243
Views
1
CrossRef citations to date
0
Altmetric
Review

Clinical use of Biomarkers for Toxicant-Induced Acute Kidney Injury

, , &
Pages 441-456 | Published online: 04 Jun 2013

References

  • Endre ZH , PickeringJW, WalkerRJ. Clearance and beyond: the complementary roles of GFR measurement and injury biomarkers in acute kidney injury (AKI). Am. J. Physiol. Renal Physiol.301(4), F697–F707 (2011).
  • Dieterle F , SistareF, GoodsaidFet al. Renal biomarker qualification submission: a dialog between the FDA-EMEA and Predictive Safety Testing Consortium. Nat. Biotech. 28(5), 455–462 (2010).
  • Abuelo JG . Normotensive ischemic acute renal failure. N. Engl. J. Med.357(8), 797–805 (2007).
  • Perazella MA , MarkowitzGS. Drug-induced acute interstitial nephritis. Nat. Rev. Nephrol.6(8), 461–470 (2010).
  • Ozer JS , DieterleF, TrothSet al. A panel of urinary biomarkers to monitor reversibility of renal injury and a serum marker with improved potential to assess renal function. Nat. Biotech. 28(5), 486–494 (2010).
  • Cox KM , GoelS, O‘ConnellRLet al. Randomized cross-over trial comparing inpatient and outpatient administration of high-dose cisplatin. Intern. Med. J. 41(2), 172–178 (2011).
  • Pabla N , DongZ. Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int.73(9), 994–1007 (2008).
  • Jiang M . Regulation and pathological role of p53 in cisplatin nephrotoxicity. J. Pharmacol. Exp. Ther.327, 300–307 (2008).
  • Hanigan MH , TownsendDM, CooperAJ. Metabolism of cisplatin to a nephrotoxin. Toxicology257(3), 174–175; author reply 176–177 (2009).
  • Yu F , MegyesiJ, SafirsteinR. Involvement of the CDK2–E2F1 pathway in cisplatin cytotoxicity in vitro and in vivo. Am. J. Physiol. Renal Physiol.293, F52–F59 (2007).
  • Ramesh G , ReevesWB. P38 MAP kinase inhibition ameliorates cisplatin nephrotoxicity in mice. Am. J. Physiol. Renal Physiol.289(1), F166–F174 (2005).
  • Zhou H , KatoA, MiyajiTet al. Urinary marker for oxidative stress in kidneys in cisplatin-induced acute renal failure in rats. Nephrol. Dial. Transplant. 21(3), 616–623 (2006).
  • Linkermann A , HimmerkusN, RölverLet al. Renal tubular Fas ligand mediates fratricide in cisplatin-induced acute kidney failure. Kidney Int. 79(2), 169–178 (2010).
  • Periyasamy-Thandavan S , JiangM, WeiQ, SmithR, Yin X-M, Dong Z. Autophagy is cytoprotective during cisplatin injury of renal proximal tubular cells. Kidney Int.74(5), 631–640 (2008).
  • Schmitz C , HilpertJ, JacobsenCet al. Megalin deficiency offers protection from renal aminoglycoside accumulation. J. Biol. Chem. 277(1), 618–622 (2002).
  • Sandoval RM , MolitorisBA. Gentamicin traffics retrograde through the secretory pathway and is released in the cytosol via the endoplasmic reticulum. Am. J. Physiol. Renal Physiol.286(4), F617–F624 (2004).
  • Denamur S , TytecaD, Marchand-BrynaertJet al. Role of oxidative stress in lysosomal membrane permeabilization and apoptosis induced by gentamicin, an aminoglycoside antibiotic. Free Radic. Biol. Med. 51(9), 1656–1665 (2011).
  • Hazlewood KA , BrouseSD, PitcherWD, HallRG. Vancomycin-associated nephrotoxicity: grave concern or death by character assassination? Am. J. Med.123(2), 182.e1 (2010).
  • Tepel M , van der Giet M, Schwarzfeld C, Laufer U, Liermann D, Zidek W. Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N. Engl. J. Med.343(3), 180–184 (2000).
  • Webb JG , PateGE, HumphriesKHet al. A randomized controlled trial of intravenous N-acetylcysteine for the prevention of contrast-induced nephropathy after cardiac catheterization: lack of effect. Am. Heart J. 148(3), 422–429 (2004).
