320
Views
0
CrossRef citations to date
0
Altmetric
Review

Epigenetic Mechanisms in Cancer

&
Pages 397-410 | Published online: 06 Aug 2009

Bibliography

  • Jones PA , BaylinSB: The epigenomics of cancer.Cell128(4), 683–692 (2007).
  • Verma M , DunnBK, RossSet al.: Early detection and risk assessment: proceedings and recommendations from the Workshop on Epigenetics in Cancer Prevention.Ann. NY Acad. Sci.983, 298–319 (2003).
  • Verma M : Viral genes and methylation.Ann. NY Acad. Sci.983, 170–180 (2003).
  • Verma M , ManneU: Genetic and epigenetic biomarkers in cancer diagnosis and identifying high risk populations.Crit. Rev. Oncol. Hematol.60(1), 9–18 (2006).
  • Verma M , MaruvadaP, SrivastavaS: Epigenetics and cancer.Crit. Rev. Clin. Lab. Sci.41(5–6), 585–607 (2004).
  • Jones PA , MartienssenR: A blueprint for a Human Epigenome Project: the AACR Human Epigenome Workshop.Cancer Res.65(24), 11241–11246 (2005).
  • Belinsky SA , LiechtyKC, GentryFDet al.: Promoter hypermethylation of multiple genes in sputum precedes lung cancer incidence in a high-risk cohort.Cancer Res.66(6), 3338–3344 (2006).
  • Feinberg AP , TyckoB: The history of cancer epigenetics.Nat. Rev.4(2), 143–153 (2004).
  • Esteller M : Epigenetics in cancer.N. Engl. J. Med.358(11), 1148–1159 (2008).
  • Rouhi A , MagerDL, HumphriesRK, KuchenbauerF: miRNAs, epigenetics, and cancer.Mamm. Genome19(7–8), 517–525 (2008).
  • Feinberg AP : Epigenetics at the epicenter of modern medicine.JAMA299(11), 1345–1350 (2008).
  • Jirtle RL : Interview. Epigenomics, imprinting and disease susceptibility.Pharmacogenomics9(12), 1791–1795 (2008).
  • Chen YC , KraftP, BretskyPet al.: Sequence variants of estrogen receptor β and risk of prostate cancer in the National Cancer Institute Breast and Prostate Cancer Cohort Consortium.Cancer Epidemiol. Biomarkers Prev.16(10), 1973–1981 (2007).
  • Feigelson HS , CoxDG, CannHMet al.: Haplotype analysis of the HSD17B1 gene and risk of breast cancer: a comprehensive approach to multicenter analyses of prospective cohort studies.Cancer Res.66(4), 2468–2475 (2006).
  • Schumacher FR , FeigelsonHS, CoxDGet al.: A common 8q24 variant in prostate and breast cancer from a large nested case–control study.Cancer Res.67(7), 2951–2956 (2007).
  • Berndt SI , PotterJD, HazraAet al.: Pooled analysis of genetic variation at chromosome 8q24 and colorectal neoplasia risk.Hum. Mol. Genet.17(17), 2665–2672 (2008).
  • Thomas G , JacobsKB, YeagerMet al.: Multiple loci identified in a genome-wide association study of prostate cancer.Nat. Genet.40(3), 310–315 (2008).
  • Cox DG , PenneyK, GuoQ, HankinsonSE, HunterDJ: TGFβ1 and TGFβR1 polymorphisms and breast cancer risk in the Nurses‘ Health Study.BMC Cancer7, 175 (2007).
  • Tan XL , NietersA, KroppS, HoffmeisterM, BrennerH, Chang-ClaudeJ: The association of cyclin D1 G870A and E-cadherin C-160A polymorphisms with the risk of colorectal cancer in a case control study and meta- analysis.Int. J. Cancer122(11), 2573–2580 (2008).
  • Pechlivanis S , WagnerK, Chang-ClaudeJ, HoffmeisterM, BrennerH, ForstiA: Polymorphisms in the insulin like growth factor 1 and IGF binding protein 3 genes and risk of colorectal cancer.Cancer Detect. Prev.31(5), 408–416 (2007).
  • Yuan Y , ChiF, WangS, WangZ: Significance of ceramide and DNA ploidy in laryngeal carcinogenesis.ORL J. Otorhinolaryngol. Relat. Spec.69(5), 283–288 (2007).
  • Srinivasan SV , MayhewCN, SchwembergerS, ZagorskiW, KnudsenES: RB loss promotes aberrant ploidy by deregulating levels and activity of DNA replication factors.J. Biol. Chem.282(33), 23867–23877 (2007).
  • Filyasova EI , ZatsepinaOV, LarionovOA, KhodarovichYM: Obtaining hybrid mammalian cells containing diploid chromosome number.Dokl. Biol. Sci.411, 520–523 (2006).
  • Chavez-Uribe E , Cameselle-TeijeiroJ, VinuelaJEet al.: Hypoploidy defines patients with poor prognosis in breast cancer.Oncol. Rep.17(5), 1109–1114 (2007).
  • Smits T , OlthuisD, BlokxWAet al.: Aneuploidy and proliferation in keratinocytic intraepidermal neoplasias.Exp. Dermatol.16(2), 81–86 (2007).
  • Scheurer ME , GuillaudM, Tortolero-LunaG, McAulayC, FollenM, Adler-StorthzK: Human papillomavirus-related cellular changes measured by cytometric analysis of DNA ploidy and chromatin texture.Cytometry72(5), 324–331 (2007).
