146
Views
0
CrossRef citations to date
0
Altmetric
Review

Sniffing Out Causes of Gastrointestinal Disorders: A Review of Volatile Metabolomic Biomarkers

, , , , &
Pages 1139-1148 | Received 06 Mar 2018, Accepted 30 May 2018, Published online: 07 Sep 2018

References

  • Vermeire S , PeetersM, RutgeertsP. Diagnostic approach to IBD. Hepato-Gastroenterology47(31), 44–48 (2000).
  • Poullis AP , ZarS, SundaramKKet al. A new, highly sensitive assay for C-reactive protein can aid the differentiation of inflammatory bowel disorders from constipation and diarrhoea-predominant functional bowel disorders. Eur. J. Gastroenterol. Hepatol.14(4), 409–412 (2002).
  • Filik L , DagliU, UlkerA. C-reactive protein and monitoring the activity of Crohn's disease. Adv. Ther.23(4), 655–662 (2006).
  • Solem CA , LoftusEV, TremaineWJ, HarmsenWS, ZinsmeisterAR, SandbornWJ. Correlation of C-reactive protein with clinical, endoscopic, histologic and radiographic activity in inflammatory bowel disease. Inflamm. Bowel. Dis.11(8), 707–712 (2005).
  • Karoui S , OuerdianeS, SerghiniMet al. Correlation between levels of C-reactive protein and clinical activity in Crohn's disease. Dig. Liver Dis.39(11), 1006–1010 (2007).
  • Consigny MR , ColombelJF. Biological markers of short-term relapse in Crohn's disease. Gastroenterology20, A53 ( 2001).
  • Florin THJ , PatersonEW, FowlerEV. Clinically active Crohn's disease in the presence of a low C-reactive protein. Scand J. Gastroenterol.41, 306–311 (2006).
  • Henriksen M , JahnsenJ, LygrenIet al. C-reactive protein: a predictive factor and marker of inflammation in inflammatory bowel disease: results from a prospective population-based study. Gut57(11), 1518–1523 (2008).
  • Gomes P , du BoulayC, SmithCL, HoldstockG. Relationship between disease activity indices and colonoscopic findings in patients with colonic inflammatory bowel disease. Gut27(1), 92–95 (1986).
  • Costa F , MumoloMG, CeccarelliLet al. Calprotectin is a stronger predictive marker of relapse in ulcerative colitis than in Crohn's disease. Gut54(3), 364–368 (2005).
  • Vermeire S , JoossensS, PeetersMet al. Comparative study of ASCA (anti-Saccharomyces cerevisia antibody) assays in inflammatory bowel disease. Gastroenterology120, 827–33 (2001).
  • Reumaux D , MasyE, DuclosBet al. Antineutrophil cytoplasmic auto-antibodies (ANCA) in ulcerative colitis (UC): no relationship with disease activity. Inflamm. Bowel Dis.6, 270–274 (2000).
  • van der Sluys Veer A , BiemondI, VerspagetHW, LamersCB. Fecal parameters in the assessment of activity in inflammatory bowel disease. Scand. J. Gastroenterol. Suppl.230, 106–110 (1999).
  • Siddiqui I , MajidH, AbidS. Update on clinical and research application of fecal biomarkers for gastrointestinal diseases. World J. Gastrointest. Pharmacol. Ther.8(1), 39–46 (2017).
  • Vermeire S , Van AsscheG, RutgeertsP. Laboratory markers in IBD: useful, magic or unnecessary toys?Gut55(3), 426–431 (2006 ).
  • von Roon AC , KaramountzosL, PurkayasthaSet al. Diagnostic precision of fecal calprotectin for inflammatory bowel disease and colorectal malignancy. Am. J. Gastroenterol.102(4), 803–813 (2007).
  • Tibble JA , BjamasonI. Fecal calprotectin as an index of intestinal inflammation. Drugs Today37(2), 85–96 (2001).
  • Parsi MA , ShenB, AchkarJPet al. Fecal lactoferrin for diagnosis of symptomatic patients with ileal pouch-anal anastomosis. Gastroenterology126(5), 1280–1286 (2004).