  • Matheis K , LaurieD, AndriamandrosoCet al. A generic operational strategy to qualify translational safety biomarkers. Drug Discov. Today 16(13–14), 600–608 (2011).
  • Dieterle F , PerentesE, CordierAet al. Urinary clusterin, cystatin C, β2-microglobulin and total protein as markers to detect drug-induced kidney injury. Nat. Biotech. 28(5), 463–469 (2010).
  • Yu Y , JinH, HolderDet al. Urinary biomarkers trefoil factor 3 and albumin enable early detection of kidney tubular injury. Nat. Biotech. 28(5), 470–477 (2010).
  • Vaidya VS , OzerJS, DieterleFet al. Kidney injury molecule-1 outperforms traditional biomarkers of kidney injury in preclinical biomarker qualification studies. Nat. Biotech. 28(5), 478–485 (2010).
  • Harpur E , EnnulatD, HoffmanDet al. Biological qualification of biomarkers of chemical-induced renal toxicity in two strains of male rat. Toxicol. Sci. 122(2), 235–252 (2011).
  • Ralib AM , PickeringJW, ShawGMet al. Test characteristics of urinary biomarkers depend on quantitation method in acute kidney injury. J. Am. Soc. Nephrol. 23(2), 322–333 (2012).
  • Grubb A , Blirup-JensenS, LindströmV, SchmidtC, AlthausH, ZegersI. First certified reference material for cystatin C in human serum ERM-DA471/IFCC. Clin. Chem. Lab. Med.48(11), 1619–1621 (2010).
  • Sackett DL , HaynesRB. The architecture of diagnostic research. BMJ324(7336), 539–541 (2002).
  • Kidney Disease: Improving Global Outcomes (KDIGO) Acute Kidney Injury Work Group . KDIGO clinical practice guideline for acute kidney injury. Kidney Int.2(Suppl.), 1–138 (2012).
  • Bellomo R , RoncoC, KellumJA, MehtaRL, Palevsky P; Acute Dialysis Quality Initiative Workgroup. Acute renal failure – definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care8(4), R204–R212 (2004).
  • Mehta RL , KellumJA, ShahSV et al.; Acute Kidney Injury Network. Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit. Care11(2), R31 (2007).
  • Haase M , DevarajanP, Haase-FielitzAet al. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury. J. Am. Coll. Cardiol. 57(17), 1752–1761 (2011).
  • Nickolas TL , Schmidt-OttKM, CanettaPet al. Diagnostic and prognostic stratification in the emergency department using urinary biomarkers of nephron damage: a multicenter prospective cohort study. J. Am. Coll. Cardiol. 59(3), 246–255 (2012).
  • Pickering JW , EndreZH. Linking injury to outcome in acute kidney injury: a matter of sensitivity. PLoS ONE8(4), e62691 (2013).
  • DeLong ER , DeLongDM, Clarke-PearsonDL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics44, 837–845 (1988).
  • Pickering JW , EndreZH. New metrics for assessing diagnostic potential of candidate biomarkers. Clin. J. Am. Soc. Nephrol.7, 1355–1364 (2012).
  • Endre ZH , WalkerRJ, PickeringJWet al. Early intervention with erythropoietin does not affect the outcome of acute kidney injury (the EARLYARF trial). Kidney Int. 77(11), 1020–1030 (2010).
  • Coca SG , YalavarthyR, ConcatoJ, ParikhCR. Biomarkers for the diagnosis and risk stratification of acute kidney injury: a systematic review. Kidney Int.73(9), 1008–1016 (2008).
  • Schentag JJ , PlautME. Patterns of urinary beta 2-microglobulin excretion by patients treated with aminoglycosides. Kidney Int.17(5), 654–661 (1980).
  • Briggs JP . The hunt for the perfect biomarker for acute kidney injury: back to gamma-trace? Kidney Int.74(8), 987–989 (2008).
  • Inker LA , SchmidCH, TighiouartHet al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N. Engl. J. Med. 367(1), 20–29 (2012).
  • Grubb A , NymanU, BjörkJ. Improved estimation of glomerular filtration rate (GFR) by comparison of eGFR cystatin C and eGFR creatinine. Scand. J. Clin. Lab. Invest.72(1), 73–77 (2012).
  • Bachorzewska-Gajewska H , MalyszkoJ, SitniewskaEet al. Could neutrophil-gelatinase-associated lipocalin and cystatin C predict the development of contrast-induced nephropathy after percutaneous coronary interventions in patients with stable angina and normal serum creatinine values? Kidney Blood Press. Res. 30(6), 408–415 (2007).
