205
Views
0
CrossRef citations to date
0
Altmetric
Review

Combining Nuclear Magnetic Resonance Spectroscopy and Mass Spectrometry in Biomarker Discovery

, , &
Pages 307-322 | Published online: 02 Jun 2009

Bibliography

  • Wishart DS : Metabolomics: the principles and potential applications to transplantation.Am. J. Transplant.5(12), 2814–2820 (2005).
  • Nicholson JK , LindonJC: Systems biology: metabonomics.Nature455(7216), 1054–1056 (2008).
  • Wishart DS , KnoxC, GuoACet al.: HMDB: a knowledgebase for the human metabolome.Nucleic Acids Res.37(database issue), D603–D610 (2009).
  • Pasikanti KK , HoPC, ChanEC: Gas chromatography/mass spectrometry in metabolic profiling of biological fluids.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.871(2), 202–211 (2008).
  • Nagana Gowda GA , ZhangS, GuH, AsiagoV, ShanaiahN, RafteryD: Metabolomics-based methods for early disease diagnostics.Expert. Rev. Mol. Diagn.8(5), 617–633 (2008).
  • Raftery D , Nagana GowdaGA: An approaching new wave of multicomponent biomarker diagnostics?J. Urol.179(6), 2089–2090 (2008).
  • Holmes E , WilsonID, NicholsonJK: Metabolic phenotyping in health and disease.Cell134(5), 714–717 (2008).
  • Beckonert O , KeunHC, EbbelsTMet al.: Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts.Nat. Protoc.2(11), 2692–2703 (2007).
  • Wu DH , ChenAD, JohnsonCS: An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses.J. Magn. Reson. Series A115(2), 260–264 (1995).
  • Dumas ME , CanletC, AndréF, VercauterenJ, ParisA: Metabonomic assessment of physiological disruptions using 1H-13C HMBC-NMR spectroscopy combined with pattern recognition procedures performed on filtered variables.Anal. Chem.74(10), 2261–2273 (2002).
  • Tang HR , WangY, NicholsonJK, LindonJC: Use of relaxation-edited one-dimensional and two dimensional nuclear magnetic resonance spectroscopy to improve detection of small metabolites in blood plasma.Anal. Biochem.325(2), 260–272 (2004).
  • Xi Y , de RoppJS, ViantMR, WoodruffDL, YuP: Automated screening for metabolites in complex mixtures using 2D COSY NMR spectroscopy. Metabolomics2(4), 221–233 (2006).
  • Viant MR : Improved methods for the acquisition and interpretation of NMR metabolomic data.Biochem. Biophys. Res. Commun.310(3), 943–948 (2003).
  • Xi Y , de RoppJS, ViantMR, WoodruffDL, YuP: Improved identification of metabolites in complex mixtures using HSQC NMR spectroscopy. Anal. Chim. Acta614(2), 127–133 (2008).
  • Duarte IF , Legido-QuigleyC, ParkerDAet al.: Identification of metabolites in human hepatic bile using 800 MHz 1H NMR spectroscopy, HPLC-NMR/MS and UPLC-MS.Mol. Biosyst.5(2), 180–190 (2009).
  • Spraul M , FreundAS, NastRE, WithersRS, MaasWE, CorcoranO: Advancing NMR sensitivity for LC-NMR-MS using a cryoflow probe: application to the analysis of acetaminophen metabolites in urine.Anal. Chem.75(6), 1536–1541(2003).
  • Olson DL , PeckTL, WebbAG, MaginRL, SweedlerJV: High-resolution microcoil 1H-NMR for mass-limited, nanoliter-volume samples.Science270(5244), 1967–1970 (1995).
  • Webb AG : Microcoil nuclear magnetic resonance spectroscopy.J. Pharm. Biomed. Anal.38(5), 892–903 (2005).
  • Shanaiah N , DesilvaMA, Nagana GowdaGA, RafteryMA, HainlineBE, RafteryD: Class selection of amino acid metabolites in body fluids using chemical derivatization and their enhanced 13C NMR. Proc. Natl Acad. Sci. USA104(28), 11540–11544 (2007).
