478
Views
0
CrossRef citations to date
0
Altmetric
Review

Sickle Cell Disease Nephropathy: An Update on Risk Factors and Potential Biomarkers in Pediatric Patients

ORCID Icon, , , , , & ORCID Icon show all
Pages 965-985 | Received 12 Mar 2019, Accepted 04 Jun 2019, Published online: 08 Aug 2019

References

  • Nath KA , HebbelRP. Sickle cell disease: renal manifestations and mechanisms. Nat. Rev. Nephrol.11(3), 161–171 (2015).
  • Hariri E , MansourA, ElAlam A, DaaboulY, KorjianS, BahousSA. Sickle cell nephropathy: an update on pathophysiology, diagnosis, and treatment. Int. Urol. Nephrol.50(6), 1075–1083 (2018).
  • Hebbel RP . Beyond hemoglobin polymerization: the red blood cell membrane and sickle disease pathophysiology. Blood77(2), 214–237 (1991).
  • Hebbel RP . Perspectives series: cell adhesion in vascular biology. Adhesive interactions of sickle erythrocytes with endothelium. J. Clin. Invest.99(11), 2561–2564 (1997).
  • Hebbel RP . Ischemia-reperfusion injury in sickle cell anemia: relationship to acute chest syndrome, endothelial dysfunction, arterial vasculopathy, and inflammatory pain. Hematol. Oncol. Clin. North Am.28(2), 181–198 (2014).
  • Nath KA , KatusicZS, GladwinMT. The perfusion paradox and vascular instability in sickle cell disease. Microcirculation11(2), 179–193 (2004).
  • Da Silva GB Jr , LiborioAB, DaherEde F. New insights on pathophysiology, clinical manifestations, diagnosis, and treatment of sickle cell nephropathy. Ann. Hematol.90(12), 1371–1379 (2011).
  • Becker AM . Sickle cell nephropathy: challenging the conventional wisdom. Pediatr. Nephrol.26(12), 2099–2109 (2011).
  • Allon M , LawsonL, EckmanJR, DelaneyV, BourkeE. Effects of nonsteroidal antiinflammatory drugs on renal function in sickle cell anemia. Kidney Int.34(4), 500–506 (1988).
  • De Jong PE , SalehAW, DeZeeuw Det al. Urinary prostaglandins in sickle cell nephropathy: a defect in 9-ketoreductase activity? Clin. Nephrol. 22(4), 212–213 (1984).
  • Guasch A , CuaM, MitchWE. Early detection and the course of glomerular injury in patients with sickle cell anemia. Kidney Int.49(3), 786–791 (1996).
  • Schmitt F , MartinezF, BrilletGet al. Early glomerular dysfunction in patients with sickle cell anemia. Am. J. Kidney Dis.32(2), 208–214 (1998).
  • Wesson DE . The initiation and progression of sickle cell nephropathy. Kidney Int.61(6), 2277–2286 (2002).
  • Hostetter TH . Hyperfiltration and glomerulosclerosis. Semin. Nephrol.23(2), 194–199 (2003).
  • Platt OS , BrambillaDJ, RosseWFet al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N. Engl. J. Med.330(23), 1639–1644 (1994).
  • Sharpe CC , TheinSL. How I treat renal complications in sickle cell disease. Blood123(24), 3720–3726 (2014).
  • Hirschberg R . Glomerular hyperfiltration in sickle cell disease. Clin. J. Am. Soc. Nephrol.5(5), 748–749 (2010).
  • Lebensburger JD , AbanI, PernellBet al. Hyperfiltration during early childhood precedes albuminuria in pediatric sickle cell nephropathy. Am. J. Hematol.94(4), 417–423 (2019).
  • Audard V , BartolucciP, StehleT. Sickle cell disease and albuminuria: recent advances in our understanding of sickle cell nephropathy. Clin. Kidney J10(4), 475–478 (2017).