  • Briguori C , ViscontiG, RiveraNVet al. Cystatin C and contrast-induced acute kidney injury. Circulation 121(19), 2117–2122 (2010).
  • Ribichini F , GambaroG, GrazianiMSet al. Comparison of serum creatinine and cystatin c for early diagnosis of contrast-induced nephropathy after coronary angiography and interventions. Clin. Chem. 58(2), 458–464 (2012).
  • Mercieri M , MercieriA, TritapepeLet al. High-dose aprotinin with gentamicin-vancomycin antibiotic prophylaxis increases blood concentrations of creatinine and cystatin C in patients undergoing coronary artery bypass grafting. Br. J. Anaesth. 82(4), 531–536 (1999).
  • Bárdi E , BobokI, OláhAV, OláhE, KappelmayerJ, KissC. Cystatin C is a suitable marker of glomerular function in children with cancer. Pediatr. Nephrol.19(10), 1145–1147 (2004).
  • Risch L , HerklotzR, BlumbergA, HuberAR. Effects of glucocorticoid immunosuppression on serum cystatin C concentrations in renal transplant patients. Clin. Chem.47(11), 2055–2059 (2001).
  • Otsuka T , TanakaA, SuemaruKet al. Evaluation of the clinical application of cystatin C, a new marker of the glomerular filtration rate, for the initial dose-setting of arbekacin. J. Clin. Pharm. Ther. 33(3), 227–235 (2008).
  • Stabuc B , VrhovecL, Stabuc-SilihM, CizejTE. Improved prediction of decreased creatinine clearance by serum cystatin C: use in cancer patients before and during chemotherapy. Clin. Chem.46(2), 193–197 (2000).
  • Hermida J , TutorJC. Serum cystatin C for the prediction of glomerular filtration rate with regard to the dose adjustment of amikacin, gentamicin, tobramycin, and vancomycin. Ther. Drug Monit.28(3), 326–331 (2006).
  • Suzuki A , ImanishiY, NakanoSet al. Usefulness of serum cystatin C to determine the dose of vancomycin in critically ill patients. J. Pharm. Pharmacol. 62(7), 901–907 (2010).
  • Bodnar L , WcisloGB, SmoterMet al. Cystatin C as a parameter of glomerular filtration rate in patients with ovarian cancer. Kidney Blood Press. Res. 33(5), 360–367 (2010).
  • Kos J , StabucB, CimermanN, BrünnerN. Serum cystatin C, a new marker of glomerular filtration rate, is increased during malignant progression. Clin. Chem.44(12), 2556–2557 (1998).
  • Nielsen EI , SandströmM, HonoréPH, EwaldU, FribergLE. Developmental pharmacokinetics of gentamicin in preterm and term neonates: population modelling of a prospective study. Clin. Pharmacokinet.48(4), 253–263 (2009).
  • Jones TE , PeterJV, FieldJ. Aminoglycoside clearance is a good estimate of creatinine clearance in intensive care unit patients. Anaesth. Intensive Care37(6), 944 (2009).
  • Soulsby N , GrevilleH, CoulthardK, DoeckeC. What is the best method for measuring renal function in adults and children with cystic fibrosis? J. Cyst. Fibros.9(2), 124–129 (2010).
  • Paragas N , QiuA, ZhangQet al. The NGAL reporter mouse detects the response of the kidney to injury in real time. Nat. Med. 17(2), 216–222 (2011).
  • Mori K , LeeHT, RapoportDet al. Endocytic delivery of lipocalin–siderophore–iron complex rescues the kidney from ischemia–reperfusion injury. J. Clin. Invest. 115(3), 610–621 (2005).
  • McCullough PA , WilliamsFJ, StiversDNet al. Neutrophil gelatinase-associated lipocalin: a novel marker of contrast nephropathy risk. Am. J. Nephrol. 35(6), 509–514 (2012).
  • Hirsch R , DentC, PfriemHet al. NGAL is an early predictive biomarker of contrast-induced nephropathy in children. Pediatr. Nephrol. 22(12), 2089–2095 (2007).
  • Bachorzewska-Gajewska H , MalyszkoJ, SitniewskaEet al. NGAL (neutrophil–gelatinase-associated lipocalin) and cystatin C: are they good predictors of contrast nephropathy after percutaneous coronary interventions in patients with stable angina and normal serum creatinine? Int. J. Cardiol. 127(2), 290–291 (2008).
