165
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Gdf-15 and Soluble St2 As Biomarkers of Right Ventricular Dysfunction in Pulmonary Hypertension

ORCID Icon, , , , ORCID Icon, , , , , , , , , , , , , & show all
Pages 1193-1207 | Received 04 Jun 2022, Accepted 19 Jan 2023, Published online: 15 Feb 2023

References

  • Vonk-Noordegraaf A , HaddadF, ChinKMet al. Right heart adaptation to pulmonary arterial hypertension: physiology and pathobiology. J. Am. Coll. Cardiol.62(Suppl. 25), D22–D33 (2013).
  • Ghio S , KlersyC, MagriniGet al. Prognostic relevance of the echocardiographic assessment of right ventricular function in patients with idiopathic pulmonary arterial hypertension. Int. J. Cardiol.140(3), 272–278 (2010).
  • Raymond RJ , HinderliterAL, WillisPWet al. Echocardiographic predictors of adverse outcomes in primary pulmonary hypertension. J. Am. Coll. Cardiol.39(7), 1214–1219 (2002).
  • Sachdev A , VillarragaHR, FrantzRPet al. Right ventricular strain for prediction of survival in patients with pulmonary arterial hypertension. Chest139(6), 1299–1309 (2011).
  • Naeije R , ManesA. The right ventricle in pulmonary arterial hypertension. Eur. Respir. Rev.23(134), 476–487 (2014).
  • Noordegraaf AV , WesterhofBE, WesterhofN. The relationship between the right ventricle and its load in pulmonary hypertension. J. Am. Coll. Cardiol.69, 236–243 (2017).
  • Petretta M , ColaoA, SarduCet al. NT-proBNP, IGF-I and survival in patients with chronic heart failure. Growth Horm. IGF Res.17(4), 288–296 (2007).
  • Humbert M , KovacsG, HoeperMMet al. 2022 ESC/ERS Guidelines for the diagnosis and treatment of pulmonary hypertension. Eur. Heart J.43(38), 3618–3731 (2022).
  • Aimo A , JanuzziJLJr, Bayes-GenisAet al. Clinical and prognostic significance of sST2 in heart failure: JACC review topic of the week. J. Am. Coll. Cardiol.74(17), 2193–2203 (2019).
  • Weinberg EO , ShimpoM, DeKeulenaer GWet al. Expression and regulation of ST2, an interleukin-1 receptor family member, in cardiomyocytes and myocardial infarction. Circulation106(23), 2961–2966 (2002).
  • Sanada S , HakunoD, HigginsLJ, SchreiterER, MckenzieAN, LeeRT. IL-33 and ST2 comprise a critical biomechanically induced and cardioprotective signaling system. J. Clin. Invest.117(6), 1538–1549 (2007).
  • Pascual-Figal DA , JanuzziJL. The biology of ST2: the International ST2 Consensus Panel. Am. J. Cardiol.115(Suppl. 7), 3b–7b (2015).
  • Seki K , SanadaS, KudinovaAYet al. Interleukin-33 prevents apoptosis and improves survival after experimental myocardial infarction through ST2 signaling. Circ. Heart Fail.2(6), 684–691 (2009).
  • Ky B , FrenchB, MccloskeyKet al. High-sensitivity ST2 for prediction of adverse outcomes in chronic heart failure. Circ. Heart Fail.4(2), 180–187 (2011).
  • Aimo A , VergaroG, PassinoCet al. Prognostic value of soluble suppression of tumorigenicity-2 in chronic heart failure: a meta-analysis. JACC Heart Fail.5(4), 280–286 (2017).
  • Miller WL , SaengerAK, GrillDE, SlusserJP, Bayes-GenisA, JaffeAS. Prognostic value of serial measurements of soluble suppression of tumorigenicity 2 and galectin-3 in ambulatory patients with chronic heart failure. J. Card. Fail.22(4), 249–255 (2016).
  • Emdin M , AimoA, VergaroGet al. sST2 predicts outcome in chronic heart failure beyond NT-proBNP and high-sensitivity troponin T. J. Am. Coll. Cardiol.72(19), 2309–2320 (2018).
  • Pascual-Figal DA , Bayes-GenisA, Asensio-LopezMCet al. The interleukin-1 axis and risk of death in patients with acutely decompensated heart failure. J. Am. Coll. Cardiol.73(9), 1016–1025 (2019).
