143
Views
0
CrossRef citations to date
0
Altmetric
Review

Biomarkers in Vesicoureteral Reflux: An Overview

, , , , & ORCID Icon
Pages 683-696 | Received 26 Aug 2019, Accepted 07 Apr 2020, Published online: 09 Jul 2020

References

  • Bailey R . Reflux Nephropathy. HodsonJ, Kincaid-SmithP (Eds), NY, USA, 59–61 (1979).
  • Sargent MA . What is the normal prevalence of vesicoureteral reflux?Pediatr. Radiol.30(9), 587–593 (2000).
  • Skoog SJ , PetersCA, ArantjrBSet al. Pediatric vesicoureteral reflux guidelines panel summary report: clinical practice guidelines for screening siblings of children with vesicoureteral reflux and neonates/infants with prenatal hydronephrosis. J. Urol.184(3), 1145–1151 (2010).
  • Naprtcs . North American Pediatric Renal Trials and Collaborative Studies (NAPRTCS). 2014 Annual transplant report. https://naprtcs.org/system/files/2014_Annual_Transplant_Report.pdf
  • Naprtcs . North American Pediatric Renal Trials Cooperative Study (NAPRTCS). 2008 Annual report. https://www.naprtcs.org/system/files/2008_Annual_CKD_Report.pdf
  • Matsuoka H , OshimaK, SakamotoK, TaguchiT, TakebayashiS. Renal pathology in patients with reflux nephropathy. The turning point in irreversible renal disease. European Urol.26(2), 153–159 (1994).
  • Goonasekera CD , DillonMJ. Hypertension in reflux nephropathy. Brit. J. Urol.83(Suppl. 3), 1–12 (1999).
  • Shima H , TazawaH, PuriP. Increased expression of fibroblast growth factors in segmental renal dysplasia. Pediatr. Surg. Int.16(4), 306–309 (2000).
  • Klahr S , MorrisseyJ. Obstructive nephropathy and renal fibrosis. Am. J. Physiol. Renal Physiol.283(5), F861–F875 (2002).
  • Silva ACS , PereiraAB, TeixeiraMM, TeixeiraAL. Chemokines as potential markers in pediatric renal diseases. Dis. Markers2014, 278715 (2014).
  • Chevalier RL , ThornhillBA, ForbesMS, KileySC. Mechanisms of renal injury and progression of renal disease in congenital obstructive nephropathy. Pediatr. Nephrol.25(4), 687–697 (2010).
  • Roberts JA . Pathogenesis of pyelonephritis. J. Urol.129(6), 1102–1106 (1983).
  • Akaoka K , WhiteRH, RaafatF. Glomerular morphometry in childhood reflux nephropathy, emphasizing the capillary changes. Kidney Int.47(4), 1108–1114 (1995).
  • Solari V , EnnisS, CascioS, PuriP. Tumor necrosis factor-alpha gene polymorphism in reflux nephropathy. J. Urol.172 (4 Pt 2), 1604–1606 (2004).
  • Pardo R , MálagaS, AlvarezV, CotoE. Vesicoureteric reflux and tumor necrosis factor-alpha gene polymorphism. J. Pediatr. Urol.3(1), 24–27 (2007).
  • Savvidou A , BitsoriM, ChoumerianouDM, KaratziM, KalmantiM, GalanakisE. Polymorphisms of the TNF-alpha and ACE genes, and renal scarring in infants with urinary tract infection. J. Urol.183(2), 684–687 (2010).
  • Korditamandani DM , NaeimiN, GhasemiA, BaranzahiT, Sadeghi-BojdS. Analysis of the IL-10, IL-12, and TNF-α gene polymorphisms in patients with vesicoureteral reflux among the Southeast Iranian population. Nephro-Urol Month.8(2), e34061 (2016).