  • Wang WC , WareRE, MillerSTet al. Hydroxycarbamide in very young children with sickle-cell anaemia: a multicentre, randomised, controlled trial (BABY HUG). Lancet377(9778), 1663–1672 (2011).
  • Sharpe CC , TheinSL. Sickle cell nephropathy – a practical approach. Br. J. Haematol.155(3), 287–297 (2011).
  • Wigfall DR , WareRE, BurchinalMR, KinneyTR, ForemanJW. Prevalence and clinical correlates of glomerulopathy in children with sickle cell disease. J. Pediatr.136(6), 749–753 (2000).
  • Dharnidharka VR , DabbaghS, AtiyehB, SimpsonP, SarnaikS. Prevalence of microalbuminuria in children with sickle cell disease. Pediatr. Nephrol.12(6), 475–478 (1998).
  • Guasch A , NavarreteJ, NassK, ZayasCF. Glomerular involvement in adults with sickle cell hemoglobinopathies: prevalence and clinical correlates of progressive renal failure. J. Am. Soc. Nephrol.17(8), 2228–2235 (2006).
  • Powars DR , ChanLS, HitiA, RamiconeE, JohnsonC. Outcome of sickle cell anemia: a 4-decade observational study of 1056 patients. Medicine84(6), 363–376 (2005).
  • Powars DR , Elliott-MillsDD, ChanLet al. Chronic renal failure in sickle cell disease: risk factors, clinical course, and mortality. Ann. Intern. Med.115(8), 614–620 (1991).
  • Wolf RB , KassimAA, GoodpasterRL, DebaunMR. Nocturnal enuresis in sickle cell disease. Expert Rev. Hematol.7(2), 245–254 (2014).
  • De Jong PE , StatiusVan Eps LW. Sickle cell nephropathy: new insights into its pathophysiology. Kidney Int.27(5), 711–717 (1985).
  • Scheinman JI . Sickle cell nephropathy. Pediatr. Nephrol.908–919 (1994).
  • Alhwiesh A . An update on sickle cell nephropathy. Saudi J. Kidney Dis. Transpl.25(2), 249–265 (2014).
  • de Santis Feltran L , deAbreu Carvalhaes JT, SessoR. Renal complications of sickle cell disease: managing for optimal outcomes. Paediatr. Drugs4(1), 29–36 (2002).
  • Saborio P , ScheinmanJI. Sickle cell nephropathy. J. Am. Soc. Nephrol.10(1), 187–192 (1999).
  • Van Eps LWS , Pinedo-VeelsC, DeVries GH, DeKoning J. Nature of concentrating defect in sickle-cell nephropathy. Microradioangiographic studies. Lancet1(7644), 450–452 (1970).
  • Scheinman JI . Sickle cell disease and the kidney. Nat. Clin. Pract. Nephrol.5(2), 78–88 (2009).
  • Baig MA , LinYS, RasheedJ, MittmanN. Renal medullary carcinoma. J. Natl. Med. Assoc.98(7), 1171–1174 (2006).
  • Pandya KK , KoshyM, BrownN, PresmanD. Renal papillary necrosis in sickle cell hemoglobinopathies. J. Urol.115(5), 497–501 (1976).
  • Zayas CF , PlattJ, EckmanJR. Prevalence and predictors of glomerular involvement in sickle cell anemia. J. Am. Soc. Nephrol.7(9), A0780 (1996).
  • Yeruva SL , PaulY, OnealP, NouraieM. Renal failure in sickle cell disease: prevalence, predictors of disease, mortality and effect on length of hospital stay. Hemoglobin40(5), 295–299 (2016).
  • Sklar AH , PerezJC, HarpRJ, CaruanaRJ. Acute renal failure in sickle cell anemia. Int. J. Artif. Organs13(6), 347–351 (1990).
  • Gargiulo R , PandyaM, SebaA, HaddadRY, LermaEV. Sickle cell nephropathy. Dis. Mon.60(10), 494–499 (2014).