  • Alberici P , de Pater E, Cardoso J et al.: Aneuploidy arises at early stages of APC-driven intestinal tumorigenesis and pinpoints conserved chromosomal loci of allelic imbalance between mouse and human. Am. J. Pathol.170(1), 377–387 (2007).
  • Weaver BA , SilkAD, MontagnaC, Verdier-PinardP, ClevelandDW: Aneuploidy acts both oncogenically and as a tumor suppressor.Cancer Cell11(1), 25–36 (2007).
  • Ozkagnici A , AcarH, ZenginN, OkudanS: Evaluation of aneuploidy frequency for chromosomes 6 and 17 in eyelid tumours using the FISH technique.Cell Biol. Int.31(3), 215–219 (2007).
  • Abaza R , DiazLKJr, LaskinWB, PinsMR: Prognostic value of DNA ploidy, bcl-2 and p53 in localized prostate adenocarcinoma incidentally discovered at transurethral prostatectomy. J. Urol.176(6 Pt 1), 2701–2705 (2006).
  • Lasota J , MiettinenM: KIT exon 11 deletion-inversions represent complex mutations in gastrointestinal stromal tumors.Cancer Genet. Cytogenet.175(1), 69–72 (2007).
  • Frank B , BermejoJL, HemminkiKet al.: Copy number variant in the candidate tumor suppressor gene MTUS1 and familial breast cancer risk.Carcinogenesis28(7), 1442–1445 (2007).
  • Kost-Alimova M , ImrehS: Modeling non-random deletions in cancer.Semin. Cancer Biol.17(1), 19–30 (2007).
  • Armaou S , KonstantopoulouI, AnagnostopoulosTet al.: Novel genomic rearrangements in the BRCA1 gene detected in Greek breast/ovarian cancer patients.Eur. J. Cancer.43(2), 443–453 (2007).
  • Veltri RW , MakarovDV: Nucleic acid-based marker approaches to urologic cancers.Urol. Oncol.24(6), 510–527 (2006).
  • de la Hoya M , Gutierrez-EnriquezS, VelascoEet al.: Genomic rearrangements at the BRCA1 locus in Spanish families with breast/ovarian cancer.Clin. Chem.52(8), 1480–1485 (2006).
  • Zagaria A , AnelliL, AlbanoFet al.: Molecular cytogenetic characterization of deletions on der(9) in chronic myelocytic leukemia.Cancer Genet. Cytogenet.167(2), 97–102 (2006).
  • des Guetz G , MarianiP, CucheroussetJet al.: Microsatellite instability and sensitivitiy to FOLFOX treatment in metastatic colorectal cancer.Anticancer Res.27(4C), 2715–2719 (2007).
  • Kazama Y , WatanabeT, KanazawaT, TanakaJ, TanakaT, NagawaH: Microsatellite instability in poorly differentiated adenocarcinomas of the colon and rectum: relationship to clinicopathological features.J. Clin. Pathol.60(6), 701–704 (2007).
  • Lovig T , AndersenSN, ClausenOP, RognumTO: Microsatellite instability in long-standing ulcerative colitis.Scand. J. Gastroenterol.42(5), 586–591 (2007).
  • Dierssen JW , de MirandaNF, FerroneSet al.: HNPCC versus sporadic microsatellite-unstable colon cancers follow different routes toward loss of HLA class I expression. BMC Cancer7, 33 (2007).
  • Jung BH , BeckSE, CabralJet al.: Activin type 2 receptor restoration in MSI-H colon cancer suppresses growth and enhances migration with activin.Gastroenterology132(2), 633–644 (2007).
  • Greenspan EJ , CyrJL, PleauDCet al.: Microsatellite instability in aberrant crypt foci from patients without concurrent colon cancer.Carcinogenesis28(4), 769–776 (2007).
  • Trautmann K , TerdimanJP, FrenchAJet al.: Chromosomal instability in microsatellite-unstable and stable colon cancer.Clin. Cancer Res.12(21), 6379–6385 (2006).
  • Grady WM , MarkowitzS: Genomic instability and colorectal cancer.Curr. Opin. Gastroenterol.16(1), 62–67 (2000).
  • Fijneman RJ , CarvalhoB, PostmaC, MongeraS, van HinsberghVW, MeijerGA: Loss of 1p36, gain of 8q24, and loss of 9q34 are associated with stroma percentage of colorectal cancer. Cancer Lett.258(2), 223–229 (2007).
  • Wan J , LiH, LiY, ZhuML, ZhaoP: Loss of heterozygosity of Kras2 gene on 12p12–13 in Chinese colon carcinoma patients.World J. Gastroenterol.12(7), 1033–1037 (2006).
  • Zheng HT , PengZH, ZhouCZet al.: Detailed deletion mapping of loss of heterozygosity on 22q13 in sporadic colorectal cancer.World J. Gastroenterol.11(11), 1668–1672 (2005).
  • Tsuji N , FuruseK, AsanumaKet al.: Mutations of the p53 gene and loss of heterozygosity at chromosome 17p13.1 are associated with increased survivin expression in breast cancer.Breast Cancer Res. Treat.87(1), 23–31 (2004).
  • Ruivenkamp C , HermsenM, PostmaCet al.: LOH of PTPRJ occurs early in colorectal cancer and is associated with chromosomal loss of 18q12–21.Oncogene22(22), 3472–3474 (2003).
  • Cruz AL , ChungW, HuhJet al.: Breast cancer screening among Chamorro women in California.Cancer Detect. Prev.32(Suppl. 1), S16–S22 (2008).