  • Pascual-Figal DA , Manzano-FernandezS, BoronatMet al. Soluble ST2, high-sensitivity troponin T- and N-terminal pro-B-type natriuretic peptide: complementary role for risk stratification in acutely decompensated heart failure. Eur. J. Heart Fail.13(7), 718–725 (2011).
  • Sardu C , MarfellaR, SantamariaMet al. Stretch, injury and inflammation markers evaluation to predict clinical outcomes after implantable cardioverter defibrillator therapy in heart failure patients with metabolic syndrome. Front. Physiol.9, 758 (2018).
  • Parikh RH , SeligerSL, ChristensonR, GottdienerJS, PsatyBM, DefilippiCR. Soluble ST2 for Prediction of heart failure and cardiovascular death in an elderly, community-dwelling population. J. Am. Heart Assoc.5(8), e003188 (2016).
  • Zimmers TA , JinX, HsiaoEC, McgrathSA, EsquelaAF, KoniarisLG. Growth differentiation factor-15/macrophage inhibitory cytokine-1 induction after kidney and lung injury. Shock23(6), 543–548 (2005).
  • Kempf T , EdenM, StrelauJet al. The transforming growth factor-beta superfamily member growth-differentiation factor-15 protects the heart from ischemia/reperfusion injury. Circ. Res.98(3), 351–360 (2006).
  • Mueller T , LeitnerI, EggerM, HaltmayerM, DieplingerB. Association of the biomarkers soluble ST2, galectin-3 and growth-differentiation factor-15 with heart failure and other non-cardiac diseases. Clin. Chim. Acta445, 155–160 (2015).
  • Sharma A , StevensSR, LucasJet al. Utility of growth differentiation factor-15, a marker of oxidative stress and inflammation, in chronic heart failure: insights from the HF-ACTION study. JACC Heart Fail.5(10), 724–734 (2017).
  • Lindholm D , JamesSK, GabryschKet al. Association of multiple biomarkers with risk of all-cause and cause-specific mortality after acute coronary syndromes: a secondary analysis of the PLATO biomarker study. JAMA Cardiol.3(12), 1160–1166 (2018).
  • Carlomagno G , MessalliG, MelilloRMet al. Serum soluble ST2 and interleukin-33 levels in patients with pulmonary arterial hypertension. Int. J. Cardiol.168(2), 1545–1547 (2013).
  • Zheng Y-G , YangT, HeJ-Get al. Plasma soluble ST2 levels correlate with disease severity and predict clinical worsening in patients with pulmonary arterial hypertension. Clin. Cardiol.37(6), 365–370 (2014).
  • Geenen LW , BaggenVJM, KaulingRMet al. The prognostic value of soluble ST2 in adults with pulmonary hypertension. J. Clin. Med.8(10), 1517 (2019).
  • Geenen LW , BaggenVJM, KaulingRMet al. Growth differentiation factor-15 as candidate predictor for mortality in adults with pulmonary hypertension. Heart106(6), 467 (2020).
  • Lang RM , BadanoLP, Mor-AviVet al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J. Am. Soc. Echocardiogr.28(1), 1–39.e14 (2015).
  • Guazzi M , BanderaF, PelisseroGet al. Tricuspid annular plane systolic excursion and pulmonary arterial systolic pressure relationship in heart failure: an index of right ventricular contractile function and prognosis. Am. J. Physiol. Heart Circ. Physiol.305(9), H1373–1381 (2013).
  • Tello K , AxmannJ, GhofraniHAet al. Relevance of the TAPSE/PASP ratio in pulmonary arterial hypertension. Int. J. Cardiol.266, 229–235 (2018).
  • Keranov S , DorrO, JafariLet al. Osteopontin and galectin-3 as biomarkers of maladaptive right ventricular remodeling in pulmonary hypertension. Biomark. Med.15(12), 1021–1034 (2021).
  • Truong QA , JanuzziJL, SzymonifkaJet al. Coronary sinus biomarker sampling compared to peripheral venous blood for predicting outcomes in patients with severe heart failure undergoing cardiac resynchronization therapy: the BIOCRT study. Heart Rhythm11(12), 2167–2175 (2014).
  • Wang TJ , WollertKC, LarsonMGet al. Prognostic utility of novel biomarkers of cardiovascular stress: the Framingham Heart Study. Circulation126(13), 1596–1604 (2012).
