2,647
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Surface Tension and Intrinsic Amyloid Fluorescence of Serum and Cerebrospinal Fluid Samples in Alzheimer´S Disease

, , , &
Pages 267-277 | Received 18 Sep 2018, Accepted 13 Dec 2018, Published online: 19 Mar 2019

References

  • Zaitsev S . Dynamic surface tension measurements as general approach to the analysis of animal blood plasma and serum. Adv. Colloid Interface Sci.235, 201–213 (2016).
  • Kazakov VN , VozianovAF, SinyachenkoOV, TrukhinDV, KovalchukVI, PisonU. Studies on the application of dynamic surface tensiometry of serum and cerebrospinal liquid for diagnostics and monitoring of treatment in patients who have rheumatic, neurological or oncological diseases. Adv. Colloid Interface Sci.86 (1–2), 1–38 (2000).
  • Fathi-Azarbayjani A , JouybanA. Surface tension in human pathophysiology and its application as a medical diagnostic tool. Bioimpacts5 (1), 29–44 (2015).
  • Wilfang J , LewczukP, RiedererPet al. Consensus paper of the WFSBP task force on biological markers of dementia: the role of CSF and blood analysis in the early and differential diagnosis of dementia. World J. Biol. Psych.6 (2), 69–84 (2005).
  • Mottaghy K , HahnA. Interfactial tension of some biological fluids: a comparative study. J. Clin. Chem. Clin. Biochem.19 (5), 267–271 (1981).
  • Lin TY , TimasheffSN. On the role of surface tension in the stablilization of globular proteins. Protein Sci.5 (2), 372–381 (1996).
  • Chichili VPR , KumarV, SivarramanJ. Linkers in the structural biology of protein–protein interactions. Protein Sci.22 (2), 153–167 (2012).
  • Schuster T , KrumpferJW, SchellenbergerS, FriedrichR, KlapperM, MüllenK. Effects of chemical structure on the dynamic and static surface tensions of short-chain, multi-arm nonionic fluorosurfactants. J. Colloid Interface Sci.428, 276–285 (2014).
  • Soreghan B , KosmoskiJ, GlabeC. Surfactant properties of Alzheimer´s A beta peptides and the mechanism of amyloid aggregation. J. Biol. Chem.269 (46), 28551–28554 (1994).
  • Ambroggio EE , KimDH, SeparovicFet al. Surface behavior and lipid interaction of Alzheimer β-amyloid peptide 1-42: a membrane-disrupting peptide. Biophys. J.88 (4), 2706–2713 (2005).
  • Williams TL , SerpellLC. Membrane and surface interactions of Alzheimer´s Aβ peptide – insights into the mechanism of cytotoxicity. FEBS J.278 (20), 3905–3917 (2011).
  • Brydon HL , HaywardR, Harkness Wand BaystonR. Physical properties of cerebrospinal fluid of relevance to shunt function. 2: the effect of protein upon CSF surface tension and contact angle. Br. J. Neurosurg.9 (5), 645–651 (1995).
  • Sun X , WuWH, LiuQet al. Hybrid peptides attenuate cytotoxicity of β-amyloid by inhibiting its oligomerization: implication from solvent effects. Peptides30 (7), 1282–1287 (2009).
  • Kachooei E , Moosavi-MovahediAA, KhodagholiF, RamshiniH, ShaerzadehF, SheibaniN. Oligomeric forms of insulin amyloid aggregation disrupt ourgrowth and complexity of neuron-like PC12 cells. PLoS ONE7 (7), e41344 (2012).
  • Ruiz ED , AlmadaM, BurboaMGet al. Oligomers, protofibrils and amyloid fibrils from recombinant human lysozyme (rHL): fibrillation process and cytotoxicity evaluation for ARPE-19 cell line. Colloid. Surf. B-Biointerfaces126, 335–343 (2015).
  • Maji SK , AmsdenJJ, RothschildKJ, CondronMM, TeplowDB. Conformational dynamics of amyloid β-protein assembly probed using intrinsic fluorescence. Biochemistry44 (40), 13365–13376 (2005).
  • Chan FTS , Kaminski SchierleGS, KumitaJR, BertonciniCW, DobsonCM, KaminskuCF. Protein amyloids develop an intrinsic fluorescence signature during aggregation. Analyst138 (7), 2156–2162 (2013).
  • Groenning M . Binding mode of Thioflavin T and other molecular probes in the context of amyloid fibrils – current status. J. Chem. Biol.3 (1), 1–8 (2010).
  • Maezawa I , HongHAS, LiuRet al. Congo red and thioflavin-T analogs detect Aβ oligomers. J. Neurochem.104 (2), 457–468 (2008).