  • Vernon SW , del Junco DJ, Tiro JA et al.: Promoting regular mammography screening II. Results from a randomized controlled trial in US women veterans. J. Natl Cancer Inst.100(5), 347–358 (2008).
  • Soares D , JohnsonP: Breast imaging update.West Indian Med. J.56(4), 351–354 (2007).
  • Whitman S , ShahAM, SilvaA, AnsellD: Mammography screening in six diverse communities in Chicago – a population study.Cancer Detect. Prev.31(2), 166–172 (2007).
  • Chagpar AB , McMastersKM: Trends in mammography and clinical breast examination: a population-based study.J. Surg. Res.140(2), 214–219 (2007).
  • Spratlin JL , SerkovaNJ, EckhardtSG: Clinical applications of metabolomics in oncology: a review.Clin. Cancer Res.15(2), 431–440 (2009).
  • Guenther MG , LawtonLN, RozovskaiaTet al.: Aberrant chromatin at genes encoding stem cell regulators in human mixed-lineage leukemia.Genes Dev.22(24), 3403–3408 (2008).
  • Guenther MG , LevineSS, BoyerLA, JaenischR, YoungRA: A chromatin landmark and transcription initiation at most promoters in human cells.Cell130(1), 77–88 (2007).
  • Jansen FH , RoobolM, JensterG, SchroderFH, BangmaCH: Screening for prostate cancer in 2008 II: the importance of molecular subforms of prostate-specific antigen and tissue kallikreins.Eur. Urol. (2008) (Epub ahead of print).
  • Scher HI , JiaX, de Bono JS et al.: Circulating tumour cells as prognostic markers in progressive, castration-resistant prostate cancer: a reanalysis of IMMC38 trial data. Lancet Oncol.10(3), 233–239 (2009).
  • Schroder FH : Review of diagnostic markers for prostate cancer.Recent Results Cancer Res.181, 173–182 (2009).
  • Badgwell D , BastRCJr: Early detection of ovarian cancer. Dis. Markers23(5–6), 397–410 (2007).
  • Benjapibal M , NeungtonC: Pre-operative prediction of serum CA125 level in women with ovarian masses.J. Med. Assoc. Thai.90(10), 1986–1991 (2007).
  • Huang Y , JinY, YanCHet al.: Involvement of Annexin A2 in p53 induced apoptosis in lung cancer.Mol. Cell. Biochem.309(1–2), 117–123 (2008).
  • Yamada N , NishidaY, TsutsumidaHet al.: MUC1 expression is regulated by DNA methylation and histone H3 lysine 9 modification in cancer cells.Cancer Res.68(8), 2708–2716 (2008).
  • Kondo Y , ShenL, ChengASet al.: Gene silencing in cancer by histone H3 lysine 27 trimethylation independent of promoter DNA methylation.Nat. Genet.40(6), 741–750 (2008).
  • Enokida H , NakagawaM: Epigenetics in bladder cancer.Int. J. Clin. Oncol.13(4), 298–307 (2008).
  • Kawamoto K , EnokidaH, GotandaTet al.: p16INK4a and p14ARF methylation as a potential biomarker for human bladder cancer.Biochem. Biophys. Res. Commun.339(3), 790–796 (2006).
  • Feltmate CM , LeeKR, JohnsonMet al.: Whole-genome allelotyping identified distinct loss-of-heterozygosity patterns in mucinous ovarian and appendiceal carcinomas.Clin. Cancer Res.11(21), 7651–7657 (2005).
  • Neilson JR , SharpPA: Small RNA regulators of gene expression.Cell134(6), 899–902 (2008).
  • Seila AC , SharpPA: Small RNAs tell big stories in Whistler.Nat. Cell Biol.10(6), 630–633 (2008).
  • Ehrich M , FieldJK, LiloglouTet al.: Cytosine methylation profiles as a molecular marker in non-small cell lung cancer.Cancer Res.66(22), 10911–10918 (2006).
  • Ehrich M , TurnerJ, GibbsPet al.: Cytosine methylation profiling of cancer cell lines.Proc. Natl Acad. Sci. USA105(12), 4844–4849 (2008).
  • Tapia T , SmalleySV, KohenPet al.: Promoter hypermethylation of BRCA1 correlates with absence of expression in hereditary breast cancer tumors.Epigenetics3(3), 157–163 (2008).
  • Mulero-Navarro S , EstellerM: Chromatin remodeling factor CHD5 is silenced by promoter CpG island hypermethylation in human cancer.Epigenetics3(4), 210–215 (2008).
  • Rodriguez BA , ChengAS, YanPSet al.: Epigenetic repression of the estrogen-regulated Homeobox B13 gene in breast cancer.Carcinogenesis29(7), 1459–1465 (2008).
  • Gupta A , GodwinAK, VanderveerL, LuA, LiuJ: Hypomethylation of the synuclein g gene CpG island promotes its aberrant expression in breast carcinoma and ovarian carcinoma.Cancer Res.63(3), 664–673 (2003).
  • Sadones J , MichotteA, VeldPet al.: MGMT promoter hypermethylation correlates with a survival benefit from temozolomide in patients with recurrent anaplastic astrocytoma but not glioblastoma.Eur. J. Cancer.45(1), 146–153 (2009).
  • Yachi K , WatanabeT, OhtaTet al.: Relevance of MSP assay for the detection of MGMT promoter hypermethylation in glioblastomas.Int. J. Oncol.33(3), 469–475 (2008).