  • Liu X -L, Wang Z-J, Yang Q et al. Plasma neutrophil-gelatinase-associated lipocalin and cystatin C could early diagnose contrast-induced acute kidney injury in patients with renal insufficiency undergoing an elective percutaneous coronary intervention. Chin. Med. J. (Engl.)125(6), 1051–1056 (2012).
  • Ling W , ZhaohuiN, BenHet al. Urinary IL-18 and NGAL as early predictive biomarkers in contrast-induced nephropathy after coronary angiography. Nephron. Clin. Pract. 108(3), c176–c181 (2008).
  • Haase M , BellomoR, DevarajanP, SchlattmannP, Haase-Fielitz A; NGAL Meta-analysis Investigator Group. Accuracy of neutrophil gelatinase-associated lipocalin (NGAL) in diagnosis and prognosis in acute kidney injury: a systematic review and meta-analysis. Am. J. Kidney Dis.54(6), 1012–1024 (2009).
  • Bachorzewska-Gajewska H , MalyszkoJ, SitniewskaE, MalyszkoJS, DobrzyckiS. Neutrophil–gelatinase-associated lipocalin and renal function after percutaneous coronary interventions. Am. J. Nephrol.26(3), 287–292 (2006).
  • Gaspari F , CravediP, MandalàMet al. Predicting cisplatin-induced acute kidney injury by urinary neutrophil gelatinase-associated lipocalin excretion: a pilot prospective case-control study. Nephron. Clin. Pract. 115(2), c154–c160 (2010).
  • Piccioni M , Al-IsmailiZ, DevarajanPet al. Biomarkers of cisplatin and ifosfamide nephrotoxicity in children. J. Am. Soc. Nephrol. 22, 360A (2011)
  • McWilliam SJ , AntoineDJ, SabbisettiVet al. Mechanism-based urinary biomarkers to identify the potential for aminoglycoside-induced nephrotoxicity in premature neonates: a proof-of-concept study. PLoS ONE 7(8), e43809 (2012).
  • Malyszko J , Bachorzewska-GajewskaH, PoniatowskiB, MalyszkoJS, DobrzyckiS. Urinary and serum biomarkers after cardiac catheterization in diabetic patients with stable angina and without severe chronic kidney disease. Ren. Fail.31(10), 910–919 (2009).
  • Eisenhart E , BensonS, LacombePet al. Safety of low volume iodinated contrast administration for arteriovenous fistula intervention in chronic kidney disease stage 4 or 5 utilizing a bicarbonate prophylaxis strategy. Semin. Dial. 23(6), 638–642 (2010).
  • Ichimura T , AsseldonkEJ, HumphreysBD, GunaratnamL, DuffieldJS, BonventreJV. Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J. Clin. Invest.118(5), 1657–1668 (2008).
  • Vaidya VS , FordGM, WaikarSSet al. A rapid urine test for early detection of kidney injury. Kidney Int. 76(1), 108–114 (2009).
  • Nozaki Y , KinoshitaK, YanoTet al. Signaling through the interleukin-18 receptor α attenuates inflammation in cisplatin-induced acute kidney injury. Kidney Int. 82(8), 892–902 (2012).
  • Hall IE , YarlagaddaSG, CocaSGet al. IL-18 and urinary NGAL predict dialysis and graft recovery after kidney transplantation. J. Am. Soc. Nephrol. 21(1), 189–197 (2010).
  • Bulent Gul C , GulluluM, OralBet al. Urinary IL-18: a marker of contrast-induced nephropathy following percutaneous coronary intervention? Clin. Biochem. 41(7–8), 544–547 (2008).
  • Matsui K , Kamijo-IkemorifA, SugayaT, YasudaT, KimuraK. Renal liver-type fatty acid binding protein (L-FABP) attenuates acute kidney injury in aristolochic acid nephrotoxicity. Am. J. Pathol.178(3), 12–12 (2011).
  • Portilla D , DentC, SugayaTet al. Liver fatty acid-binding protein as a biomarker of acute kidney injury after cardiac surgery. Kidney Int. 73(4), 465–472 (2008).
  • Negishi K , NoiriE, SugayaTet al. A role of liver fatty acid-binding protein in cisplatin-induced acute renal failure. Kidney Int. 72(3), 348–358 (2007).