  • Ye T , MoH, ShanaiahN, Nagana GowdaGA, ZhangS, RafteryD: Chemoselective 15N tag for sensitive and high-resolution nuclear magnetic resonance profiling of the carboxyl-containing metabolites. Anal. Chem. (2009) (In Press).
  • Lindon JC , HolmesE, NicholsonJK: Metabonomics techniques and applications to pharmaceutical research and development.Pharm. Res.23(6), 1075–1088 (2006).
  • Kind T , TolstikovV, FiehnO, WeissRH: A comprehensive urinary metabolomic approach for identifying kidney cancer.Anal. Biochem.363(2), 185–195 (2007).
  • Wilson ID , NicholsonJK, Castro-PerezJet al.: High resolution ‘ultra performance‘ liquid chromatography coupled to OA-TOF mass spectrometry as a tool for differential metabolic pathway profiling in functional genomic studies.J. Proteome Res.4(2), 591–598 (2005).
  • van der Greef J , SmildeAK: Symbiosis of chemometrics and metabolomics: past, present, and future.J. Chemometrics19(5–7), 376–386 (2005).
  • Brown SC , KruppaG, DasseuxJL: Metabolomics applications of FT-ICR mass spectrometry.Mass Spectrom. Rev.24(2), 223–231(2005).
  • Granger JH , BakeA, PlumbRSet al.: Ultra performance liquid chromatography-MS(TOF): New separations technology for high throughput metabonomics.Drug Met. Rev.36(2), 252–252 (2004).
  • Villas-Boas SG , MasS, AkessonM, SilasG, SmedsgaardJ, NielsenJ: Mass spectrometry in metabolome analysis.Mass Spectrom. Rev.24(5), 613–646 (2005).
  • Zhang X , WeiD, YapY, LiL, GuoS, CheneF: Mass spectrometry-based ‘omics‘ technologies in cancer diagnostics.Mass Spectrom. Rev.26(3), 403–431(2007).
  • Mohler RE , DombekKM, HoggardJC, YoungET, SynovecRE: Comprehensive two-dimensional gas chromatography time-of-flight mass spectrometry analysis of metabolites in fermenting and respiring yeast cells.Anal. Chem.78(8), 2700–2709 (2006).
  • O‘Hagan S , DunnWB, KnowlesJDet al.: Closed-loop, multiobjective optimization of two-dimensional gas chromatography/mass spectrometry for serum metabolomics.Anal. Chem.79(2), 464–476(2007).
  • Zhang Z , ShahB: Characterization of variable regions of monoclonal antibodies by top-down mass spectrometry.Anal. Chem.79(15), 5723–5729 (2007).
  • Ojanperä S , PelanderA, PelzingM, KrebsI, VuoriE, OjanperäI: Isotopic pattern and accurate mass determination in urine drug screening by liquid chromatography/time-of-flight mass spectrometry.Rapid Commun. Mass Spectrom.20(7), 1161–1167 (2006).
  • Lenz EM , WilsonID: Analytical strategies in metabonomics.J. Proteome Res.6(2), 443–458 (2007).
  • Takáts Z , WisemanJM, GologanB, CooksRG: Mass spectrometry sampling under ambient conditions with desorption electrospray ionization.Science306(5695), 471–473 (2004).
  • Chen H , VenterA, CooksRG: Extractive electrospray ionization for direct analysis of undiluted urine, milk and other complex mixtures without sample preparation.Chem. Commun.19, 2042–2044 (2006).
  • Cody RB , LarameeJA, DurstHD: Versatile new ion source for the analysis of materials in open air under ambient conditions.Anal. Chem.77(8), 2297–2302 (2005).
  • Goodacre R , BroadhurstD, SmildeAKet al.: Proposed minimum reporting standards for data analysis in metabolomics.Metabolomics3(3), 231–241(2007).
  • Lee KR , LinX, ParkDC, EslavaS: Megavariate data analysis of mass spectrometric proteomics data using latent variable projection method.Proteomics3(9), 1680–1686 (2003).