  • Anderton JA , LindseyJC, LusherMEet al.: Global analysis of the medulloblastoma epigenome identifies disease-subgroup-specific inactivation of COL1A2.Neuro-oncology10(6), 981–994 (2008).
  • Overmeer RM , HenkenFE, SnijdersPJet al.: Association between dense CADM1 promoter methylation and reduced protein expression in high-grade CIN and cervical SCC.J. Pathol.215(4), 388–397 (2008).
  • Lai HC , LinYW, HuangTHet al.: Identification of novel DNA methylation markers in cervical cancer.Int. J. Cancer123(1), 161–167 (2008).
  • Gokul G , GautamiB, MalathiSet al.: DNA methylation profile at the DNMT3L promoter: a potential biomarker for cervical cancer.Epigenetics2(2), 80–85 (2007).
  • Shivapurkar N , ShermanME, StastnyVet al.: Evaluation of candidate methylation markers to detect cervical neoplasia.Gynecol. Oncol.107(3), 549–553 (2007).
  • Kang S , KimHS, SeoSS, ParkSY, SidranskyD, DongSM: Inverse correlation between RASSF1A hypermethylation, KRAS and BRAF mutations in cervical adenocarcinoma.Gynecol. Oncol.105(3), 662–666 (2007).
  • Chung MT , SytwuHK, YanMDet al.: Promoter methylation of SFRPs gene family in cervical cancer.Gynecol. Oncol.112(2), 301–306 (2009).
  • Yang HJ , LiuVW, WangY, TsangPC, NganHY: Differential DNA methylation profiles in gynecological cancers and correlation with clinico-pathological data.BMC Cancer6, 212 (2006).
  • Poynter JN , SiegmundKD, WeisenbergerDJet al.: Molecular characterization of MSI-H colorectal cancer by MLHI promoter methylation, immunohistochemistry, and mismatch repair germline mutation screening.Cancer Epidemiol. Biomarkers Prev.17(11), 3208–3215 (2008).
  • Barault L , Charon-BarraC, JoosteVet al.: Hypermethylator phenotype in sporadic colon cancer: study on a population-based series of 582 cases.Cancer Res.68(20), 8541–8546 (2008).
  • Issa JP : Colon cancer: it‘s CIN or CIMP.Clin. Cancer Res.14(19), 5939–5940 (2008).
  • Ogino S , NoshoK, KirknerGJet al.: CpG island methylator phenotype, microsatellite instability, BRAF mutation and clinical outcome in colon cancer.Gut58(1), 90–96 (2009).
  • Mizukami H , ShirahataA, GotoTet al.: PGP9.5 methylation as a marker for metastatic colorectal cancer.Anticancer Res.28(5A), 2697–2700 (2008).
  • Tian XQ , ZhangY, SunD, ZhaoS, XiongH, FangJ: Epigenetic silencing of LRRC3B in colorectal cancer.Scand. J. Gastroenterol.44(1), 79–84 (2009).
  • Hibi K , SakataM, SakurabaKet al.: Aberrant methylation of the HACE1 gene is frequently detected in advanced colorectal cancer.Anticancer Res.28(3A), 1581–1584 (2008).
  • Grunau C , BrunME, RivalsIet al.: BAGE hypomethylation, a new epigenetic biomarker for colon cancer detection.Cancer Epidemiol. Biomarkers Prev.17(6), 1374–1379 (2008).
  • Guan H , JiM, HouPet al.: Hypermethylation of the DNA mismatch repair gene hMLH1 and its association with lymph node metastasis and T1799ABRAF mutation in patients with papillary thyroid cancer.Cancer113(2), 247–255 (2008).
  • Lind GE , AhlquistT, KolbergMet al.: Hypermethylated MAL gene – a silent marker of early colon tumorigenesis.J. Transl. Med.6, 13 (2008).
  • Lofton-Day C , ModelF, DevosTet al.: DNA methylation biomarkers for blood-based colorectal cancer screening.Clin. Chem.54(2), 414–423 (2008).
  • Zou H , HarringtonJJ, ShireAMet al.: Highly methylated genes in colorectal neoplasia: implications for screening.Cancer Epidemiol. Biomarkers Prev.16(12), 2686–2696 (2007).
  • Arnold CN , GoelA, NiedzwieckiDet al.: APC promoter hypermethylation contributes to the loss of APC expression in colorectal cancers with allelic loss on 5q.Cancer Biol. Ther.3(10), 960–964 (2004).
  • Mittag F , KuesterD, ViethMet al.: DAPK promotor methylation is an early event in colorectal carcinogenesis.Cancer Lett.240(1), 69–75 (2006).
  • Krakowczyk L , StrzelczykJK, AdamekBet al.: Methylation of the MGMT and p16 genes in sporadic colorectal carcinoma and corresponding normal colonic mucosa.Med. Sci. Monit.14(10), BR219–BR225 (2008).
  • Ogino S , NoshoK, KirknerGJet al.: A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer.J. Natl Cancer Inst.100(23), 1734–1738 (2008).
  • Zhou XC , DowdySC, PodratzKC, JiangSW: Epigenetic considerations for endometrial cancer prevention, diagnosis and treatment.Gynecol. Oncol.107(1), 143–153 (2007).
  • Xie R , LooseDS, ShipleyGL, XieS, BassettRLJr, BroaddusRR: Hypomethylation-induced expression of S100A4 in endometrial carcinoma. Mod. Pathol.20(10), 1045–1054 (2007).