  • McPherson Yee M , JabbarSF, OsunkwoIet al. Chronic kidney disease and albuminuria in children with sickle cell disease. Clin. J. Am. Soc. Nephrol.6(11), 2628–2633 (2011).
  • Stallworth JR , TripathiA, JerrellJM. Prevalence, treatment, and outcomes of renal conditions in pediatric sickle cell disease. South. Med. J.104(11), 752–756 (2011).
  • Alvarez O , Lopez-MitnikG, ZillerueloG. Short-term follow-up of patients with sickle cell disease and albuminuria. Pediatr. Blood Cancer50(6), 1236–1239 (2008).
  • Elmariah H , GarrettME, DeCastro LMet al. Factors associated with survival in a contemporary adult sickle cell disease cohort. Am. J. Hematol.89(5), 530–535 (2014).
  • Drawz P , AyyappanS, NouraieMet al. Kidney disease among patients with sickle cell disease, hemoglobin SS and SC. Clin. J. Am. Soc. Nephrol.11(2), 207–215 (2016).
  • Thrower A , CicconeEJ, MaitraP, DerebailVK, CaiJ, AtagaKI. Effect of renin-angiotensin-aldosterone system blocking agents on progression of glomerulopathy in sickle cell disease. Br. J. Haematol.184(2), 246– 252 (2018).
  • McClellan AC , LuthiJC, LynchJRet al. High one year mortality in adults with sickle cell disease and end-stage renal disease. Br. J. Haematol.159(3), 360–367 (2012).
  • Haymann JP , HammoudiN, StankovicStojanovic Ket al. Renin-angiotensin system blockade promotes a cardio-renal protection in albuminuric homozygous sickle cell patients. Br. J. Haematol.179(5), 820–828 (2017).
  • Foucan L , BourhisV, BangouJ, MeraultL, Etienne-JulanM, SalmiRL. A randomized trial of captopril for microalbuminuria in normotensive adults with sickle cell anemia. Am. J. Med.104(4), 339–342 (1998).
  • Lottenberg R , HassellKL. An evidence-based approach to the treatment of adults with sickle cell disease. ASH Education Book2005(1), 58– 65 (2005).
  • Yawn BP , BuchananGR, Afenyi-AnnanANet al. Management of sickle cell disease: summary of the 2014 evidence-based report by expert panel members. JAMA312(10), 1033–1048 (2014).
  • Pham PT , PhamPC, WilkinsonAH, LewSQ. Renal abnormalities in sickle cell disease. Kidney Int.57(1), 1–8 (2000).
  • McKie KT , HanevoldCD, HernandezC, WallerJL, OrtizL, McKieKM. Prevalence, prevention, and treatment of microalbuminuria and proteinuria in children with sickle cell disease. J. Pediatr. Hematol. Oncol.29(3), 140–144 (2007).
  • Falk RJ , ScheinmanJ, PhillipsG, OrringerE, JohnsonA, JennetteJC. Prevalence and pathologic features of sickle cell nephropathy and response to inhibition of angiotensin-converting enzyme. N. Engl. J. Med.326(14), 910–915 (1992).
  • Alvarez O , MontaneB, LopezG, WilkinsonJ, MillerT. Early blood transfusions protect against microalbuminuria in children with sickle cell disease. Pediatr. Blood Cancer47(1), 71–76 (2006).
  • Wood JC , CohenAR, PresselSLet al. Organ iron accumulation in chronically transfused children with sickle cell anaemia: baseline results from the TWiTCH trial. Br. J. Haematol.172(1), 122–130 (2016).
  • Rodrigues PC , NortonRC, MuraoM, JanuarioJN, VianaMB. Iron deficiency in Brazilian infants with sickle cell disease. J. Pediatr.87(5), 405–411 (2011).
  • Aygun B , MortierNA, SmeltzerMP, ShulkinBL, HankinsJS, WareRE. Hydroxyurea treatment decreases glomerular hyperfiltration in children with sickle cell anemia. Am. J. Hematol.88(2), 116–119 (2013).