  • Beckonert O , BollardME, EbbelsTMDet al.: NMR-based metabonomic toxicity classification: hierarchical cluster analysis and k-nearest-neighbour approaches.Anal. Chim. Acta490(1), 3–15(2003).
  • Somorjai RL , DolenkoB, DemkoAet al.: Mapping high-dimensional data onto a relative distance plane – an exact method for visualizing and characterizing high-dimensional patterns.J. Biomed. Inform.37(5), 366–379 (2004).
  • Mahadevan S , ShahSL, MarrieTJ, SlupskyCM: Analysis of metabolomic data using support vector machines.Anal. Chem.80(19), 7562–7570 (2008).
  • Wold H : Partial least squares. In: Encyclopedia of Statistical Sciences (Volume 6). Kotz S, Johnson NL (Eds). Wiley, NY, USA, 581–591 (1985).
  • Barker M , RayensW: Partial least squares for discrimination.J. Chemometrics17(3), 166–173 (2003).
  • Trygg J , HolmesE, LundstedtT: Chemometrics in metabonomics.J. Proteome Res.6(2), 469–479 (2007).
  • Hai-Lei M , MinX, BinW, Hui-MinW, Xiao-MingD, Dong-HaiL: Evaluation of filtering effects of orthogonal signal correction on metabonomic analysis of healthy human serum 1H NMR spectra.Acta. Chim. Sinica65(2), 152–158 (2007).
  • Trygg J , WoldS: Orthogonal projections to latent structures (O-PLS).J. Chemometrics16(3), 119–128 (2003).
  • Rantalainen M , CloarecO, BeckonertOet al.: Statistically integrated metabonomic-proteomic studies on a human prostate cancer xenograft model in mice.J. Proteome Res.5(10), 2642–2655(2006).
  • Werner E , HeilierJF, DucruixC, EzanE, JunotC, TabetJC: Mass spectrometry for the identification of the discriminating signals from metabolomics: current status and future trends.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.871(2), 143–163 (2008).
  • Blow N : Metabolomics: Biochemistry‘s new look.Nature455(7213), 697–700 (2008).
  • Wishart DS , LewisMJ, MorrisseyJAet al.: The human cerebrospinal fluid metabolome.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.871(2), 164–173 (2008).
  • Yang Y , LiC, NieXet al.: Metabonomic studies of human hepatocellular carcinoma using high-resolution magic-angle spinning 1H NMR spectroscopy in conjunction with multivariate data analysis.J. Proteome Res.6(7), 2605–2614 (2007).
  • Chan EC , KohPK, MalMet al.: Metabolic profiling of human colorectal cancer using high-resolution magic angle spinning nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas chromatography mass spectrometry (GC/MS).J. Proteome Res.8(1), 352–361 (2009).
  • Yang C , RichardsonAD, SmithJW, OstermanA: Comparative metabolomics of breast cancer.Pac. Symp. Biocomput.181–192 (2007).
  • Chen H , PanZ, TalatyN, RafteryD, CooksRG: Combining desorption electrospray ionization mass spectrometry and nuclear magnetic resonance for differential metabolomics without sample preparation.Rapid Commun. Mass Spectrom.20(10), 1577–1584 (2006).
  • Pan Z , GuH, TalatyNet al.: Principal component analysis of urine metabolites detected by NMR and DESI-MS in patients with inborn errors of metabolism.Anal. Bioanal. Chem.387(2), 539–549 (2007).
  • Williams RE , LenzEM, EvansJAet al.: A combined 1H NMR and HPLC–MS-based metabonomic study of urine from obese (fa/fa) Zucker and normal Wistar-derived rats.J. Pharm. Biomed. Anal.38(3), 465–471 (2005).
  • Williams RE , LenzEM, LowdenJS, RantalainenM, WilsonID: The metabonomics of aging and development in the rat: an investigation into the effect of age on the profile of endogenous metabolites in the urine of male rats using 1H NMR and HPLC-TOF MS.Mol. Biosyst.1(2), 166–175 (205).