  • Hussein A , AskarE, ElsaeidM, SchaeferF. Functional polymorphisms in transforming growth factor-beta-1 (TGFbeta-1) and vascular endothelial growth factor (VEGF) genes modify risk of renal parenchymal scarring following childhood urinary tract infection. Nephrol. Dial. Transplant.25(3), 779–785 (2010).
  • Chertin B , FarkasA, PuriP. Epidermal growth factor and monocyte chemotactic peptide-1 expression in reflux nephropathy. European Urol.44(1), 144–149 (2003).
  • Pastore V , BartoliF. Urinary excretion of EGF and MCP-1 in children with vesicoureteral reflux. Int. Braz. J. Urol.43(3), 549–555 (2017).
  • Sheu JN , ChenSM, MengMH, LueKH. The role of serum and urine interleukin-8 on acute pyelonephritis and subsequent renal scarring in children. Pediatr. Infect. Dis. J.28(10), 885–890 (2009).
  • Galanakis E , BitsoriM, DimitriouH, GiannakopoulouC, KarkavitsasNS, KalmantiM. Urine interleukin-8 as a marker of vesicoureteral reflux in infants. Pediatrics117(5), e863–867 (2006).
  • Haraoka M , SenohK, OgataN, FurukawaM, MatsumotoT, KumazawaJ. Elevated interleukin-8 levels in the urine of children with renal scarring and/or vesicoureteral reflux. J. Urol.155(2), 678–680 (1996).
  • Merrikhi AR , KeivanfarM, GheissariA, MousavinasabF. Urine interlukein-8 as a diagnostic test for vesicoureteral reflux in children. J. Pakistan Med. Assoc.62(2 Suppl. 3), S52–S54 (2012).
  • Mahyar A , AyaziP, YarigarraveshMHet al. Serum interleukin -8 is not a reliable marker for prediction of vesicoureteral reflux in children with febrile urinary tract infection. Int. Braz. J. Urol.41(6), 1160–1166 (2015).
  • Badeli H , KhoshnevisT, HassanzadehRA, SadeghiM. Urinary albumin and interleukin-8 levels are not good indicators of ongoing vesicoureteral reflux in children who have no active urinary tract infection. Arab. J. Nephrol. Transplant.6(1), 27–30 (2013).
  • Tullus K , FituriO, LinnéTet al. Urine interleukin-6 and interleukin-8 in children with acute pyelonephritis, in relation to DMSA scintigraphy in the acute phase and at 1-year follow-up. Pediatr. Radiol.24(7), 513–515 (1994).
  • Sheu JN , ChenMC, LueKHet al. Serum and urine levels of interleukin-6 and interleukin-8 in children with acute pyelonephritis. Cytokine36(5–6), 276–282 (2006).
  • Gokce I , AlpayH, BiyikliN, UnluguzelG, DedeF, TopuzogluA. Urinary levels of interleukin-6 and interleukin-8 in patients with vesicoureteral reflux and renal parenchymal scar. Pediatr. Nephrol.25(5), 905–912 (2010).
  • Jutley RS , YoungsonGG, EreminO, NinanGK. Serum cytokine profile in reflux nephropathy. Pediatr. Surg. Int.16(1–2), 64–68 (2000).
  • Sheu JN , ChenMC, ChenSM, ChenSL, ChiouSY, LueKH. Relationship between serum and urine interleukin-6 elevations and renal scarring in children with acute pyelonephritis. Scand J.Urol. Nephrol.43(2), 133–137 (2009).
  • Tramma D , HatzistylianouM, GerasimouG, LafazanisV. Interleukin-6 and interleukin-8 levels in the urine of children with renal scarring. Pediatr. Nephrol.27(9), 1525–1530 (2012).
  • Sheu JN , ChenMC, ChengSL, LeeIC, ChenSM, TsayGJ. Urine interleukin-1beta in children with acute pyelonephritis and renal scarring. Nephrol. (Carlton)12(5), 487–493 (2007).