  • Fitzhugh CD , WigfallDR, WareRE. Enalapril and hydroxyurea therapy for children with sickle nephropathy. Pediatr. Blood Cancer45(7), 982–985 (2005).
  • Abbott KC , HypoliteIO, AgodoaLY. Sickle cell nephropathy at end-stage renal disease in the United States: patient characteristics and survival. Clin. Nephrol.58(1), 9–15 (2002).
  • Zahr RS , ChappaP, YinH, BrownLA, AtagaKI, ArcherDR. Renal protection by atorvastatin in a murine model of sickle cell nephropathy. Br. J. Haematol.181(1), 111– 121 (2018).
  • Kasztan M , FoxBM, SpeedJSet al. Long-term endothelin-a receptor antagonism provides robust renal protection in humanized sickle cell disease mice. J. Am. Soc. Nephrol.28(8), 2443–2458 (2017).
  • Tharaux PL , HagegeI, PlacierSet al. Urinary endothelin-1 as a marker of renal damage in sickle cell disease. Nephrol. Dial. Transplant.20(11), 2408–2413 (2005).
  • Sabaa N , DeFranceschi L, BonninPet al. Endothelin receptor antagonism prevents hypoxia-induced mortality and morbidity in a mouse model of sickle-cell disease. J. Clin. Invest.118(5), 1924–1933 (2008).
  • Fox BM , KasztanM. Endothelin receptor antagonists in sickle cell disease: a promising new therapeutic approach. Life Sci.159, 15–19 (2016).
  • Ataga KI , BrittainJE, MooreDet al. Urinary albumin excretion is associated with pulmonary hypertension in sickle cell disease: potential role of soluble fms-like tyrosine kinase-1. Eur. J. Haematol.85(3), 257–263 (2010).
  • Becton LJ , KalpatthiRV, RackoffEet al. Prevalence and clinical correlates of microalbuminuria in children with sickle cell disease. Pediatr. Nephrol.25(8), 1505–1511 (2010).
  • Gurkan S , ScarponiKJ, HotchkissH, SavageB, DrachtmanR. Lactate dehydrogenase as a predictor of kidney involvement in patients with sickle cell anemia. Pediatr. Nephrol.25(10), 2123–2127 (2010).
  • Maier-Redelsperger M , LevyP, LionnetFet al. Strong association between a new marker of hemolysis and glomerulopathy in sickle cell anemia. Blood Cells Mol. Dis.45(4), 289–292 (2010).
  • Day TG , DrasarER, FulfordT, SharpeCC, TheinSL. Association between hemolysis and albuminuria in adults with sickle cell anemia. Haematologica97(2), 201–205 (2012).
  • Diwan BA , GladwinMT, NoguchiCT, WardJM, FitzhughAL, BuzardGS. Renal pathology in hemizygous sickle cell mice. Toxicol. Pathol30(2), 254–262 (2002).
  • Zatz R , BaylisC. Chronic nitric oxide inhibition model six years on. Hypertension32(6), 958–964 (1998).
  • Thompson J , ReidM, HambletonI, SerjeantGR. Albuminuria and renal function in homozygous sickle cell disease: observations from a cohort study. Arch. Intern. Med.167(7), 701–708 (2007).
  • Laurin LP , NachmanPH, DesaiPC, AtagaKI, DerebailVK. Hydroxyurea is associated with lower prevalence of albuminuria in adults with sickle cell disease. Nephrol. Dial. Transplant.29(6), 1211–1218 (2014).
  • Bolarinwa RA , AkinladeKS, KutiMA, OlawaleOO, AkinolaNO. Renal disease in adult Nigerians with sickle cell anemia: a report of prevalence, clinical features and risk factors. Saudi J. Kidney Dis. Transpl.23(1), 171–175 (2012).
  • Iwalokun BA , IwalokunSO, HodonuSO, AinaOA, AgomoPU. Evaluation of microalbuminuria in relation to asymptomatic bacteruria in Nigerian patients with sickle cell anemia. Saudi J. Kidney Dis. Transpl.23(6), 1320–1330 (2012).
