2R and membranous nephropathy: a 3 year prospective Australian study. Nephrology21(5), 397–403 (2016).
  • Kumar V , RamachandranR, KumarAet al. Antibodies to m-type phospholipase A2 receptor in children with idiopathic membranous nephropathy. Nephrology20(8), 572–575 (2015).
  • Lin W , LiH, LiXet al. The relationship between anti-phospholipase A2 receptor antibody and idiopathic membranous nephropathy. Zhonghua nei ke za zhi54(9), 783–788 (2015).
  • Vivarelli M , EmmaF, PelléTet al. Genetic homogeneity but IgG subclass–dependent clinical variability of alloimmune membranous nephropathy with anti-neutral endopeptidase antibodies. Kidney Int.87(3), 602–609 (2015).
  • Verma M , DuttaS. DNA sequences encoding enolase are remarkably conserved from yeast to mammals. Life Sci.55(12), 893–899 (1994).
  • Walter M , BergH, LeidenbergerFA, SchweppeK-W, NorthemannW. Autoreactive epitopes within the human α-enolase and their recognition by sera from patients with endometriosis. J. Autoimmun.8(6), 931–945 (1995).
  • Adamus G , AptsiauriN, GuyJ, HeckenlivelyJ, FlanneryJ, HargravePA. The occurrence of serum autoantibodies against enolase in cancer-associated retinopathy. Clin. Immunol. Immunopathol.78(2), 120–129 (1996).
  • Sabbatini A , DolcherM, MarchiniBet al. Alpha-enolase is a renal-specific antigen associated with kidney involvement in mixed cryoglobulinemia. Clin. Exp. Rheumatol.15(6), 655–658 (1996).
  • Gitlits V , SentryJ, MatthewM, SmithA, TohBH. Autoantibodies to evolutionarily conserved epitopes of enolase in a patient with discoid lupus erythematosus. Immunology92(3), 362–368 (1997).
  • Wakui H , ImaiH, KomatsudaA, MiuraA. Circulating antibodies against α-enolase in patients with primary membranous nephropathy (MN). Clin. Exp. Immunol.118(3), 445 (1999).
  • Murtas C , BruschiM, CandianoGet al. Coexistence of different circulating anti-podocyte antibodies in membranous nephropathy. Clin. J. Am. Soc. Nephrol.7(9), 1394–1400 (2012).
  • Bruschi M , CarnevaliML, MurtasCet al. Direct characterization of target podocyte antigens and auto-antibodies in human membranous glomerulonephritis: Alfa-enolase and borderline antigens. J. Proteome74(10), 2008–2017 (2011).
  • Prunotto M , CarnevaliML, CandianoGet al. Autoimmunity in membranous nephropathy targets aldose reductase and SOD2. J. Am. Soc. Nephrol.21(3), 507–519 (2010).
  • Srivastava S , SpiteM, TrentJO, WestMB, AhmedY, BhatnagarA. Aldose reductase-catalyzed reduction of aldehyde phospholipids. J. Biol. Chem.279(51), 53395–53406 (2004).
  • Heymann W , LundH, HackelD. The nephrotic syndrome in rats; with special reference to the progression of the glomerular lesion and to the use of nephrotoxic sera obtained from ducks. J. Lab. Clin. Med.39(2), 218–224 (1952).
  • Konvalinka A , ScholeyJW, DiamandisEP. Searching for new biomarkers of renal diseases through proteomics. Clin. Chem.58(2), 353–365 (2012).
  • Wilkins MR , SanchezJ-C, GooleyAAet al. Progress with proteome projects: why all proteins expressed by a genome should be identified and how to do it. Biotech. Gene Eng. Rev.13(1), 19–50 (1996).
  • Cagney G , ParkS, ChungCet al. Human tissue profiling with multidimensional protein identification technology. J. Proteome Res.4(5), 1757–1767 (2005).
  • Kalantari S , RutishauserD, SamavatSet al. Urinary prognostic biomarkers and classification of IgA nephropathy by high resolution mass spectrometry coupled with liquid chromatography. PLoS ONE8(12), e80830 (2013).
  • Samavat S , KalantariS, NafarMet al. Diagnostic urinary proteome profile for immunoglobulin a nephropathy. Iran. J. Kid. Dis.9(3), 239–248 (2015).
  • Nafar M , KalantariS, SamavatS, Rezaei-TaviraniM, RutishuserD, ZubarevRA. The novel diagnostic biomarkers for focal segmental glomerulosclerosis. Int. J. Nephrol. 2014, 574261 (2014).