  • Gu P , XingX, TanzerMet al.: Frequent loss of TIMP-3 expression in progression of esophageal and gastric adenocarcinomas.Neoplasia10(6), 563–572 (2008).
  • Dawsey SP , RothMJ, AdamsLet al.: COX-2 (PTGS2) gene methylation in epithelial, subepithelial lymphocyte and stromal tissue compartments in a spectrum of esophageal squamous neoplasia.Cancer Detect. Prev.32(2), 135–139 (2008).
  • Smith E , De Young NJ, Tian ZQ et al.: Methylation of TIMP3 in esophageal squamous cell carcinoma. World J. Gastroenterol.14(2), 203–210 (2008).
  • Wang J , SascoAJ, FuCet al.: Aberrant DNA methylation of P16, MGMT, and hMLH1 genes in combination with MTHFRC677T genetic polymorphism in esophageal squamous cell carcinoma.Cancer Epidemiol. Biomarkers Prev.17(1), 118–125 (2008).
  • Cheng YY , YuJ, WongYPet al.: Frequent epigenetic inactivation of secreted frizzled-related protein 2 (SFRP2) by promoter methylation in human gastric cancer.Br. J. Cancer97(7), 895–901 (2007).
  • Jung Y , ParkJ, BangYJ, KimTY: Gene silencing of TSPYL5 mediated by aberrant promoter methylation in gastric cancers.Lab. Invest.88(2), 153–160 (2008).
  • Kim M , JangHR, KimJHet al.: Epigenetic inactivation of protein kinase D1 in gastric cancer and its role in gastric cancer cell migration and invasion.Carcinogenesis29(3), 629–637 (2008).
  • Takada H , ImotoI, TsudaHet al.: ADAM23, a possible tumor suppressor gene, is frequently silenced in gastric cancers by homozygous deletion or aberrant promoter hypermethylation.Oncogene24(54), 8051–8060 (2005).
  • Choi IS , WuTT: Epigenetic alterations in gastric carcinogenesis.Cell Res.15(4), 247–254 (2005).
  • Maruyama R , AkinoK, ToyotaMet al.: Cytoplasmic RASSF2A is a proapoptotic mediator whose expression is epigenetically silenced in gastric cancer.Carcinogenesis29(7), 1312–1318 (2008).
  • Huang Q , SuX, AiL, LiM, FanCY, WeissLM: Promoter hypermethylation of multiple genes in gastric lymphoma.Leuk. Lymphoma48(10), 1988–1996 (2007).
  • Yoo EJ , ParkSY, ChoNY, KimN, LeeHS, KangGH: Helicobacter pylori-infection-associated CpG island hypermethylation in the stomach and its possible association with polycomb repressive marks.Virchows Arch.452(5), 515–524 (2008).
  • Calmon MF , ColomboJ, CarvalhoFet al.: Methylation profile of genes CDKN2A (p14 and p16), DAPK1, CDH1, and ADAM23 in head and neck cancer.Cancer Genet. Cytogenet.173(1), 31–37 (2007).
  • Chen K , SawhneyR, KhanMet al.: Methylation of multiple genes as diagnostic and therapeutic markers in primary head and neck squamous cell carcinoma.Arch. Otolaryngol. Head Neck Surg.133(11), 1131–1138 (2007).
  • Martone T , Gillio-TosA, De Marco L et al.: Association between hypermethylated tumor and paired surgical margins in head and neck squamous cell carcinomas. Clin. Cancer Res.13(17), 5089–5094 (2007).
  • Smith IM , MydlarzWK, MithaniSK, CalifanoJA: DNA global hypomethylation in squamous cell head and neck cancer associated with smoking, alcohol consumption and stage.Int. J. Cancer121(8), 1724–1728 (2007).
  • Haruta M , AraiY, SugawaraWet al.: Duplication of paternal IGF2 or loss of maternal IGF2 imprinting occurs in half of Wilms tumors with various structural WT1 abnormalities.Genes Chromosomes Cancer47(8), 712–727 (2008).
  • Baldewijns MM , van VlodropIJ, SchoutenLJ, SoetekouwPM, de BruineAP, van EngelandM: Genetics and epigenetics of renal cell cancer. Biochim. Biophys. Acta1785(2), 133–155 (2008).
  • Dressler GR : Epigenetics, development, and the kidney.J. Am. Soc. Nephrol.19(11), 2060–2067 (2008).
  • To KK , ZhanZ, BatesSE: Aberrant promoter methylation of the ABCG2 gene in renal carcinoma.Mol. Cell. Biol.26(22), 8572–8585 (2006).
  • Plass C , OakesC, BlumW, MarcucciG: Epigenetics in acute myeloid leukemia.Semin. Oncol.35(4), 378–387 (2008).
  • Raval A , ByrdJC, PlassC: Epigenetics in chronic lymphocytic leukemia.Semin. Oncol.33(2), 157–166 (2006).
  • Tada Y , BrenaRM, HackansonB, MorrisonC, OttersonGA, PlassC: Epigenetic modulation of tumor suppressor CCAAT/enhancer binding protein α activity in lung cancer.J. Natl Cancer Inst.98(6), 396–406 (2006).
  • Whitman SP , HackansonB, LiyanarachchiSet al.: DNA hypermethylation and epigenetic silencing of the tumor suppressor gene, SLC5A8, in acute myeloid leukemia with the MLL partial tandem duplication.Blood112(5), 2013–2016 (2008).