  • Gu H , ChenH, PanZet al.: Monitoring diet effects via biofluids and their implications for metabolomics studies.Anal. Chem.79(1), 89–97 (2007).
  • Crockford DJ , MaherAD, AhmadiKRet al.: 1H NMR and UPLC-MS(E) statistical heterospectroscopy: characterization of drug metabolites (xenometabolome) in epidemiological studies.Anal. Chem.80(18), 6835–6844 (2008).
  • Sidelmann UG , Bj⊘rnsdottirI, ShockcorJP, HansenSH, LindonJC, NicholsonJK: Directly coupled HPLC-NMR and HPLC-MS approaches for the rapid characterisation of drug metabolites in urine: application to the human metabolism of naproxen.J. Pharm. Biomed. Anal.24(4), 569–579 (2001).
  • Payne GS , Dzik-JuraszAS, ManciniL, NutleyB, RaynaudF, LeachMO: Identification of biliary metabolites of ifosfamide using 31P magnetic resonance spectroscopy and mass spectrometry.Cancer Chemother. Pharmacol.56(4), 409–414 (2005).
  • Shockcor JP , UngerSE, WilsonID, FoxallPJ, NicholsonJK, LindonJC: Combined HPLC, NMR spectroscopy, and ion-trap mass spectrometry with application to the detection and characterization of xenobiotic and endogenous metabolites in human urine.Anal. Chem.68(24), 4431–4435 (1996).
  • Sun J , SchnackenbergLK, HollandRDet al.: Metabonomics evaluation of urine from rats given acute and chronic doses of acetaminophen using NMR and UPLC/MS.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.871(2), 328–340 (2008).
  • Lenz EM , BrightJ, KnightRet al.: Metabonomics with 1H-NMR spectroscopy and liquid chromatography-mass spectrometry applied to the investigation of metabolic changes caused by gentamicin-induced nephrotoxicity in the rat.Biomarkers10(2–3), 173–187 (2005).
  • Crockford DJ , HolmesE, LindonJCet al.: Statistical heterospectroscopy, an approach to the integrated analysis of NMR and UPLC-MS data sets: application in metabonomic toxicology studies.Anal. Chem.78(2), 363–371 (2006).
  • Lenz EM , BrightJ, KnightR, WilsonID, MajorH: A metabonomic investigation of the biochemical effects of mercuric chloride in the rat using 1H NMR and HPLC-TOF/MS: time dependent changes in the urinary profile of endogenous metabolites as a result of nephrotoxicity.Analyst129(6), 535–541 (2004).
  • Xue R , LinZ, DengCet al.: A serum metabolomic investigation on hepatocellular carcinoma patients by chemical derivatization followed by gas chromatography/mass spectrometry.Rapid Commun. Mass Spectrom.22(19), 3061–3068 (2008).
  • Xue R , DongL, ZhangSet al.: Investigation of volatile biomarkers in liver cancer blood using solid-phase microextraction and gas chromatography/mass spectrometry.Rapid Commun. Mass Spectrom.22(8), 1181–1186 (2008).
  • Wang Y , WangT, ShiXet al.: Analysis of acetylcholine, choline and butyrobetaine in human liver tissues by hydrophilic interaction liquid chromatography-tandem mass spectrometry.J. Pharm. Biomed. Anal.47(4–5), 870–875 (2008).
  • Mendoza ME , MonteMJ, El-MirMY, BadiaMD, MarinJJ: Changes in the pattern of bile acids in the nuclei of rat liver cells during hepatocarcinogenesis.Clin. Sci.102(2), 143–150 (2002).
  • Khan SA , CoxIJ, HamiltonG, ThomasHC, Taylor-RobinsonSD: In vivo and in vitro nuclear magnetic resonance spectroscopy as a tool for investigating hepatobiliary disease: a review of H and P MRS applications.Liver Int.25(2), 273–281 (2005).
  • Cox IJ , SharifA, CobboldJF, ThomasHC, Taylor-RobinsonSD: Current and future applications of in vitro magnetic resonance spectroscopy in hepatobiliary disease.World J. Gastroenterol.12(30), 4773–4783 (2006).