  • Kalantari S , NafarM, SamavatS, Rezaei-TaviraniM, RutishauserD, ZubarevR. Urinary prognostic biomarkers in patients with focal segmental glomerulosclerosis. Nephrourol. Mon.6(2), e16806 (2014).
  • Kalantari S , NafarM, RutishauserDet al. Predictive urinary biomarkers for steroid-resistant and steroid-sensitive focal segmental glomerulosclerosis using high resolution mass spectrometry and multivariate statistical analysis. BMC Nephrol.15(1), 141 (2014).
  • Kalantari S , NafarM, Rezaei-TaviraniM. Urinary proteomics in nephrotic syndrome. J. ParaMed. Sci.4(4), 108–115 (2013).
  • Kalantari S , JafariA, MoradpoorR, GhasemiE, KhalkhalE. Human urine proteomics: analytical techniques and clinical applications in renal diseases. Int. J. Proteom.2015, 782798 (2015).
  • Rood IM , MerchantML, WilkeyDWet al. Increased expression of lysosome membrane protein 2 in glomeruli of patients with idiopathic membranous nephropathy. Proteomics15(21), 3722–3730 (2015).
  • Beeken M , LindenmeyerMT, BlattnerSMet al. Alterations in the ubiquitin proteasome system in persistent but not reversible proteinuric diseases. J. Am. Soc. Nephrol.25(11), 2511–2525 (2014).
  • Lee DHK , GanP-Y, KaterelosMet al. Absence of the lysosomal protein Limp-2 attenuates renal injury in crescentic glomerulonephritis. Immunol. Cell Biol.92(5), 400–408 (2014).
  • Giulia L , RiccardoM, MarcoCet al. Identification and characterization of new proteins in podocyte dysfunction of membranous nephropathy by proteomic analysis of renal biopsy. Curr. Pharmacogen. Pers. Med.11(1), 42–52 (2013).
  • Sui W , ZhangR, ChenJet al. Comparative proteomic analysis of membranous nephropathy biopsy tissues using quantitative proteomics. Exp. Ther. Med.9(3), 805–810 (2015).
  • Ferguson MA , WaikarSS. Established and emerging markers of kidney function. Clin. Chem.58(4), 680–689 (2012).
  • Van Den Brand JA , HofstraJM, WetzelsJF. Prognostic value of risk score and urinary markers in idiopathic membranous nephropathy. Clin. J. Am. Soc. Nephrol.7(8), 1242–1248 (2012).
  • Van Den Brand JA , HofstraJM, WetzelsJF. Low-molecular-weight proteins as prognostic markers in idiopathic membranous nephropathy. Clin. J. Am. Soc. Nephrol.6(12), 2846–2853 (2011).
  • Kerjaschki D , SharkeyDJ, FarquharMG. Identification and characterization of podocalyxin – the major sialoprotein of the renal glomerular epithelial cell. J. Cell Biol.98(4), 1591–1596 (1984).
  • Hara M , YamamotoT, YanagiharaTet al. Urinary excretion of podocalyxin indicates glomerular epithelial cell injuries in glomerulonephritis. Nephron69(4), 397–403 (1995).
  • Imaizumi T , NakatochiM, AkiyamaSIet al. Urinary podocalyxin as a biomarker to diagnose membranous nephropathy. PLoS ONE11(9), e0163507 (2016).
  • Sui W , DaiY, ZhangY, ChenJ, LiuH, HuangH. Proteomic profiling of nephrotic syndrome in serum using magnetic bead based sample fractionation & MALDI-TOF MS. Indian J. Med. Res.135(3), 305 (2012).
  • Huang L , WenQ, ZhaoMet al. Serum peptidome profiling for identifying pathological patterns in patients with primary nephrotic syndrome. Chinese J. Med. Res.125(24), 4418–4423 (2012).
  • Cheng C-W , ChangL-C, TsengT-L, WuC-C, LinY-F, ChenJ-S. Phosphotriesterase-related protein sensed albuminuria and conferred renal tubular cell activation in membranous nephropathy. J. BioMed. Sci.21(1), 573 (2014).
  • Seki T , AsanumaK, AsaoRet al. Significance of urinary full-length megalin in patients with IgA nephropathy. PLoS ONE9(12), e114400 (2014).
  • Wang Q , PangW, CuiZet al. Upregulation of soluble epoxide hydrolase in proximal tubular cells mediated proteinuria-induced renal damage. Am. J. Physiol. Renal. Physiol.304(2), F168–F176 (2013).