  • De Castro LM , JonassaintJC, GrahamFL, Ashley-KochA, TelenMJ. Pulmonary hypertension associated with sickle cell disease: clinical and laboratory endpoints and disease outcomes. Am. J. Hematol.83(1), 19–25 (2008).
  • Forrest S , KimA, CarbonellaJ, PashankarF. Proteinuria is associated with elevated tricuspid regurgitant jet velocity in children with sickle cell disease. Pediatr. Blood Cancer58(6), 937–940 (2012).
  • Rees DC , GibsonJS. Biomarkers in sickle cell disease. Br. J. Haematol.156(4), 433–445 (2012).
  • Alvarez O , ZillerueloG, WrightD, MontaneB, Lopez-MitnikG. Serum cystatin C levels in children with sickle cell disease. Pediatr. Nephrol.21(4), 533–537 (2006).
  • Zahr RS , RampersaudE, KangGet al. Children with sickle cell anemia and APOL1 genetic variants develop albuminuria early in life. Haematologica doi:10.3324/haematol.2018.212779 (2019) (Epub ahead of print).
  • Belisario AR , VieiraELM, DeAlmeida JAet al. Low urinary levels of angiotensin-converting enzyme 2 may contribute to albuminuria in children with sickle cell anaemia. Br. J. Haematol.185(1), 190–193 (2019).
  • Heimlich JB , ChipokaG, ElsherifLet al. Nephrin as a biomarker of sickle cell glomerulopathy in Malawi. Pediatr. Blood Cancer65(6), e26993 (2018).
  • Lebensburger JD , CutterGR, HowardTH, MuntnerP, FeigDI. Evaluating risk factors for chronic kidney disease in pediatric patients with sickle cell anemia. Pediatr. Nephrol.32(9), 1565–1573 (2017).
  • Itokua KE , MakuloJR, LepiraFBet al. Albuminuria, serum antioxidant enzyme levels and markers of hemolysis and inflammation in steady state children with sickle cell anemia. BMC Nephrol.17(1), 178 (2016).
  • Ghobrial EE , Abdel-AzizHA, KaddahAM, MubarakNA. Urinary transforming growth factor beta-1 as a marker of renal dysfunction in sickle cell disease. Pediatr. Neonatol.57(3), 174–180 (2016).
  • Youssry I , MakarS, FawzyRet al. Novel marker for the detection of sickle cell nephropathy: soluble FMS-like tyrosine kinase-1 (sFLT-1). Pediatr. Nephrol.30(12), 2163–2168 (2015).
  • Aloni MN , NgiyuluRM, Gini-EhunguJLet al. Renal function in children suffering from sickle cell disease: challenge of early detection in highly resource-scarce settings. PLoS ONE9(5), e96561 (2014).
  • Badr M , ElKoumi MA, AliYFet al. Renal tubular dysfunction in children with sickle cell haemoglobinopathy. Nephrology18(4), 299–303 (2013).
  • Mohtat D , ThomasR, DuZet al. Urinary transforming growth factor beta-1 as a marker of renal dysfunction in sickle cell disease. Pediatr. Nephrol.26(2), 275–280 (2011).
  • Lebensburger J , JohnsonSM, AskenaziDJ, RozarioNL, HowardTH, HilliardLM. Protective role of hemoglobin and fetal hemoglobin in early kidney disease for children with sickle cell anemia. Am. J. Hematol.86(5), 430–432 (2011).
  • King L , MoosangM, MillerM, ReidM. Prevalence and predictors of microalbuminuria in Jamaican children with sickle cell disease. Arch. Dis. Child96(12), 1135–1139 (2011).
  • Imuetinyan BA , OkoegualeMI, EgberueGO. Microalbuminuria in children with sickle cell anemia. Saudi J. Kidney Dis. Transpl.22(4), 733–738 (2011).