  • Fraga MF , BerdascoM, BallestarEet al.: Epigenetic inactivation of the Groucho homologue gene TLE1 in hematologic malignancies.Cancer Res.68(11), 4116–4122 (2008).
  • Abecassis I , MaesJ, CarrierJL: Re-expression of DNA methylation-silenced CD44 gene in a resistant NB4 cell line: rescue of CD44-dependent cell death by cAMP.Leukemia22(3), 511–520 (2008).
  • Bueno MJ , Perez de Castro I, Gomez de Cedron M et al.: Genetic and epigenetic silencing of microRNA-203 enhances ABL1 and BCR-ABL1 oncogene expression. Cancer Cell13(6), 496–506 (2008).
  • Dou LP , WangC, XuZMet al.: Methylation pattern of LRP15 gene in leukemia.Chin. Med. Sci. J.22(3), 187–191 (2007).
  • El-Shakankiry NH , MossallamGI: p15 (INK4B) and E-cadherin CpG island methylation is frequent in Egyptian acute myeloid leukemia.J. Egypt. Natl Cancer Inst.18(3), 227–232 (2006).
  • Erfurth FE , PopovicR, GrembeckaJet al.: MLL protects CpG clusters from methylation within the Hoxa9 gene, maintaining transcript expression.Proc. Natl Acad. Sci. USA105(21), 7517–7522 (2008).
  • Frohling S , SchollC, BansalD, HuntlyBJ: HOX gene regulation in acute myeloid leukemia: CDX marks the spot?Cell Cycle6(18), 2241–2245 (2007).
  • Hsiao PC , LiuMC, ChenLMet al.: Promoter methylation of p16 and EDNRB gene in leukemia patients in Taiwan.Chin. J. Physiol.51(1), 27–31 (2008).
  • Yalcin A , SerinMS, EmekdasGet al.: Promoter methylation of P15(INK4B) gene is possibly associated with parvovirus B19V infection in adult acute leukemias.Int. J. Lab. Hematol.31(4), 407–419 (2009).
  • Yu W , GiusD, OnyangoPet al.: Epigenetic silencing of tumour suppressor gene p15 by its antisense RNA.Nature451(7175), 202–206 (2008).
  • Zhao Y , WangQS, DouLPet al.: Methylation of Id4 gene promoter in acute leukemia.Zhongguo Shi Yan Xue Ye Xue Za Zhi15(6), 1156–1160 (2007).
  • Roman-Gomez J , Jimenez-VelascoA, AgirreXet al.: Repetitive DNA hypomethylation in the advanced phase of chronic myeloid leukemia.Leuk. Res.32(3), 487–490 (2008).
  • Nishida N , NagasakaT, NishimuraT, IkaiI, BolandCR, GoelA: Aberrant methylation of multiple tumor suppressor genes in aging liver, chronic hepatitis, and hepatocellular carcinoma.Hepatology47(3), 908–918 (2008).
  • Chan DW , LeeJM, ChanPC, NgIO: Genetic and epigenetic inactivation of T-cadherin in human hepatocellular carcinoma cells.Int. J. Cancer123(5), 1043–1052 (2008).
  • Honda S , HarutaM, SugawaraWet al.: The methylation status of RASSF1A promoter predicts responsiveness to chemotherapy and eventual cure in hepatoblastoma patients.Int. J. Cancer123(5), 1117–1125 (2008).
  • Takagi H , SasakiS, SuzukiHet al.: Frequent epigenetic inactivation of SFRP genes in hepatocellular carcinoma.J. Gastroenterol.43(5), 378–389 (2008).
  • Voelter V , DiserensAC, MoulinAet al.: Infrequent promoter methylation of the MGMT gene in liver metastases from uveal melanoma.Int. J. Cancer123(5), 1215–1218 (2008).
  • Yamada S , NomotoS, FujiiTet al.: Frequent promoter methylation of M-cadherin in hepatocellular carcinoma is associated with poor prognosis.Anticancer Res.27(4B), 2269–2274 (2007).
  • Barlesi F , GiacconeG, Gallegos-RuizMIet al.: Global histone modifications predict prognosis of resected non small-cell lung cancer.J. Clin. Oncol.25(28), 4358–4364 (2007).
  • Cooper WN , DickinsonRE, DallolAet al.: Epigenetic regulation of the ras effector/tumour suppressor RASSF2 in breast and lung cancer.Oncogene27(12), 1805–1811 (2008).
  • Georgiou E , ValeriR, TzimagiorgisGet al.: Aberrant p16 promoter methylation among Greek lung cancer patients and smokers: correlation with smoking.Eur. J. Cancer Prev.16(5), 396–402 (2007).
  • Hsu HS , ChenTP, WenCKet al.: Multiple genetic and epigenetic biomarkers for lung cancer detection in cytologically negative sputum and a nested case–control study for risk assessment.J. Pathol.213(4), 412–419 (2007).
  • Safar AM , SpencerH, SuX, CooneyCA, ShwaikiA, FanCY: Promoter hypermethylation for molecular nodal staging in non-small cell lung cancer.Arch. Pathol. Lab. Med.131(6), 936–941 (2007).
  • Sulewska A , NiklinskaW, KozlowskiMet al.: DNA methylation in states of cell physiology and pathology.Folia Histochem. Cytobiol.45(3), 149–158 (2007).
  • Tsou JA , GallerJS, SiegmundKDet al.: Identification of a panel of sensitive and specific DNA methylation markers for lung adenocarcinoma.Mol. Cancer6, 70 (2007).