  • Soper R , HimmelreichU, PainterDet al.: Pathology of hepatocellular carcinoma and its precursors using proton magnetic resonance spectroscopy and a statistical classification strategy.Pathology34(5), 417–422 (2002).
  • Griffitts J , TesiramYA, ReidGE, SaundersD, FloydRA, TownerRA: In vivo magnetic resonance spectroscopy (MRS) assessment of altered fatty acyl unsaturation in liver tumor formation of a TGFα/c-myc transgenic mouse model.J. Lipid Res.50(4), 611–622 (2009).
  • Nishijima T , NishinaM, FujiwaraK: Measurement of lactate levels in serum and bile using proton nuclear magnetic resonance in patients with hepatobiliary diseases: its utility in detection of malignancies.Jpn. J. Clin. Oncol.27(1), 13–17 (1997).
  • Nagana Gowda GA , ShanaiahN, CooperA, MaluccioM, RafteryD: Visualization of bile homeostasis using 1H-NMR spectroscopy as a route for assessing liver cancer. Lipids44(1), 27–35 (2009).
  • Nagana Gowda GA , SomashekarBS, IjareOB, SharmaA, KapoorVK, KhetrapalCL: One-step analysis of major bile components in human bile using 1H NMR spectroscopy. Lipids41(6), 577–589 (2006).
  • Nagana Gowda GA , IjareOB, SomashekarBS, SharmaA, KapoorVK, KhetrapalCL: Single-step analysis of individual conjugated bile acids in human bile using 1H NMR spectroscopy. Lipids41(6), 591–603 (2006).
  • Ijare OB , SomashekarBS, Nagana GowdaGA, SharmaA, KapoorVK, KhetrapalCL: Quantification of glycine and taurine conjugated bile acids in human bile using 1H NMR spectroscopy. Magn. Reson. Med.53(6), 1441–1446 (2005).
  • Srivastava M , JadegoudY, Nagana GowdaGA, SharmaA, KapoorVK, KhetrapalCL: An accurate method for cholesterol analysis in bile. Anal. Letts.38, 2135–2141 (2005).
  • Ijare OB , SomashekarBS, JadegoudY, Nagana GowdaGA: 1H and 13C NMR characterization and stereochemical assignments of bile acids in aqueous media. Lipids40(10), 1031–1041 (2005).
  • Nagana Gowda GA , ShanaiahN, CooperA, MaluccioM, RafteryD: Bile acids conjugation in human bile is not random: new insights from 1H NMR spectroscopy at 800 MHz.Lipids (2009) (Epub ahead of print)
  • Khan SA , CoxIJ, ThillainayagamAV, BansiDS, ThomasHC, Taylor-RobinsonSD: Proton and phosphorus-31 nuclear magnetic resonance spectroscopy of human bile in hepatopancreaticobiliary cancer.Eur. J. Gastroenterol. Hepatol.17(7), 733–738 (2005).
  • Cox IJ , BellJD, PedenCJet al.: In vivo and in vitro 31P magnetic resonance spectroscopy of focal hepatic malignancies.NMR Biomed.5(3), 114–120 (1992).
  • Cox IJ , MenonDK, SargentoniJet al.: Phosphorus-31 magnetic resonance spectroscopy of the human liver using chemical shift imaging techniques.J. Hepatol.14(2–3), 265–275 (1992).
  • Francis IR , ChenevertTL, GubinBet al.: Malignant hepatic tumors: P-31 MR spectroscopy with one-dimensional chemical shift imaging.Radiology180(2), 341–344 (1991).
  • Glazer GM , SmithSR, ChenevertTLet al.: Image localized 31P magnetic resonance spectroscopy of the human liver.NMR Biomed.1(4), 184–189 (1989).
  • Albiin N , SmithIC, ArneloUet al.: Detection of cholangiocarcinoma with magnetic resonance spectroscopy of bile in patients with and without primary sclerosing cholangitis.Acta Radiol.49(8), 855–862 (2008).