  • Aygun B , MortierNA, SmeltzerMP, HankinsJS, WareRE. Glomerular hyperfiltration and albuminuria in children with sickle cell anemia. Pediatr. Nephrol.26(8), 1285–1290 (2011).
  • Marsenic O , CoulouresKG, WileyJM. Proteinuria in children with sickle cell disease. Nephrol. Dial. Transplant.23(2), 715–720 (2008).
  • McBurney PG , HanevoldCD, HernandezCM, WallerJL, McKieKM. Risk factors for microalbuminuria in children with sickle cell anemia. J. Pediatr. Hematol. Oncol.24(6), 473–477 (2002).
  • Datta V , AyengarJR, KarpateS, ChaturvediP. Microalbuminuria as a predictor of early glomerular injury in children with sickle cell disease. Indian J. Pediatr.70(4), 307–309 (2003).
  • Geard A , PuleGD, ChetchaChemegni Bet al. Clinical and genetic predictors of renal dysfunctions in sickle cell anaemia in Cameroon. Br. J. Haematol.178(4), 629–639 (2017).
  • Ephraim RK , OsakunorDN, CudjoeOet al. Chronic kidney disease is common in sickle cell disease: a cross-sectional study in the Tema Metropolis, Ghana. BMC Nephrol.16, 75 (2015).
  • Hamideh D , RajV, HarringtonTet al. Albuminuria correlates with hemolysis and NAG and KIM-1 in patients with sickle cell anemia. Pediatr. Nephrol.29(10), 1997–2003 (2014).
  • Alkhunaizi AM , Al-KhattiAA. Proteinuria in patients with sickle cell disease. Saudi J. Kidney Dis. Transpl.25(5), 1038–1041 (2014).
  • Sundaram N , BennettM, WilhelmJet al. Biomarkers for early detection of sickle nephropathy. Am. J. Hematol.86(7), 559–566 (2011).
  • Arogundade FA , SanusiAA, HassanMO, SalawuL, DurosinmiMA, AkinsolaA. An appraisal of kidney dysfunction and its risk factors in patients with sickle cell disease. Nephron. Clin. Pract.118(3), c225–c231 (2011).
  • Emokpae MA , UadiaPO, GadzamaAA. Correlation of oxidative stress and inflammatory markers with the severity of sickle cell nephropathy. Ann. Afr. Med.9(3), 141–146 (2010).
  • Sesso R , AlmeidaMA, FigueiredoMS, BordinJO. Renal dysfunction in patients with sickle cell anemia or sickle cell trait. Braz. J. Med. Biol. Res.31(10), 1257–1262 (1998).
  • Ataga KI , DerebailVK, ArcherDR. The glomerulopathy of sickle cell disease. Am. J. Hematol.89(9), 907–914 (2014).
  • Alvarez O , MillerST, WangWCet al. Effect of hydroxyurea treatment on renal function parameters: results from the multi-center placebo-controlled BABY HUG clinical trial for infants with sickle cell anemia. Pediatr. Blood Cancer59(4), 668–674 (2012).
  • Arlet JB , RibeilJA, ChatellierGet al. Determination of the best method to estimate glomerular filtration rate from serum creatinine in adult patients with sickle cell disease: a prospective observational cohort study. BMC Nephrol.13, 83 (2012).
  • Lippi G , DeFranceschi L, SalvagnoGL, MontagnanaM, GuidiGC. Estimation of glomerular filtration rate by the modification of diet in renal disease (MDRD) equation in patients with sickle cell disease. Clin. Chem. Lab. Med.46(8), 1200–1201 (2008).
  • Barros FB , LimaCS, SantosAOet al. 51Cr-EDTA measurements of the glomerular filtration rate in patients with sickle cell anaemia and minor renal damage. Nucl. Med. Commun.27(12), 959–962 (2006).
  • Bayazit AK , NoyanA, AldudakBet al. Renal function in children with sickle cell anemia. Clin. Nephrol.57(2), 127–130 (2002).