  • Schwentner C , OswaldJ, LunacekAet al. Extracellular microenvironment and cytokine profile of the ureterovesical junction in children with vesicoureteral reflux. J. Urol.180(2), 694–700 (2008).
  • Sabasiñska A , Zoch-ZwierzW, WasilewskaA, PorowskiT. Laminin and transforming growth factor beta-1 in children with vesicoureteric reflux. Pediatr. Nephrol.23(5), 769–774 (2008).
  • Maruyama T , HayashiY, NakaneA, SasakiS, KohriK. Intermittent pressure-loading increases transforming growth factor-beta-1 secretion from renal tubular epithelial cells: in vitro vesicoureteral reflux model. Urol. Int.75(2), 150–158 (2005).
  • Kowalewska-Pietrzak M , KlichI, MlynarskiW. TGF-beta1 gene polymorphisms and primary vesicoureteral reflux in childhood. Pediatr. Nephrol.23(12), 2195–2200 (2008).
  • Zyczkowski M , ZywiecJ, NowakowskiK, ParadyszA, GrzeszczakW, GumprechtJ. Estimation of the relationship between the polymorphisms of selected genes: ACE, AGTR1, TGFbeta1 and GNB3 with the occurrence of primary vesicoureteral reflux. Int. Urol. Nephrol.49(3), 387–397 (2017).
  • Konda R , SakaiK, OtaSet al. Soluble interleukin-2 receptor in children with reflux nephropathy. J. Urol.159(2), 535–539 (1998).
  • Yim HE , BaeIS, YooKH, HongYS, LeeJW. Genetic control of VEGF and TGF-beta1 gene polymorphisms in childhood urinary tract infection and vesicoureteral reflux. Pediatr. Res.62(2), 183–187 (2007).
  • Bimpaki E , BitsoriM, ChoulakiC, GalanakisE. Vascular endothelial growth factor-A gene polymorphism is associated with congenital renal lesions in children with urinary tract infections. Acta Paediatr.106(8), 1348–1353 (2017).
  • Konda R , SatoH, SakaiK, AbeY, FujiokaT. Urinary excretion of vascular endothelial growth factor is increased in children with reflux nephropathy. Nephron Clin. Pract.98(3), c73–c78 (2004).
  • Kobayashi H , MiyakitaH, YamatakaA, KogaH, LaneGJ, MiyanoT. Serum basic fibroblast growth factor as a marker of reflux nephropathy. J. Pediatr. Surg.39(12), 1853–1855 (2004).
  • Kaneyama K , KobayashiH, YamatakaA, LaneGJ, MiyanoT. Serum soluble vascular cell adhesion molecule-1 (VCAM-1) concentrations in children with reflux nephropathy. Pediatr. Surg. Int.21(1), 39–42 (2005).
  • Miyakita H , PuriP, SuranaR, KobayashiH, ReenDJ. Serum intercellular adhesion molecule (ICAM-1), a marker of renal scarring in infants with vesico-ureteric reflux. Brit. J. Urol.76(2), 249–251 (1995).
  • Unemoto K , ChertinB, ShimaH, BiX, SakaiM, PuriP. ICAM-1 expression is upregulated in reflux nephropathy. Pediatr. Surg. Int.19(5), 391–394 (2003).
  • Yadav A , SainiV, AroraS. MCP-1: chemoattractant with a role beyond immunity: a review. Clin. Chim. Acta411(21-22), 1570–1579 (2010).
  • Bartoli F , GesualdoL, ParadiesGet al. Renal expression of monocyte chemotactic protein-1 and epidermal growth factor in children with obstructive hydronephrosis. J. Pediatr. Surg.35(4), 569–572 (2000).
  • Vianna HR , SoaresCM, SilveiraKDet al. Cytokines in chronic kidney disease: potential link of MCP-1 and dyslipidemia in glomerular diseases. Pediatr. Nephrol.28(3), 463–469 (2013).