  • Sha W-G , ShenL, ZhouL, XuD-Y, LuG-Y. Down-regulation of miR-186 contributes to podocytes apoptosis in membranous nephropathy. BioMed. Pharmacother.75, 179–184 (2015).
  • Jiang S , ChuangPY, LiuZ-H, HeJC. The primary glomerulonephritides: a systems biology approach. Nat. Rev. Nephrol.9(9), 500–512 (2013).
  • Hodgin JB , CohenCD. Experimental approaches to the human renal transcriptome. Semin. Nephrol.30(5), 455–467 (2010).
  • Pesce F , PathanS, SchenaFP. From omics to personalized medicine in nephrology: integration is the key. Nephrol. Dial. Transplant.28(1), 24–28 (2013).
  • Sui W , HeH, YanQ, ChenJ, ZhangR, DaiY. ChIP-seq analysis of histone H3K9 trimethylation in peripheral blood mononuclear cells of membranous nephropathy patients. Braz. J. Med. Biol. Res.47(1), 42–49 (2014).
  • Cai X , LiuN, QiaoYet al. Decreased TIM-3 mRNA expression in peripheral blood mononuclear cells from nephropathy patients. Genet. Mol. Res.14(2), 6543–6548 (2015).
  • Lee J , PhongB, EgloffAM, KaneLP. TIM polymorphisms – genetics and function. Gene Immun.12(8), 595–604 (2011).
  • Nagasawa Y , OkuzakiD, MusoEet al. IFI27 Is a useful genetic marker for diagnosis of immunoglobulin A nephropathy and membranous nephropathy using peripheral blood. PLoS ONE11(4), e0153252 (2016).
  • Liu S , MeiP, ShiWet al. Urinary messenger RNA of the receptor activator of NF-kappaB could be used to differentiate between minimal change disease and membranous nephropathy. Biomarkers19(7), 597–603 (2014).
  • Liu S , ShiW, XiaoHet al. Receptor activator of NF-kappaB and podocytes: towards a function of a novel receptor-ligand pair in the survival response of podocyte injury. PLoS ONE7(7), e41331 (2012).
  • Mezzano SA , DroguettMA, BurgosMEet al. Overexpression of chemokines, fibrogenic cytokines, and myofibroblasts in human membranous nephropathy. Kidney Int.57(1), 147–158 (2000).
  • Kuroki A , IyodaM, ShibataT, SugisakiT. Th2 cytokines increase and stimulate B cells to produce IgG4 in idiopathic membranous nephropathy. Kidney Int.68(1), 302–310 (2005).
  • Reyes-Thomas J , BlancoI, PuttermanC. Urinary biomarkers in lupus nephritis. Clin. Rev. Aller. Immunol.40(3), 138–150 (2011).
  • Sanchez-Niño MD , PovedaJ, SanzABet al. Fn14 in podocytes and proteinuric kidney disease. Biochim. Biophys. Acta1832(12), 2232–2243 (2013).
  • Yoshimoto K , WadaT, FuruichiK, SakaiN, IwataY, YokoyamaH. CD68 and MCP-1/CCR2 expression of initial biopsies reflect the outcomes of membranous nephropathy. Nephron. Clin. Pract.98(1), c25–c34 (2004).
  • Esteller M . Non-coding RNAs in human disease. Nat. Rev. Genet.12(12), 861–874 (2011).
  • Bartel DP . MicroRNAs: genomics, biogenesis, mechanism, and function. Cell116(2), 281–297 (2004).
  • Wang G , TamL, LiEet al. Serum and urinary free microRNA level in patients with systemic lupus erythematosus. Lupus20(5), 493–500 (2011).
  • Neal CS , MichaelMZ, PimlottLK, YongTY, LiJY, GleadleJM. Circulating microRNA expression is reduced in chronic kidney disease. Nephrol. Dial. Transplant.26(11), 3794–3802 (2011).
  • Lorenzen JM , KielsteinJT, HaferCet al. Circulating miR-210 predicts survival in critically ill patients with acute kidney injury. Clin. J. Am. Soc. Nephrol.6(7), 1540–1546 (2011).
  • Chen W , LinX, HuangJet al. Integrated profiling of microRNA expression in membranous nephropathy using high-throughput sequencing technology. Int. J. Mol. Med.33(1), 25–34 (2014).
  • Ifuku M , MiyakeK, WatanebeMet al. Various roles of Th cytokine mRNA expression in different forms of glomerulonephritis. Am. J. Nephrol.38(2), 115–123 (2013).