  • Liu Y , GaoW, SiegfriedJM, WeissfeldJL, LuketichJD, KeohavongP: Promoter methylation of RASSF1A and DAPK and mutations of K-ras, p53, and EGFR in lung tumors from smokers and never-smokers.BMC Cancer7, 74 (2007).
  • Subramanian J , GovindanR: Lung cancer in never smokers: a review.J. Clin. Oncol.25(5), 561–570 (2007).
  • Suzuki M , ShigematsuH, IizasaTet al.: Exclusive mutation in epidermal growth factor receptor gene, HER-2, and KRAS, and synchronous methylation of nonsmall cell lung cancer.Cancer106(10), 2200–2207 (2006).
  • Toyooka S , TokumoM, ShigematsuHet al.: Mutational and epigenetic evidence for independent pathways for lung adenocarcinomas arising in smokers and never smokers.Cancer Res.66(3), 1371–1375 (2006).
  • Choi YL , KangSY, ShinYKet al.: Aberrant hypermethylation of RASSF1A promoter in ovarian borderline tumors and carcinomas.Virchows Arch.448(3), 331–336 (2006).
  • Fiegl H , WindbichlerG, Mueller-HolznerEet al.: HOXA11 DNA methylation – a novel prognostic biomarker in ovarian cancer.Int. J. Cancer123(3), 725–729 (2008).
  • Su HY , LaiHC, LinYW, ChouYC, LiuCY, YuMH: An epigenetic marker panel for screening and prognostic prediction of ovarian cancer.Int. J. Cancer124(2), 387–393 (2009).
  • Cui Y , YingY, van HasseltAet al.: OPCML is a broad tumor suppressor for multiple carcinomas and lymphomas with frequently epigenetic inactivation. PLoS ONE3(8), e2990 (2008).
  • Sellar GC , WattKP, RabiaszGJet al.: OPCML at 11q25 is epigenetically inactivated and has tumor-suppressor function in epithelial ovarian cancer.Nat. Genet.34(3), 337–343 (2003).
  • Gifford G , PaulJ, VaseyPA, KayeSB, BrownR: The acquisition of hMLH1 methylation in plasma DNA after chemotherapy predicts poor survival for ovarian cancer patients.Clin. Cancer Res.10(13), 4420–4426 (2004).
  • Chen CC , TaniguchiT, D‘AndreaA: The Fanconi anemia (FA) pathway confers glioma resistance to DNA alkylating agents.J. Mol. Med.85(5), 497–509 (2007).
  • Taniguchi T , TischkowitzM, AmezianeNet al.: Disruption of the Fanconi anemia–BRCA pathway in cisplatin-sensitive ovarian tumors.Nat. Med.9(5), 568–574 (2003).
  • Pattamadilok J , HuapaiN, RattanatanyongPet al.: LINE-1 hypomethylation level as a potential prognostic factor for epithelial ovarian cancer.Int. J. Gynecol. Cancer18(4), 711–717 (2008).
  • Dobosy JR , RobertsJL, FuVX, JarrardDF: The expanding role of epigenetics in the development, diagnosis and treatment of prostate cancer and benign prostatic hyperplasia.J. Urol.177(3), 822–831 (2007).
  • Verma M , SeminaraD, ArenaFJ, JohnC, IwamotoK, HartmullerV: Genetic and epigenetic biomarkers in cancer: improving diagnosis, risk assessment, and disease stratification.Mol. Diagn. Ther.10(1), 1–15 (2006).
  • Mulero-Navarro S , EstellerM: Chromatin remodeling factor CHD5 is silenced by promoter CpG island hypermethylation in human cancer.Epigenetics3(4), 210–215 (2008).
  • Thompson PM , GotohT, KokM, WhitePS, BrodeurGM: CHD5, a new member of the chromodomain gene family, is preferentially expressed in the nervous system.Oncogene22(7), 1002–1011 (2003).
  • Nie K , GomezM, LandgrafPet al.: MicroRNA-mediated down-regulation of PRDM1/Blimp-1 in Hodgkin/Reed-Sternberg cells: a potential pathogenetic lesion in Hodgkin lymphomas.Am. J. Pathol.173(1), 242–252 (2008).
  • Yu H , ZhuS, ZhouB, XueH, HanJD: Inferring causal relationships among different histone modifications and gene expression.Genome Res.18(8), 1314–1324 (2008).
  • Barski A , CuddapahS, CuiKet al.: High-resolution profiling of histone methylations in the human genome.Cell129(4), 823–837 (2007).
  • Hahn MA , HahnT, LeeDHet al.: Methylation of polycomb target genes in intestinal cancer is mediated by inflammation.Cancer Res.68(24), 10280–10289 (2008).
  • Shen X , LiuY, HsuYJet al.: EZH1 mediates methylation on histone H3 lysine 27 and complements EZH2 in maintaining stem cell identity and executing pluripotency.Mol. Cell32(4), 491–502 (2008).
  • Wei Y , XiaW, ZhangZet al.: Loss of trimethylation at lysine 27 of histone H3 is a predictor of poor outcome in breast, ovarian, and pancreatic cancers.Mol. Carcinogen.47(9), 701–706 (2008).
  • Yu J , YuJ, RhodesDRet al.: A polycomb repression signature in metastatic prostate cancer predicts cancer outcome.Cancer Res.67(22), 10657–10663 (2007).
  • Yu Q : Cancer gene silencing without DNA hypermethylation.Epigenetics3(6), 315–317 (2008).