  • Asnani M , SerjeantG, Royal-ThomasT, ReidM. Predictors of renal function progression in adults with homozygous sickle cell disease. Br. J. Haematol.173(3), 461–468 (2016).
  • Lebensburger JD , CutterGR, HowardTH, MuntnerP, FeigDI. Evaluating risk factors for chronic kidney disease in pediatric patients with sickle cell anemia. Pediatr. Nephrol.32(9), 1565–1573 (2017).
  • Nath KA , CroattAJ, HaggardJJ, GrandeJP. Renal response to repetitive exposure to heme proteins: chronic injury induced by an acute insult. Kidney Int.57(6), 2423–2433 (2000).
  • Emokpae MA , UadiaPO. Association of oxidative stress markers with atherogenic index of plasma in adult sickle cell nephropathy. Anemia2012, 767501 (2012).
  • Belcher JD , ChenC, NguyenJet al. Heme triggers TLR4 signaling leading to endothelial cell activation and vaso-occlusion in murine sickle cell disease. Blood123(3), 377–390 (2014).
  • Tracz MJ , AlamJ, NathKA. Physiology and pathophysiology of heme: implications for kidney disease. J. Am. Soc. Nephrol.18(2), 414–420 (2007).
  • Dos Santos TE , GoncalvesRP, BarbosaMC, Da SilvaGBJr, DaherEde F. Monocyte chemoatractant protein-1: a potential biomarker of renal lesion and its relation with oxidative status in sickle cell disease. Blood Cells Mol. Dis.54(3), 297–301 (2015).
  • Garibotto G , CartaA, PicciottoD, ViazziF, VerzolaD. Toll-like receptor-4 signaling mediates inflammation and tissue injury in diabetic nephropathy. J. Nephrol.30(6), 719–727 (2017).
  • Solovieff N , MiltonJN, HartleySWet al. Fetal hemoglobin in sickle cell anemia: genome-wide association studies suggest a regulatory region in the 5′ olfactory receptor gene cluster. Blood115(9), 1815–1822 (2010).
  • Gladwin MT , SchechterAN, OgnibeneFPet al. Divergent nitric oxide bioavailability in men and women with sickle cell disease. Circulation107(2), 271–278 (2003).
  • Rosse WF , GallagherD, KinneyTRet al. Transfusion and alloimmunization in sickle cell disease. The Cooperative Study of sickle cell disease. Blood76(7), 1431–1437 (1990).
  • Wonkam A , MnikaK, NgoBitoungui VJet al. Clinical and genetic factors are associated with pain and hospitalisation rates in sickle cell anaemia in Cameroon. Br. J. Haematol.180(1), 134–146 (2018).
  • Asnani MR , ReidME. Renal function in adult Jamaicans with homozygous sickle cell disease. Hematology20(7), 422–428 (2015).
  • Asnani MR , FraserRA, ReidME. Higher rates of hemolysis are not associated with albuminuria in Jamaicans with sickle cell disease. PLoS ONE6(4), e18863 (2011).
  • Bodas P , HuangA, O'RiordanMA, SedorJR, DellKM. The prevalence of hypertension and abnormal kidney function in children with sickle cell disease – a cross sectional review. BMC Nephrol.14(1), 237 (2013).
  • Anigilaje EA , AdedoyinOT. Correlation between dipstick urinalysis and urine sediment microscopy in detecting haematuria among children with sickle cell anaemia in steady state in Ilorin, Nigeria. Pan Afr. Med. J.15(1), 135 (2013).
  • Gosmanova EO , ZaidiS, WanJY, Adams-GravesPE. Prevalence and progression of chronic kidney disease in adult patients with sickle cell disease. J. Investig. Med.62(5), 804–807 (2014).
  • Saraf SL , ZhangX, KaniasTet al. Haemoglobinuria is associated with chronic kidney disease and its progression in patients with sickle cell anaemia. Br. J. Haematol.164(5), 729–739 (2014).