  • Tibble J , SigthorssonG, FosterRet al. High prevalence of NSAID enteropathy as shown by a simple fecal test Gut. 45(3), 362–366 (1999).
  • Fagerberg UL , LoofL, MerzougRD, HanssonLO, FinkelY. Fecal calprotectin levels in healthy children studied with an improved assay. J. Pediatr. Gastroenterol. Nutr.37, 468–472 (2003).
  • Roseth AG , KristinssonJ, FagerholMKet al. Fecal calprotectin: a novel test for the diagnosis of colorectal cancer? Scand. Gastroenterol. 28, 1073–1076 (1993).
  • Cicolella A . Volatile organic compounds: definition, classification and properties. Rev. Mal. Respir.25(2), 155–163 (2008 ).
  • Geypens B , ClausD, EvebepoelPet al. Influence of dietary protein supplements on the formation of bacterial metabolites in the colon. Gut41(1), 70–76 (1997).
  • Di Francesco F , FuocoR, TrivellaMG, CeccariniA. Breath analysis: trends in techniques and clinical applications. Microchem. J.79, 405–410 (2005).
  • Williams H , PembrokeA. Sniffer dogs in the melanoma clinic?Lancet1(8640), 734 ( 1989 ).
  • Sonoda H , KohnoeS, YamazatoTet al. Colorectal cancer screening with odor material by canine scent detection. Gut60(6), 814–819 (2011).
  • McCulloch M , JezierskiT, BroffmanM, HubbardA, TurnerK, JaneckiT. Diagnostic accuracy of canine scent detection in early- and late-stage lung and breast cancers. Integr. Cancer Ther.5(1), 30–39 (2006).
  • Horvath G , JärverudGA, JärverudS, HorváthI. Human ovarian carcinomas detected by specific odor. Integr. Cancer Ther.7(2), 76–80 (2008).
  • Willis CM , ChurchSM, GuestCMet al. Olfactory detection of human bladder cancer by dogs: proof-of-principle study. BMJ329(7468), 712 ( 2004).
  • Hinson AM , FerrandoAA, WilkersonBM, StackBC, BodennerDL. Scent-trained canine prospectively detects thyroid cancer in human urine samples. Presented at: Endocrine Society 2015. San Diego, CA, USA, March 2015 .
  • Quignon P , KirknessE, CadieuEet al. Comparison of the canine and human olfactory receptor gene repertoires. Genome Biol.4(12), R80 ( 2003).
  • Burdette SD , BernsteinJM. Does the nose know?: The odiferous diagnosis of Clostridium difficile-associated diarrhea. Clin. Infect. Dis.44(8), 1142 ( 2007).
  • Johansen A , VasishtaS, EdisonP, HoseinI. Clostridium difficile associated diarrhoea: how good are nurses at identifying the disease?Age Ageing31(6), 487–488 (2002).
  • Bomers MK , van AgtmaelMA, LuikH, van VeenMC, Vandenbroucke-GraulsCM, SmuldersYM. Using a dog's superior olfactory sensitivity to identify Clostridium difficile in stools and patients: proof-of-principle study. BMJ345(e7396), doi:10.1136/bmj.e7396 (2012).
  • Dixon E , ClubbC, PittmanSet al. Solid-phase microextraction and the human fecal VOC metabolome. PLoS ONE6(4), e18471 ( 2011).
  • Probert CS , AhmedI, KhalidT, JohnsonE, SmithS, RatcliffeN. Volatile organic compounds as diagnostic biomarkers in gastrointestinal and liver diseases. J. Gastrointestin. Liver Dis.18(3), 337–343 (2009).
  • Pauling L , TeranishiR, CaryP. Quantitative analysis of urine vapor and breath by gas–liquid partition chromatography. Proc. Natl Acad. Sci. USA68(10), 2374–2376 (1971).
  • Giugliano D , CerielloA, PaolissoG. Oxidative stress and diabetic vascular complications. Diabetes Care19(3), 257–267 (1996).
  • Dragonieri S , SchotR, MertensBJet al. An electronic nose in the discrimination of patients with asthma and controls. J. Allergy Clin. Immunol.120(4), 856–862 (2007).