  • Kumar D , VermaM: Methods in cancer epigenetics and epidemiology.Methods Mol. Biol.471, 273–288 (2009).
  • Iacobuzio-Donahue CA : Epigenetic changes in cancer.Annu. Rev. Pathol.4, 229–249 (2008).
  • Nakanishi H , SudaT, KatohMet al.: Loss of imprinting of PEG1/MEST in lung cancer cell lines.Oncol. Rep.12(6), 1273–1278 (2004).
  • Bjornsson HT , BrownLJ, FallinMDet al.: Epigenetic specificity of loss of imprinting of the IGF2 gene in Wilms tumors.J. Natl Cancer Inst.99(16), 1270–1273 (2007).
  • Cerrato F , SparagoA, VerdeGet al.: Different mechanisms cause imprinting defects at the IGF2/H19 locus in Beckwith-Wiedemann syndrome and Wilms‘ tumour.Hum. Mol. Genet.17(10), 1427–1435 (2008).
  • Luedi PP , DietrichFS, WeidmanJR, BoskoJM, JirtleRL, HarteminkAJ: Computational and experimental identification of novel human imprinted genes.Genome Res.17(12), 1723–1730 (2007).
  • Lewis A , ReikW: How imprinting centres work.Cytogenet. Genome Res.113(1–4), 81–89 (2006).
  • Cui H : Loss of imprinting of IGF2 as an epigenetic marker for the risk of human cancer.Dis. Markers23(1–2), 105–112 (2007).
  • Cui H , NiemitzEL, RavenelJDet al.: Loss of imprinting of insulin-like growth factor-II in Wilms‘ tumor commonly involves altered methylation but not mutations of CTCF or its binding site.Cancer Res.61(13), 4947–4950 (2001).
  • Cui H , Cruz-CorreaM, GiardielloFMet al.: Loss of IGF2 imprinting: a potential marker of colorectal cancer risk.Science299(5613), 1753–1755 (2003).
  • Nakagawa H , ChadwickRB, PeltomakiP, PlassC, NakamuraY, de La ChapelleA: Loss of imprinting of the insulin-like growth factor II gene occurs by biallelic methylation in a core region of H19-associated CTCF-binding sites in colorectal cancer. Proc. Natl Acad. Sci. USA98(2), 591–596 (2001).
  • Kang MJ , ParkBJ, ByunDSet al.: Loss of imprinting and elevated expression of wild-type p73 in human gastric adenocarcinoma.Clin. Cancer Res.6(5), 1767–1771 (2000).
  • Sato N , MatsubayashiH, AbeT, FukushimaN, GogginsM: Epigenetic down-regulation of CDKN1C/p57KIP2 in pancreatic ductal neoplasms identified by gene expression profiling.Clin. Cancer Res.11(13), 4681–4688 (2005).
  • Risch A , PlassC: Lung cancer epigenetics and genetics.Int. J. Cancer123(1), 1–7 (2008).
  • Kobayashi N , ToyookaS, SohJet al.: Risk factors for recurrence and unfavorable prognosis in patients with stage I non-small cell lung cancer and a tumor diameter of 20 mm or less.J. Thorac. Oncol.2(9), 808–812 (2007).
  • Toyooka S , MatsuoK, GazdarAF: DNA methylation in lung cancer.N. Engl. J. Med.358(23), 2513; author reply 2514 (2008).
  • Sun S , SchillerJH, GazdarAF: Lung cancer in never smokers – a different disease.Nat. Rev.7(10), 778–790 (2007).
  • Kaminsky Z , PetronisA: Methylation SNaPshot: a method for the quantification of site-specific DNA methylation levels.Methods Mol. Biol.507, 241–255 (2009).
  • Kaminsky Z , PetronisA, WangSCet al.: Epigenetics of personality traits: an illustrative study of identical twins discordant for risk-taking behavior.Twin Res. Hum. Genet.11(1), 1–11 (2008).
  • Feil R : Environmental and nutritional effects on the epigenetic regulation of genes.Mut. Res.600(1–2), 46–57 (2006).
  • Verma M : Biomarkers for risk assessment in molecular epidemiology of cancer.Technol. Cancer Res. Treat.3(5), 505–514 (2004).
  • Verma M , SrivastavaS: Epigenetics in cancer: implications for early detection and prevention.Lancet Oncol.3(12), 755–763 (2002).
  • Irizarry RA , Ladd-AcostaC, WenBet al.: The human colon cancer methylome shows similar hypo- and hypermethylation at conserved tissue-specific CpG island shores.Nat. Genet.41(2), 178–186 (2009).
  • Suzuki MM , BirdA: DNA methylation landscapes: provocative insights from epigenomics.Nat. Rev. Genet.9(6), 465–476 (2008).
  • Griffiths EA , GoreSD: DNA methyltransferase and histone deacetylase inhibitors in the treatment of myelodysplastic syndromes.Semin. Hematol.45(1), 23–30 (2008).
  • Kuendgen A , LubbertM: Current status of epigenetic treatment in myelodysplastic syndromes.Ann. Hematol.87(8), 601–611 (2008).
  • Liu T , LiuPY, MarshallGM: The critical role of the class III histone deacetylase SIRT1 in cancer.Cancer Res.69(5), 1702–1705 (2009).
  • Bishton M , KenealyM, JohnstoneR, RasheedW, PrinceHM: Epigenetic targets in hematological malignancies: combination therapies with HDACis and demethylating agents.Expert Rev. Anticancer Ther.7(10), 1439–1449 (2007).

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.