  • Somashekar BS , IjareOB, Nagana Gowda GA et al.: Analysis of bile and gallbladder tissue by NMR: A route for diagnosis of gallbladder cancer. Proc. Intl Soc. Mag. Reson. Med.15, 127 (2007)
  • Srivastava M , SharmaA, KapoorVK, Nagana GowdaGA: Stones from cancerous and benign gallbladders are different: a proton nuclear magnetic resonance spectroscopy study. Hepatol. Res.38(10), 997–1005 (2008).
  • Ijare OB , BezabehT, AlbiinNet al.: Absence of glycochenodeoxycholic acid (GCDCA) in human bile is an indication of cholestasis: a 1H MRS study.NMR Biomed. (Epub ahead of print) (2009).
  • Saxena V , GuptaA, Nagana GowdaGA, SaxenaR, YachhaSK, KhetrapalCL: 1H NMR spectroscopy for the prediction of therapeutic outcome in patients with fulminant hepatic failure. NMR Biomed.19(5), 521–526 (2006).
  • Martínez-Granados B , MonleónD, Martínez-BisbalMCet al.: Metabolite identification in human liver needle biopsies by high-resolution magic angle spinning 1H NMR spectroscopy.NMR Biomed.19(1), 90–100 (2006).
  • Bala L , TripathiP, BhattGet al.: 1H and 31P NMR studies indicate reduced bile constituents in patients with biliary obstruction and infection.NMR Biomed.22(2), 220–228 (2009).
  • Beger RD , SchnackenbergLK, HollandRD, LiD, DraganY: Metabonomic models of human pancreatic cancer using 1D proton NMR spectra of lipids in plasma.Metabolomics2(3), 125–134 (2006).
  • Kaplan O , KushnirT, AskenazyN, KnubovetsT, NavonG: Role of nuclear magnetic resonance spectroscopy (MRS) in cancer diagnosis and treatment: 31P, 23Na, and 1H MRS studies of three models of pancreatic cancer.Cancer Res.57(8), 1452–1459 (1997).
  • Fang F , HeX, DengHet al.: Discrimination of metabolic profiles of pancreatic cancer from chronic pancreatitis by high-resolution magic angle spinning 1H nuclear magnetic resonance and principal components analysis.Cancer Sci.98(11), 1678–1682 (2007).
  • Cho SG , LeeDH, LeeKYet al.: Differentiation of chronic focal pancreatitis from pancreatic carcinoma by in vivo proton magnetic resonance spectroscopy.J. Comput. Assist. Tomogr.29(2), 163–169 (2005).
  • Chemin-Thomas C , EsclassanJ, PalevodyC, HollandeE: Characterization of a specific signal from human pancreatic tumors heterotransplanted into nude mice. Study by high resolution 1H NMR and HPLC.Int. J. Pancreatol.13(3), 175–185 (1993).
  • Bezabeh T , IjareOB, AlbiinN, ArneloU, LindbergB, SmithICP: 1H MRS of bile in the differential diagnosis of cholangiocarcinoma and pancreatic cancer.Proc. Intl Soc. Mag. Reson. Med.15, 3736 (2008).
  • Mal M , KohPK, CheahPY, ChanEC: Development and validation of a gas chromatography/mass spectrometry method for the metabolic profiling of human colon tissue.Rapid Commun. Mass Spectrom.23(4), 487–494 (2008).
  • Denkert C , BudcziesJ, WeichertWet al.: Metabolite profiling of human colon carcinoma – deregulation of TCA cycle and amino acid turnover.Mol. Cancer7, 72 (2008).
  • Lean CL , NewlandRC, EndeDA, BokeyEL, SmithIC, MountfordCE: Assessment of human colorectal biopsies by 1H MRS: correlation with histopathology.Magn. Reson. Med.30(5), 525–533 (1993).
  • Moreno A , ArúsC: Quantitative and qualitative characterization of 1H NMR spectra of colon tumors, normal mucosa and their perchloric acid extracts: decreased levels of myo-inositol in tumours can be detected in intact biopsies.NMR Biomed.9(1), 33–45 (1996).