  • Kokoszka J , NelsonRL, SwedlerWI, SkoseyJ, AbcarianH. Determination of inflammatory bowel disease activity by breath pentane analysis. Dis. Colon Rectum36(6), 597–601 (1993).
  • Pelli MA , TrovarelliG, CapodicasaE, De MedioGE, BassottiG. Breath alkanes determination in ulcerative colitis and Crohn's disease. Dis. Colon Rectum42(1), 71–76 (1999).
  • Sedghi S , KeshavarzianA, KlamutM, EiznhamerD, ZarlingEJ. Elevated breath ethane levels in active ulcerative colitis: evidence for excessive lipid peroxidation. Am. J. Gastroenterol.89(12), 2217–2221 (1994).
  • Hicks L , HuangJ, KumarSet al. Analysis of exhaled breath volatile organic compounds in inflammatory bowel disease: a pilot study. J. Crohns Colitis9(9), 731–737 (2015 ).
  • Baranska A , MujagicZ, SmolinskaAet al. Volatile organic compounds in breath as markers for irritable bowel syndrome: a metabolomic approach. Aliment Pharmacol. Ther.44(1), 45–56 (2016).
  • Kurada S , AlkhouriN, FiocchiC, DweikR, RiederF. Review article: breath analysis in inflammatory bowel diseases. Aliment. Pharmocol. Ther.41(4), 329–341 (2014 ).
  • Chen S , MahadevanV, ZieveL. Volatile fatty acids in the breath of patients with cirrhosis of the liver. J. Lab. Clin. Med.75(4), 622–627 (1970).
  • Kinsell LW , HarperHA, BartonHC, HutchinME, HessJR. Studies in methionine and sulfur metabolism: the fate of intravenously administered methionine, in normal individuals and in patients with liver damage. J. Clin. Invest.27(5), 677–688 (1948).
  • Lu SC , TsukamotoH, MatoJM. Role of abnormal methionine metabolism in alcoholic liver injury. Alcohol27(3), 155–162 (2002).
  • Van den Velde S , NevensF, Van heeP, Van SteenbergheD, QuirynenM. GC-MS analysis of breath odor compounds in liver patients. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.875(2), 344–348 (2008).
  • Seksik P , Rigottier-GoisL, GrametGet al. Alterations of the dominant fecal bacterial groups in patients with Crohn's disease of the colon. Gut52(2), 237–242 (2003).
  • Suarez F , FurneJ, SpringfieldJ, LevittM. Insights into human colonic physiology obtained from the study of flatus composition. Am. J. Physiol.272(5 Pt 1), G1028–G1033 (1997).
  • Arasaradnam RP , PharaohMW, WilliamsGJ, NwokoloCU, BardhanKP, KumarS. Colonic fermentation: more than meets the nose. Med. Hypotheses73(5), 753–756 (2009).
  • Arasaradnam RP , QuraishiN, KyrouIet al. Insights into ‘fermentonomics’: evaluation of volatile organic compounds in human disease using an electronic ‘e-nose’. J. Med. Eng. Technol.35(2), 87–91 (2011).
  • Garner CE , SmithS, ElvissNCet al. Identification of Campylobacter infection in chickens from volatile fecal emissions. Biomarkers13(4), 412–421 (2008).
  • De Lacy Costello B , EwenR, EwerAKet al. An analysis of volatiles in the headspace of the feces of neonates. J. Breath Res.2(3), 1752–1777 (2008).
  • Garner CE , EwerAK, ElasouadKet al. Analysis of fecal volatile organic compounds in preterm infants who develop necrotising enterocolitis: a pilot study. J. Pediatr. Gastroenterol. Nutr.49(5), 559–565 (2009).
  • Garner CE , SmithS, de Lacy CostelloBet al. Volatile organic compounds from feces and their potential for diagnosis of gastrointestinal disease. FASEB J.21(8), 1675–1688 (2007).
  • Ahmed I , GreenwoodR, CostelloBL, RatcliffeNM, ProbertCS. An investigation of fecal volatile organic metabolites in irritable bowel syndrome. PLoS ONE8(3), e58204 ( 2013 ).