  • Harel-Sterling M , HoJ, GaoAet al. Biomarkers of acute kidney injury in children treated with cisplatin, carboplatin, and ifosfamide. J. Am. Soc. Nephrol. 23, 650A (2012).
  • Nakamura T , SugayaT, NodeK, UedaY, KoideH. Urinary excretion of liver-type fatty acid-binding protein in contrast medium-induced nephropathy. Am. J. Kidney Dis.47(3), 439–444 (2006).
  • Ohta S , IshimitsuT, MinamiJ, OnoH. [Effects of intravascular contrast media on urinary excretion of liver fatty acid-binding protein]. Nippon Jinzo Gakkai Shi47(4), 437–444 (2005).
  • Bachorzewska-Gajewska H , PoniatowskiB, DobrzyckiS. NGAL (neutrophil gelatinase-associated lipocalin) and L-FABP after percutaneous coronary interventions due to unstable angina in patients with normal serum creatinine. Adv. Med. Sci.54(2), 221–224 (2009).
  • Fukuda Y , MiuraS, ZhangB, IwataA, KawamuraA. Significance of urinary liver-fatty acid-binding protein in cardiac catheterization in patients with coronary artery disease. Intern. Med.48(19), 1731–1737 (2009).
  • Kaseda R , IinoN, HosojimaMet al. Megalin-mediated endocytosis of cystatin C in proximal tubule cells. Biochem. Biophys. Res. Commun. 357(4), 1130–1134 (2007).
  • Nejat M , HillJV, PickeringJW, EdelsteinCL, DevarajanP, EndreZH. Albuminuria increases cystatin C excretion: implications for urinary biomarkers. Nephrol. Dial. Transplant.27(Suppl. 3), iii96–iii103 (2011).
  • Walenkamp GH , VreeTB, GuelenPJ, Jongman-NixB. Interaction between the renal excretion rates of beta 2-microglobulin and gentamicin in man. Potentials of beta 2-microglobulin excretion as an early prediction of gentamicin induced nephrotoxicity. Clin. Chim. Acta127(2), 229–238 (1983).
  • Stacul F , CarraroM, MagnaldiS, FacciniL, GuarnieriG, PalmaLD. Contrast agent nephrotoxicity: comparison of ionic and nonionic contrast agents. Am. J. Roentgenol.149(6), 1287–1289 (1987).
  • Daugaard G , RossingN, R⊘rthM. Effects of cisplatin on different measures of glomerular function in the human kidney with special emphasis on high-dose. Cancer Chemother. Pharmacol.21(2), 163–167 (1987).
  • Christensen EI , BirnH, RippeB, MaunsbachAB. Controversies in nephrology: renal albumin handling, facts, and artifacts! Kidney Int.72(10), 1192–1194 (2007).
  • Russo LM , SandovalRM, McKeeMet al. The normal kidney filters nephrotic levels of albumin retrieved by proximal tubule cells: retrieval is disrupted in nephrotic states. Kidney Int. 71(6), 504–513 (2007).
  • Levin A , PateGE, ShalanskyS et al. N-acetylcysteine reduces urinary albumin excretion following contrast administration: evidence of biological effect. Nephrol. Dial. Transplant.22(9), 2520–2524 (2007).
  • Tugay S , BircanZ, Çaglayan Ç, Arisoy AE, Gökalp AS. Acute effects of gentamicin on glomerular and tubular functions in preterm neonates. Pediatr. Nephrol.21(10), 1389–1392 (2006).
  • Kent AL , BrownL, BroomM, BroomfieldA, DahlstromJE. Increased urinary podocytes following indomethacin suggests drug-induced glomerular injury. Pediatr. Nephrol.27(7), 1111–1117 (2012).
  • Endre ZH , PickeringJW. Outcome definitions in non-dialysis intervention and prevention trials in acute kidney injury (AKI). Nephrol. Dial. Transplant.25(1), 107–118 (2010).
  • Fassett RG , VenuthurupalliSK, GobeGC, CoombesJS, CooperMA, HoyWE. Biomarkers in chronic kidney disease: a review. Kidney Int.80(8), 806–821 (2011).
  • Manabe K , KamihataH, MotohiroM, SenooT, YoshidaS, IwasakaT. Urinary liver-type fatty acid-binding protein level as a predictive biomarker of contrast-induced acute kidney injury. Eur. J. Clin. Invest.42(5), 557–563 (2012).