  • Alkhunaizi AM , Al-KhattiAA, AlkhunaiziMA. Prevalence of microalbuminuria in adult patients with sickle cell disease in eastern Saudi Arabia. Int. J. Nephrol.2018, 5015764 (2018).
  • Guasch A , ZayasCF, EckmanJR, MuralidharanK, ZhangW, ElsasLJ. Evidence that microdeletions in the alpha globin gene protect against the development of sickle cell glomerulopathy in humans. J. Am. Soc. Nephrol.10(5), 1014–1019 (1999).
  • Saraf SL , ShahBN, ZhangXet al. APOL1, alpha-thalassemia, and BCL11A variants as a genetic risk profile for progression of chronic kidney disease in sickle cell anemia. Haematologica102(1), e1–e6 (2017).
  • Koyner JL , VaidyaVS, BennettMRet al. Urinary biomarkers in the clinical prognosis and early detection of acute kidney injury. Clin. J. Am. Soc. Nephrol.5(12), 2154–2165 (2010).
  • Bonventre JV , VaidyaVS, SchmouderR, FeigP, DieterleF. Next-generation biomarkers for detecting kidney toxicity. Nat. Biotechnol.28(5), 436–440 (2010).
  • Hoffmann D , AdlerM, VaidyaVSet al. Performance of novel kidney biomarkers in preclinical toxicity studies. Toxicol. Sci.116(1), 8–22 (2010).
  • Unal S , KotanC, DelibasA, OztasY. Cystatin C, beta2 microglobulin, N-acetyl-beta-D-glucosaminidase, retinol-binding protein, and endothelin 1 levels in the evaluation of sickle cell disease nephropathy. Pediatr. Hematol. Oncol.32(4), 250–257 (2015).
  • Saraf SL , ZhangX, ShahBet al. Genetic variants and cell-free hemoglobin processing in sickle cell nephropathy. Haematologica100(10), 1275–1284 (2015).
  • Martin CE , JonesN. Nephrin signaling in the podocyte: an updated view of signal regulation at the slit diaphragm and beyond. Front. Endocrinol.9, 302 (2018).
  • Humphreys BD , XuF, SabbisettiVet al. Chronic epithelial kidney injury molecule-1 expression causes murine kidney fibrosis. J. Clin. Invest.123(9), 4023–4035 (2013).
  • Bonventre JV . Kidney injury molecule-1: a translational journey. Trans. Am. Clin. Climatol. Assoc.125, 293–299 (2014).
  • Maynard SE , MinJY, MerchanJet al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest.111(5), 649–658 (2003).
  • Kato GJ , PielFB, ReidCDet al. Sickle cell disease. Nat. Rev. Dis. Primers.4, 18010 (2018).
  • Sureshbabu A , RyterSW, ChoiME. Oxidative stress and autophagy: crucial modulators of kidney injury. Redox Biol.4, 208–214 (2015).
  • Roy S , RaiP, EiymoMwa Mpollo MSet al. Angiotensin receptor signaling in sickle cell anemia has a reno-protective effect on urine concentrating ability but results in sickle glomerulopathy. Am. J. Hematol.93(7), E177–E181 (2018).
  • Nolan VG , MaQ, CohenHTet al. Estimated glomerular filtration rate in sickle cell anemia is associated with polymorphisms of bone morphogenetic protein receptor 1B. Am. J. Hematol.82(3), 179–184 (2007).
  • Ashley-Koch AE , OkochaEC, GarrettMEet al. MYH9 and APOL1 are both associated with sickle cell disease nephropathy. Br. J. Haematol.155(3), 386–394 (2011).
  • Naik RP , IrvinMR, JuddSet al. Sickle cell trait and the risk of ESRD in Blacks. J. Am. Soc. Nephrol.28(7), 2180–2187 (2017).
  • Kormann R , JannotAS, NarjozCet al. Roles of APOL1 G1 and G2 variants in sickle cell disease patients: kidney is the main target. Br. J. Haematol.179(2), 323–335 (2017).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.