  • Tana C , UmesakiY, ImaokaA, HandaT, KanazawaM, FukudoS. Altered profiles of intestinal microbiota and organic acids may be the origin of symptoms in irritable bowel syndrome. Neurogastroenterol. Motil.22(5), 512–519 (2010).
  • Kajander K , MyllyluomaE, KyronpaloSet al. Elevated pro-inflammatory and lipotoxic mucosal lipids characterise irritable bowel syndrome. World J. Gastroenterol.15(48), 6068–6074 (2009).
  • Ahmed I , GreenwoodR, CostelloBL, RatcliffeNM, ProbertCS. Investigation of fecal volatile organic metabolites as novel diagnostic biomarkers in inflammatory bowel disease. Aliment. Pharmacol. Ther.43(5), 596–611 (2016).
  • Fritz KS , PetersenDR. An overview of the chemistry and biology of reactive aldehydes. Free Radic. Biol. Med.59, 85–91 (2013).
  • Manichanh C , Rigottier-GoisL, BonnaudEet al. Reduced diversity of fecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut55(2), 205–211 (2006).
  • Aggio RBM , WhiteP, JayasenaH, de Lacy CostelloB, RatcliffeNM, ProbertCS. Irritable bowel syndrome and active inflammatory bowel disease diagnosed by fecal gas analysis. Aliment. Pharmacol. Ther.45(1), 82–90 (2017).
  • Di Cagno R , RizelloC, GagliardiFet al. Different fecal microbiota and volatile organic compounds in treated and untreated children with celiac disease. Appl. Environ. Microbiol.75(12), 3963–3971 (2009).
  • de Meij T , LarbiI, van der ScheeMPet al. Electronic nose can discriminate colorectal carcinoma and advanced adenomas by fecal volatile markers: proof-of-principle study. Int. J. Cancer.134(5), 1132–1138 (2013).
  • Zlatkis A , LiebichHM. Profile of volatile metabolites in human urine. Clin. Chem.17(7), 592–594 (1971).
  • Covington J , WestinbrinkE, O'ConnellNet al. Toward novel noninvasive detection of colon cancer using electronic nose and FAIMS. Gut62, A218–A219 (2013).
  • Arasaradnam RP , OuaretN, ThomasMGet al. A novel tool for non-invasive diagnosis and tracking of patients with inflammatory bowel disease. Inflamm. Bowel Dis.19(5), 999–1003 (2013).
  • Xue R , DongL, ZhangSet al. Investigation of volatile biomarkers in liver cancer blood using solid-phase microextraction and gas chromatography/mass spectrometry. Rapid Commun. Mass Spectrom.22(8), 1181–1186 (2008).
  • Itoh T , AkamatsuT, TsurutaA, ShinW. Selective detection of target volatile organic compounds in contaminated humid air using a sensor array with principal component analysis. Sensors17(7), 1662 ( 2017).
  • Shepherd S , McGuireN, de Lacy CostelloBet al. The use of a gas chromatograph coupled to a metal oxide sensor for rapid assessment of stool samples from irritable bowel syndrome and inflammatory bowel disease patients. J. Breath Res.8, 026001 ( 2014).
  • McGuire N , EwenR, CostelloCet al. Toward point-of-care testing for C. difficile infection by volatile profiling, using the combination of a short multicapillary gas chromatography column with metal oxide detection. Meas. Sci. Technol.25(6), 065108 ( 2014).
  • Smolinska A , BodelierAG, DallingaJWet al. The potential of volatile organic compounds for the detection of active disease in patients with ulcerative colitis. Aliment Pharmacol. Ther.45(9), 1244–1254 (2017).
  • Walton C , FowlerDP, TurnerCet al. Analysis of volatile organic compounds of bacterial origin in chronic gastrointestinal diseases. Inflamm. Bowel Dis.19(10), 2069–2078 (2013).
  • Arasaradnam RP , McFarlaneM, DaultonEet al. Noninvasive exhaled volatile organic biomarker analysis to detect inflammatory bowel disease. Dig. Liver Dis.48(2), 148 –1 53 (2016).
  • Altomare DF , Di LenaM, PorcelliFet al. Exhaled volatile organic compounds identify patients with colorectal cancer. Br. J. Surg.100(1), 144 –1 50 (2013 ).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.