  • Pereira AB , TeixeiraAL, RezendeNAet al. Urinary chemokines and anti-inflammatory molecules in renal transplanted patients as potential biomarkers of graft function: a prospective study. Int. Urol. Nephrol.44(5), 1539–1548 (2012).
  • Grandaliano G , GesualdoL, BartoliFet al. MCP-1 and EGF renal expression and urine excretion in human congenital obstructive nephropathy. Kidney Int.58(1), 182–192 (2000).
  • Vielhauer V , AndersHJ, MackMet al. Obstructive nephropathy in the mouse: progressive fibrosis correlates with tubulointerstitial chemokine expression and accumulation of CC chemokine receptor 2- and 5-positive leukocytes. J. Am. Soc. Nephrol.12(6), 1173–1187 (2001).
  • Stephan M , ConradS, EggertT, HeuerR, FernandezS, HulandH. Urinary concentration and tissue messenger RNA expression of monocyte chemoattractant protein-1 as an indicator of the degree of hydronephrotic atrophy in partial ureteral obstruction. J. Urol.167(3), 1497–1502 (2002).
  • Crisman JM , RichardsLL, ValachDP, FranzoniDF, DiamondJR. Chemokine expression in the obstructed kidney. Exp. Nephrol.9(4), 241–248 (2001).
  • Bartoli F , PenzaR, AcetoGet al. Urinary epidermal growth factor, monocyte chemotactic protein-1, and β2-microglobulin in children with ureteropelvic junction obstruction. J. Pediatr. Surg.46(3), 530–536 (2011).
  • Taranta-Janusz K , WasilewskaA, DębekW, Waszkiewicz-StojdaM. Urinary cytokine profiles in unilateral congenital hydronephrosis. Pediatr. Nephrol.27(11), 2107–2113 (2012).
  • Vasconcelos MA , BouzadaMC, SilveiraKDet al. Urinary levels of TGF β-1 and of cytokines in patients with prenatally detected nephrouropathies. Pediatr. Nephrol.26(5), 739–747 (2011).
  • Wang J , KondaR, SatoH, SakaiK, ItoS, OrikasaS. Clinical significance of urinary interleukin-6 in children with reflux nephropathy. J. Urol.165(1), 210–214 (2001).
  • Borish LC , SteinkeJW. Cytokines and chemokines. J. Allerg. Clin. Immunol.111(Suppl. 2), S460–S475 (2003).
  • Tullus K , Escobar-BillingR, FituriOet al. Interleukin-1 alpha and interleukin-1 receptor antagonist in the urine of children with acute pyelonephritis and relation to renal scarring. Acta Paediatr.85(2), 158–162 (1996).
  • Hertting O , KhalilA, JaremkoGet al. Enhanced chemokine response in experimental acute Escherichia coli pyelonephritis in IL-1beta-deficient mice. Clin. Exp. Immunol.131(2), 225–233 (2003).
  • Misseri R , MeldrumDR, DagherP, HileK, RinkRC, MeldrumKK. Unilateral ureteral obstruction induces renal tubular cell production of tumor necrosis factor-alpha independent of inflammatory cell infiltration. J. Urol.172(4 Pt 2), 1595–1599 (2004).
  • Shirazi M , EslahiA, SharifiV, RahimiF, SafarpourA. Evaluation of Caspase 3 enzyme and TNF-alpha as biomarkers in ureteropelvic junction obstruction in children – a preliminary report. Pakistan J. Med Sci.33(2), 315–319 (2017).
  • Wilson AG , SymonsJA, McdowellTL, McdevittHO, DuffGW. Effects of a polymorphism in the human tumor necrosis factor alpha promoter on transcriptional activation. Proc. Natl Acad. Sci. USA7(3195-9), 3195 (1997).
  • Isaka Y , TsujieM, AndoYet al. Transforming growth factor-beta 1 antisense oligodeoxynucleotides block interstitial fibrosis in unilateral ureteral obstruction. Kidney Int.58(5), 1885–1892 (2000).