  • Wickman L , AfshinniaF, WangSQet al. Urine podocyte mRNAs, proteinuria, and progression in human glomerular diseases. J. Am. Soc. Nephrol.24(12), 2081–2095 (2013).
  • Lavoz C , DroguettA, BurgosMEet al. Translational study of the Notch pathway in hypertensive nephropathy. Nefrologia34(3), 369–376 (2014).
  • Wang G , KwanBC-H, LaiFM-M, ChowK-M, LiPK-T, SzetoC-C. Urinary sediment miRNA levels in adult nephrotic syndrome. Clin. Chim. Acta418, 5–11 (2013).
  • Zhang W , ZhangC, ChenHet al. Evaluation of microRNAs miR-196a, miR-30a-5P, and miR-490 as biomarkers of disease activity among patients with FSGS. Clin. J. Am. Soc. Nephrol.9(9), 1545–1552 (2014).
  • Shi X , QuZ, ZhangLet al. Increased ratio of ICOS+/PD-1+ follicular helper T cells positively correlates with the development of human idiopathic membranous nephropathy. Clin. Exp. Pharmacol. Physiol.43(4), 410–416 (2016).
  • Wang B , ZuoK, WuYet al. Correlation between B lymphocyte abnormality and disease activity in patients with idiopathic membranous nephropathy. J. Int. Med. Res.39(1), 86–95 (2011).
  • Pozdzik A , BeukingaI, Gu-TrantienC, Willard-GalloK, NortierJ, PradierO. Circulating (CD3-CD19+CD20-IgD-CD27highCD38high) plasmablasts: a promising cellular biomarker for immune activity for anti-PLA2R1 related membranous nephropathy. Mediators Inflamm.2016, 7651024 (2016).
  • Zhu B , HuangJ. Successful treatment and clearing of circulating CD19-positive cells by rituximab in a child with idiopathic membranous nephropathy. Ped. Nephrol.26(4), 637–638 (2011).
  • Nicholson JK , LindonJC, HolmesE. ‘Metabonomics’: understanding the metabolic responses of living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR spectroscopic data. Xenobiotica29(11), 1181–1189 (1999).
  • Zhao Y-Y . Metabolomics in chronic kidney disease. Clin. Chim. Acta422, 59–69 (2013).
  • Darshi M , Van EspenB, SharmaK. Metabolomics in diabetic kidney disease: unraveling the biochemistry of a silent killer. Am. J. Nephrol.44(2), 92–103 (2016).
  • Wishart DS , TzurD, KnoxCet al. HMDB: the human metabolome database. Nucleic Acids Res.35(Suppl. 1), D521–D526 (2007).
  • Gao X , ChenW, LiRet al. Systematic variations associated with renal disease uncovered by parallel metabolomics of urine and serum. BMC Syst. Biol.6(1), S14 (2012).
  • Gowda GN , ZhangS, GuH, AsiagoV, ShanaiahN, RafteryD. Metabolomics-based methods for early disease diagnostics. Expert Rev. Mol. Diagn.8(5), 617–633 (2008).
  • Bothwell JH , GriffinJL. An introduction to biological nuclear magnetic resonance spectroscopy. Biol. Rev.86(2), 493–510 (2011).
  • Alonso A , MarsalS, JuliàA. Analytical methods in untargeted metabolomics: state of the art in 2015. Front. Bioeng. Biotech.3, 23 (2015).
  • Lee J-E , LeeYH, KimS-Yet al. Systematic biomarker discovery and coordinative validation for different primary nephrotic syndromes using gas chromatography–mass spectrometry. J. Chrom. A1453, 105–115 (2016).
  • Hao X , LiuX, WangWet al. Distinct metabolic profile of primary focal segmental glomerulosclerosis revealed by NMR-based metabolomics. PLoS ONE8(11), e78531 (2013).
  • Sohrabi-Jahromi S , MarashiS-A, KalantariS. A kidney-specific genome-scale metabolic network model for analyzing focal segmental glomerulosclerosis. Mamm. Genome27(3–4), 158–167 (2016).
  • Mirfazeli ES , MarashiS-A, KalantariS. In silico prediction of specific pathways that regulate mesangial cell proliferation in IgA nephropathy. Med. Hypotheses97, 38–45 (2016).
  • Gadegbeku CA , GipsonDS, HolzmanLBet al. Design of the Nephrotic Syndrome Study Network (NEPTUNE) to evaluate primary glomerular nephropathy by a multidisciplinary approach. Kidney Int.83(4), 749–756 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.