  • Chen LQ , DeLemos JA, DasSR, AyersCR, RohatgiA. Soluble ST2 is associated with all-cause and cardiovascular mortality in a population-based cohort: the Dallas Heart Study. Clin. Chem.59(3), 536–546 (2013).
  • Sardu C , PaolissoG, MarfellaR. Inflammatory related cardiovascular diseases: from molecular mechanisms to therapeutic targets. Curr. Pharm. Des.26(22), 2565–2573 (2020).
  • Defilippi C , DanielsLB, Bayes-GenisA. Structural heart disease and ST2: cross-sectional and longitudinal associations with echocardiography. Am. J. Cardiol.115(Suppl. 7), B59–B63 (2015).
  • Kriechbaum SD , WiedenrothCB, PetersKet al. Galectin-3, GDF-15, and sST2 for the assessment of disease severity and therapy response in patients suffering from inoperable chronic thromboembolic pulmonary hypertension. Biomarkers25(7), 578–586 (2020).
  • Zheng YG , YangT, HeJGet al. Plasma soluble ST2 levels correlate with disease severity and predict clinical worsening in patients with pulmonary arterial hypertension. Clin. Cardiol.37(6), 365–370 (2014).
  • Tello K , WanJ, DalmerAet al. Validation of the tricuspid annular plane systolic excursion/systolic pulmonary artery pressure ratio for the assessment of right ventricular-arterial coupling in severe pulmonary hypertension. Circ. Cardiovasc. Imaging12(9), e009047 (2019).
  • Keranov S , HaenS, VietheerJet al. Application and validation of the tricuspid annular plane systolic excursion/systolic pulmonary artery pressure ratio in patients with ischemic and non-ischemic cardiomyopathy. Diagnostics11(12), 2188 (2021).
  • Pascual-Figal DA , Perez-MartinezMT, Asensio-LopezMCet al. Pulmonary production of soluble ST2 in heart failure. Circ. Heart Fail.11(12), e005488 (2018).
  • Shao D , PerrosF, CaramoriGet al. Nuclear IL-33 regulates soluble ST2 receptor and IL-6 expression in primary human arterial endothelial cells and is decreased in idiopathic pulmonary arterial hypertension. Biochem. Biophys. Res. Commun.451(1), 8–14 (2014).
  • Gall H , FelixJF, SchneckFKet al. The Giessen Pulmonary Hypertension Registry: survival in pulmonary hypertension subgroups. J. Heart Lung Transplant.36(9), 957–967 (2017).
  • Unsicker K , SpittauB, KrieglsteinK. The multiple facets of the TGF- β family cytokine growth/differentiation factor-15/macrophage inhibitory cytokine-1. Cytokine Growth Factor Rev.24(4), 373–384 (2013).
  • Geenen LW , BaggenVJM, KaulingRMet al. Growth differentiation factor-15 as candidate predictor for mortality in adults with pulmonary hypertension. Heart106(6), 467–473 (2020).
  • Luo JW , DuanWH, SongL, YuYQ, ShiDZ. A meta-analysis of growth differentiation factor-15 and prognosis in chronic heart failure. Front. Cardiovasc. Med.8, 630818 (2021).
  • Nickel N , KempfT, TapkenHet al. Growth differentiation factor-15 in idiopathic pulmonary arterial hypertension. Am. J. Respir. Crit. Care Med.178(5), 534–541 (2008).
  • Sardu C , PaolissoP, SacraCet al. Cardiac resynchronization therapy with a defibrillator (CRTd) in failing heart patients with type 2 diabetes mellitus and treated by glucagon-like peptide 1 receptor agonists (GLP-1 RA) therapy vs conventional hypoglycemic drugs: arrhythmic burden, hospitalizations for heart failure, and CRTd responders rate. Cardiovasc. Diabetol.17(1), 137 (2018).
  • Marfella R , SarduC, BalestrieriMLet al. Effects of incretin treatment on cardiovascular outcomes in diabetic STEMI-patients with culprit obstructive and multivessel non obstructive-coronary-stenosis. Diabetol. Metab. Syndr.10, 1 (2018).
  • Paolisso P , BergamaschiL, SantulliGet al. Infarct size, inflammatory burden, and admission hyperglycemia in diabetic patients with acute myocardial infarction treated with SGLT2-inhibitors: a multicenter international registry. Cardiovasc. Diabetol.21(1), 77 (2022).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.