  • Qi W , ChenX, PolhillTSet al. TGF-beta1 induces IL-8 and MCP-1 through a connective tissue growth factor-independent pathway. Am. J. Physiol. Renal Physiol.290(3), F703–709 (2006).
  • Mizuno S , MatsumotoK, NakamuraT. Hepatocyte growth factor suppresses interstitial fibrosis in a mouse model of obstructive nephropathy. Kidney Int.59(4), 1304–1314 (2001).
  • Seseke F , ThelenP, HemmerleinB, KlieseD, ZöllerG, RingertRH. Histologic and molecular evidence of obstructive uropathy in rats with hereditary congenital hydronephrosis. Urol. Res.28(2), 104–109 (2000).
  • Zhou Y , TakahashiG, ShinagawaTet al. Increased transforming growth factor-beta1 and tubulointerstitial fibrosis in rats with congenital hydronephrosis. Int. J. Urol.9(9), 491–500 (2002).
  • Seremetis GM , MaizelsM. TGF-beta mRNA expression in the renal pelvis after experimental and clinical ureteropelvic junction obstruction. J. Urol.156(1), 261–266 (1996).
  • Sato M , MuragakiY, SaikaS, RobertsAB, OoshimaA. Targeted disruption of TGF-beta1/Smad3 signaling protects against renal tubulointerstitial fibrosis induced by unilateral ureteral obstruction. J. Ciln. Invest.112(10), 1486–1494 (2003).
  • Almodhen F , LoutochinO, CapolicchioJP, JednakR, El-SherbinyM. The role of bladder urine transforming growth factor-beta1 concentrations in diagnosis and management of unilateral prenatal hydronephrosis. J. Urol.182(1), 292–298 (2009).
  • Simões E Silva AC , ValérioFC, VasconcelosMA, MirandaDM, OliveiraEA. Interactions between cytokines, congenital anomalies of kidney and urinary tract and chronic kidney disease. Clin. Develop. Immunol.2013, 597920 (2013).
  • Taha MA , ShokeirAA, OsmanHG, Ael-AAE-A, FarahatSE. Pelvi-ureteric junction obstruction in children: the role of urinary transforming growth factor-beta and epidermal growth factor. Brit. J. Urol. int.99(4), 899–903 (2007).
  • Furness3rd PD , MaizelsM, HanSW, CohnRA, ChengEY. Elevated bladder urine concentration of transforming growth factor-beta1 correlates with upper urinary tract obstruction in children. J. Urol.162(3 Pt 2), 1033–1036 (1999).
  • Monga M , Gabal-ShehabLL, SteinP. Urinary transforming growth factor-beta1 levels correlate with bladder outlet obstruction. Int. J. Urol.8(9), 487–489 (2001).
  • Yang SP , WoolfAS, YuanHTet al. Potential biological role of transforming growth factor-beta1 in human congenital kidney malformations. Am. J. Pathol.157(5), 1633–1647 (2000).
  • Clark AT , YoungRJ, BertramJF. In vitro studies on the roles of transforming growth factor-beta 1 in rat metanephric development. Kidney Int.59(5), 1641–1653 (2001).
  • Solari V , OwenD, PuriP. Association of transforming growth factor-beta1 gene polymorphism with reflux nephropathy. J. Urol.174(4 Pt 2), 1609–1611 (2005).
  • Miyajima A , ChenJ, LawrenceCet al. Antibody to transforming growth factor-beta ameliorates tubular apoptosis in unilateral ureteral obstruction. Kidney Int.58(6), 2301–2313 (2000).
  • Chung KH , GomezRA, ChevalierRL. Regulation of renal growth factors and clusterin by AT1 receptors during neonatal ureteral obstruction. Am. J. Physiol.268(6 Pt 2), F1117–F1123 (1995).
  • Tufro-Mcreddie A , RomanoLM, HarrisJM, FerderL, GomezRA. Angiotensin II regulates nephrogenesis and renal vascular development. Am. J. Physiol.269(1 Pt 2), F110–F115 (1995).