  • Kristofikova Z , GazovaZ, SiposovaKet al. Effects of ferrofluid and phytoalexin spirobrassinin on Thioflavin-T-based fluorescence in cerebrospinal fluid of the elderly and multiple sclerosis patients. Neurochem. Res.39 (8), 1502–1510 (2014).
  • Gazova Z , AntosovaA, KristofikovaZet al. Attenuated antiaggregation effects of magnetite nanoparticles in cerebrospinal fluid of people with Alzheimer´s disease. Mol. Biosyst.6 (11), 2200–2205 (2010).
  • Sitkiewicz E , OledzkiJ, PoznanskiJ, DadlezM. Di-tyrosine cross-link decreases the collisional cross-section of Ab peptide dimers and trimers in the gas phase: an ion mobility study. PloS ONE9 (6), e100200 (2014).
  • Folstein MF , FolsteinSE, McHughPR. “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. J. Psychiatr. Res.12 (3), 189–198 (1975).
  • Mioshi E , DawsonK, MitchellJ, ArnoldT, HodgesJR. The Addenbrooke´s Cognitive Examination Revised (ACE-R): a brief cognitive test battery for dementia screening. Int. J. Geriatr. Psychiatry21 (11), 1078–1085 (2006).
  • Bartos A , RaisovaM. The Mini-Mental State Examination: Czech norms and cutoffs for mild dementia and mild cognitive impairment due to Alzheimer´s disease. Dement. Geriatr. Cogn. Disord.42 (1-2), 50–57 (2016).
  • Deisenhammer F , BartosA, EggRet al. Guidelines on routine cerebrospinal fluid analysis. Report from an EFNS task force. Eur. J. Neurol.13 (9), 913–922 (2006).
  • Hort J , BartosA, PirttiläT, ScheltensP. Use of cerebrospinal fluid biomarkers in diagnosis of dementia across Europe. Eur. J. Neurol.17 (1), 90–96 (2010).
  • Albert MS , DeKoskyST, DicksonDet al. The diagnosis of mild cognitive impairment due to Alzheimer´s disease: recommendations from the National Institute on Aging-Alzheimer´s Association workgroups on diagnostic guidelines for Alzheimer´s disease. Alzheimers Dement.7 (3), 270–279 (2011).
  • McKhann GM , KnopmanDS, ChertkowHet al. The diagnosis of dementia due to Alzheimer´s disease: recommendations from the National Institute on Aging-Alzheimer´s Association workgroups on diagnostic guidelines for Alzheimer´s disease. Alzheimers Dement.7 (3), 263–269 (2011).
  • Sheskin DJ . Measures of association/correlation. In Handbook of Parametric and Nonparametric Statistical Procedures (5th Edition). Chapman and Hall/CRC, New York, USA, 1219–1413 (2011).
  • Schoonjans F . ROC curve analysis. InMedCalc Manual.MedCals Software bvba, Ostend, Belgium, 177–190 (2014).
  • Kristofikova Z , RipovaD, BartosAet al. Neuroinflammation and complexes of 17β-hydroxysteroid dehydrogenase type 10 - amyloid β in Alzheimer´s disease. Curr. Alzeimer Res.10 (2), 165–173 (2013).
  • Kristofikova Z , RicnyJ, KolarovaMet al. Interactions between amyloid-β and tau in cerebrospinal fluid of people with mild cognitive impairment and Alzheimer´s disease. J. Alzheimers Dis.42 (suppl. 3), S91–S98 (2014).
  • Kristofikova Z , RicnyJ, VyhnalekMet al. Levels of 17β-hydroxysteroid dehydrogenase type 10 in cerebrospinal fluid of people with mild cognitive impaiment and various types of dementia. J. Alzheimers Dis.48 (1), 105–114 (2015).
  • Kolarova M , SenguptaU, BartosA, RicnyJ, KayedR. Tau oligomers in sera of patients with Alzheimer´s disease and aged controls. J. Alzheimers Dis.58 (2), 471–478 (2017).
  • Gong Y , ChangL, ViolaKLet al. Alzheimer´s disease-affected brain: presence of oligomeric Aβ ligands (ADDLs) suggests a molecular basis for reversible memory loss. Proc. Natl Acad. Sci. USA100 (18), 10417–10422 (2003).
  • Olsson B , LautnerR, AndreassonUet al. CSF and blood biomarkers for the diagnosis of Alzheimer´s disease: a systematic review and meta-analysis. Lancet Neurol.15 (7), 673–684 (2016).
  • Wu HZ , OngKL, SeeherKet al. Circulating microRNAs as biomarkers of Alzheimer´s disease: a systematic review. J. Alzheimers Dis.49 (3), 755–766 (2016).
  • Wojsiat J , Laskowska-KaszubK, Mietelska-PorowkaA, WojdaU. Search for Alzheimer´s disease biomarkers in blood cells: hypotheses-driven approach. Biomark. Med.11 (10), 917–931 (2017).
  • Hartmann S , Ledur KistTB. A review of biomarkers of Alzheimer´s disease in noninvasive samples. Biomark. Med.12 (6), 677–690 (2018).