  • Moreno A , ReyM, MontaneJM, AlonsoJ, ArúsC: 1H NMR spectroscopy of colon tumors and normal mucosal biopsies; elevated taurine levels and reduced polyethyleneglycol absorption in tumors may have diagnostic significance.NMR Biomed.6(2), 111–118 (1993).
  • Merchant TE , KasimosJN, de GraafPW, MinskyBD, GierkeLW, GlonekT: Phospholipid profiles of human colon cancer using 31P magnetic resonance spectroscopy. Int. J. Colorectal Dis.6(2), 121–126 (1996).
  • Kasimos JN , MerchantTE, GierkeLW, GlonekT: 31P magnetic resonance spectroscopy of human colon cancer.Cancer Res.50(3), 527–532 (1990).
  • Merchant TE , DiamantisPM, LauwersGet al.: Characterization of malignant colon tumors with 31P nuclear magnetic resonance phospholipid and phosphatic metabolite profiles.Cancer76(10), 1715–1723 (1995).
  • Merchant TE , CharaciejusD, KasimosJN, Den OtterW, GierkeLW, GlonekT: Phosphodiesters in saponified extracts of human breast and colon tumors using 31P magnetic resonance spectroscopy. Magn. Reson. Med.26(1), 132–140 (1992).
  • Hakomori S , NudelmanE, LeverySB, KannagiR: Novel fucolipids accumulating in human adenocarcinoma. I. Glycolipids with di- or trifucosylated type 2 chain.J. Biol. Chem.259(7), 4672–4680 (1984).
  • Lean CL , MackinnonWB, MountfordCE: Fucose in 1H COSY spectra of plasma membrane fragments shed from human malignant colorectal cells.Magn. Reson. Med.20(2), 306–311 (1991).
  • Monleón D , MoralesJM, BarrasaA, LópezJA, VázquezC, CeldaB: Metabolite profiling of fecal water extracts from human colorectal cancer.NMR Biomed.22(3), 342–348 (2009).
  • Bezabeh T , SomorjaiRL, DolenkoBet al.: Detecting colorectal cancer by 1H magnetic resonance spectroscopy of fecal extracts.NMR Biomed. (Epub ahead of print) (2009).
  • Tadano T , KanohM, KondohHet al.: Kinetic analysis of bile acids in the feces of colorectal cancer patients by gas chromatography-mass spectrometry (GC-MS).Rinsho Byori.55(5), 417–427 (2007).
  • Tadano T , KanohM, MatsumotoM, SakamotoK, KamanoT: Studies of serum and feces bile acids determination by gas chromatography-mass spectrometry.Rinsho Byori.54(2), 103–110 (2006).
  • Bezabeh T , SmithIC, KrupnikEet al.: Diagnostic potential for cancer via 1H magnetic resonance spectroscopy of colon tissue.Anticancer Res.16(3B), 1553–1558 (1996).
  • Brière KM , KueselAC, BirdRP, SmithIC: 1H MR visible lipids in colon tissue from normal and carcinogen-treated rats.NMR Biomed.8(1), 33–40 (1995).
  • Krupnik E , BrièreKM, BirdRP, LittmanC, SmithIC: 1H magnetic resonance spectroscopy evidence that aberrant crypt foci are preneoplastic lesions in the colon.Anticancer Res.19(3A), 1699–1703 (1999).
  • Calabrese C , PisiA, Di Febo G et al.: Biochemical alterations from normal mucosa to gastric cancer by ex vivo magnetic resonance spectroscopy. Cancer Epidemiol. Biomarkers Prev.17(6), 1386–1395 (2008).
  • Buszewski B , UlanowskaA, LigorT, JackowskiM, KlodzinskaE, SzeligaJ: Identification of volatile organic compounds secreted from cancer tissues and bacterial cultures.J. Chromatogr. B Analyt. Technol. Biomed. Life Sci.868(1–2), 88–94 (2008).
  • Bennett A , CivierA, HensbyCN, MelhuishPB, StamfordIF: Measurement of arachidonate and its metabolites extracted from human normal and malignant gastrointestinal tissues.Gut28(3), 315–318 (1987).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.