  • Makris K , DemponerasC, ZoubouloglouFet al. The role of urinary NGAL to urinary creatinine ratio in the early detection of contrast agent induced acute kidney injury after coronary artery angiography. Presented at: American Association for Clinical Chemistry 2009. Chicago, IL, USA, 19–23 July 2009.
  • Ogi M , IwaseN, KitamuraTet al. [Risk factors for contrast nephropathy in diabetic patients undergoing cardioangiography]. Nippon Jinzo Gakkai Shi 35(2), 161–170 (1993).
  • Endre ZH , KellumJA, Di Somma S et al.; for the ADQI 10 Workgroup. Differential diagnosis of AKI in clinical practice by functional and damage biomarkers: workgroup statements from the Tenth Acute Dialysis Quality Initiative Consensus Conference. In: ADQI Consensus on AKI Biomarkers and Cardiorenal Syndromes. Contributions to Nephrology (Volume 182). Kellum JA, McCullough PA, Mehta RL, Murray PT, Ronco C (Eds). Karger, Switzerland, 30–44 (2013).
  • Hoffmann U , FischerederM, KrügerB, DrobnikW, KrämerBK. The value of N-acetylcysteine in the prevention of radiocontrast agent-induced nephropathy seems questionable. J. Am. Soc. Nephrol.15(2), 407–410 (2004).
  • Endre ZH , PickeringJW. Biomarkers and creatinine in AKI: the trough of disillusionment or the slope of enlightenment? Kidney Int. (2013) (In press).
  • Benöhr P , GrenzA, HartmannJT, MüllerGA, BlaschkeS. Cystatin C – a marker for assessment of the glomerular filtration rate in patients with cisplatin chemotherapy. Kidney Blood Press. Res.29(1), 32–35 (2005).
  • Bonventre JV , VaidyaVS, SchmouderR, FeigP, DieterleF. Next-generation biomarkers for detecting kidney toxicity. Nat. Biotech.28(5), 436–440 (2010).
  • Stevens LA , LeveyAS. Measurement of kidney function. Med. Clin. North Am.89(3), 457–473 (2005).
  • Stevens LA , SchmidCH, GreeneTet al. Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int. 75(6), 652–660 (2009).
  • Knight EL , VerhaveJC, SpiegelmanDet al. Factors influencing serum cystatin C levels other than renal function and the impact on renal function measurement. Kidney Int. 65(4), 1416–1421 (2004).
  • Vinge E , LindergårdB, Nilsson-EhleP, GrubbA. Relationships among serum cystatin C, serum creatinine, lean tissue mass and glomerular filtration rate in healthy adults. Scand. J. Clin. Lab. Invest.59(8), 587–592 (1999).
  • Chew-Harris JSC , FlorkowskiCM, GeorgePM, ElmslieJL, EndreZH. The relative effects of fat versus muscle mass on cystatin C and estimates of renal function in healthy young men. Ann. Clin. Biochem.50(Pt 1), 39–46 (2012).
  • Baxmann AC , AhmedMS, MarquesNCet al. Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C. Clin. J. Am. Soc. Nephrol. 3(2), 348–354 (2008).
  • Jacobsen FK , ChristensenCK, MogensenCE, AndreasenF, HeilskovNS. Pronounced increase in serum creatinine concentration after eating cooked meat. BMJ1(6170), 1049–1050 (1979).
  • Preiss DJ , GodberIM, LambEJ, DaltonRN, GunnIR. The influence of a cooked-meat meal on estimated glomerular filtration rate. Ann. Clin. Biochem.44(Pt 1), 35–42 (2006).
  • Koçak H , Oner-IyidoganY, GürdölF, KoçakT, EsinD. The relation between serum MDA and cystatin C levels in chronic spinal cord injury patients. Clin. Biochem.38(11), 1034–1037 (2005).
  • Dubb JW , StoteRM, FamiliarRG, LeeK, AlexanderF. Effect of cimetidine on renal function in normal man. Clin. Pharmacol. Ther.24(1), 76–83 (1978).
  • Berglund F , KillanderJ, PompeiusR. Effect of trimethoprim–sulfamethoxazole on the renal excretion of creatinine in man. J. Urol.114(6), 802–808 (1975).
  • Kimmel M , BraunN, AlscherMD. Influence of thyroid function on different kidney function tests. Kidney Blood Press. Res.35(1), 9–17 (2012).

▪ Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.