  • Commins S , SteinkeJW, BorishL. The extended IL-10 superfamily: IL-10, IL-19, IL-20, IL-22, IL-24, IL-26, IL-28, and IL-29. J. Allerg. Clin Immunol.121(5), 1108–1111 (2008).
  • Madsen MG . Urinary biomarkers in hydronephrosis. Danish Med. J.60(2), 1–20 (2013).
  • Lauder AJ , JolinHE, SmithPet al. Lymphomagenesis, hydronephrosis, and autoantibodies result from dysregulation of IL-9 and are differentially dependent on Th2 cytokines. J. Immunol.173(1), 113–122 (2004).
  • Ferrara N . Vascular endothelial growth factor: basic science and clinical progress. Endocrine Rev.25(4), 581–611 (2004).
  • Shulman K , RosenS, TognazziK, ManseauEJ, BrownLF. Expression of vascular permeability factor (VPF/VEGF) is altered in many glomerular diseases. J. Am. Soc. Nephrol.7(5), 661–666 (1996).
  • Summers AM , CoupesBM, BrennanMF, RalphSA, ShortCD, BrenchleyPE. VEGF -460 genotype plays an important role in progression to chronic kidney disease stage 5. Nephrol. Dial. Transplant.20(11), 2427–2432 (2005).
  • Strutz F , ZeisbergM, HemmerleinBet al. Basic fibroblast growth factor expression is increased in human renal fibrogenesis and may mediate autocrine fibroblast proliferation. Kidney Int.57(4), 1521–1538 (2000).
  • Narla D , SlagleSB, SchaeferCM, BushnellDS, PuriP, BatesCM. Loss of peri-Wolffian duct stromal Frs2alpha expression in mice leads to abnormal ureteric bud induction and vesicoureteral reflux. Pediatr. Res.82(6), 1022–1029 (2017).
  • Dal Canton A . Adhesion molecules in renal disease. Kidney Int.48(6), 1687–1696 (1995).
  • Mortazavi F , GhojazadehM. Usefulness of serum procalcitonin level for prediction of vesicoureteral reflux in pediatric urinary tract infection. Iran J. Kidney Dis.8(1), 37–41 (2014).
  • Karagoz E , UlcayA. Re: usefulness of serum procalcitonin level for prediction of vesicoureteral reflux in pediatric urinary tract infection. Iran J. Kidney Dis.8(4), 347–348 (2014).
  • Halimi-Asl A , HosseiniAH, NabavizadehP. Can procalcitonin reduce unnecessary voiding cystoureterography in children with first febrile urinary tract infection?Iran J. Pediatr.24(4), 418–422 (2014).
  • Rahimzadeh N , OtukeshH, HoseiniR, ShadaniS, HoomanN. Serum procalcitonin level for prediction of high-grade vesicoureteral reflux in urinary tract infection. Iran J. Kidney Dis.8(2), 105–108 (2014).
  • Karavanaki KA , SoldatouA, KoufadakiAM, TsentidisC, HaliotisFA, StefanidisCJ. Delayed treatment of the first febrile urinary tract infection in early childhood increased the risk of renal scarring. Acta Paediatr.106(1), 149–154 (2017).
  • Sun HL , WuKH, ChenSMet al. Role of procalcitonin in predicting dilating vesicoureteral reflux in young children hospitalized with a first febrile urinary tract infection. Pediatr. Infect. Dis. J.32(9), e348–e354 (2013).
  • Liao PF , KuMS, TsaiJDet al. Comparison of procalcitonin and different guidelines for first febrile urinary tract infection in children by imaging. Pediatr. Nephrol.29(9), 1567–1574 (2014).
  • Yavuz S , AnaratA, BayazitAK. Interleukin-18, CRP and procalcitonin levels in vesicoureteral reflux and reflux nephropathy. Ren. Fail.35(10), 1319–1322 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.