96
Views
1
CrossRef citations to date
0
Altmetric
Review

Genetic Biomarkers in Aortopathy

&
Pages 547-563 | Published online: 02 Aug 2013

References

  • Angouras DC , BoudoulasKD, BoudoulasH. Bovine aortic arch: normal variant or a marker of aortopathy?Cardiology123(2), 113–115 (2012).
  • Danyi P , ElefteriadesJA, JovinIS. Medical therapy of thoracic aortic aneurysms. Trends Cardiovasc. Med.22(7), 180–184 (2012).
  • Elefteriades JA , FarkasEA. Thoracic aortic aneurysm clinically pertinent controversies and uncertainties. J. Am. Coll. Cardiol.55(9), 841–857 (2010).
  • Elefteriades JA . Biomarkers for diagnosis in thoracic aortic disease. Cardiol. Clin.28(2), 221–222 (2010).
  • Lindsay ME , DietzHC. Lessons on the pathogenesis of aneurysm from heritable conditions. Nature473(7347), 308–316 (2011).
  • Jain D , DietzHC, OswaldGL, MaleszewskiJJ, HalushkaMK. Causes and histopathology of ascending aortic disease in children and young adults. Cardiovasc. Pathol.20(1), 15–25 (2011).
  • Puranik R , ChowCK, DuflouJA, KilbornMJ, McGuireMA. Sudden death in the young. Heart Rhythm.2(12), 1277–1282 (2005).
  • Suzuki T , BossoneE, SawakiDet al. Biomarkers of aortic diseases. Am. Heart J. 165(1), 15–25 (2013).
  • El-Hamamsy I , YacoubMH. Cellular and molecular mechanisms of thoracic aortic aneurysms. Nat. Rev. Cardiol.6(12), 771–786 (2009).
  • Moltzer E , EssersJ, van EschJH, Roos-HesselinkJW, DanserAHJ. The role of the renin-angiotensin system in thoracic aortic aneurysms: clinical implications. Pharmacol. Therapeut. 131(1), 50–60 (2011).
  • Holm TM , HabashiJP, DoyleJJet al. Noncanonical TGFβ signaling contributes to aortic aneurysm progression in Marfan syndrome mice. Science 332(6027), 358–361 (2011).
  • Brooke BS , HabashiJP, JudgeDP, PatelN, LoeysB, DietzHC 3rd. Angiotensin II blockade and aortic-root dilation in Marfan‘s syndrome. N. Engl. J. Med. 358(26), 2787–2795 (2008).
  • Elefteriades JA . Thoracic aortic aneurysm: reading the enemy‘s playbook. World. J. Surg.32(3), 366–374 (2008).
  • Moberg K , De NobeleS, DevosDet al. The Ghent Marfan Trial – a randomized, double-blind placebo controlled trial with losartan in Marfan patients treated with β-blockers. Int. J. Cardiol. 157(3), 354–358 (2012).
  • Dietz HC , CuttingGR, PyeritzREet al. Marfan syndrome caused by a recurrent de novo missense mutation in the fibrillin gene. Nature 352, 337–339 (1991).
  • Faivre L , Collod-BeroudG, LoeysBLet al. Effect of mutation type and location on clinical outcome in 1,013 probands with Marfan syndrome or related phenotypes and FBN1 mutations: an international study. Am. J. Hum. Genet. 81(3), 454–466 (2007).
  • Braverman AC . Transforming growth factor-{beta}: a biomarker in Marfan syndrome?Circulation120(6), 464–466 (2009).
  • Chung BH , LamST, TongTMet al. Identification of novel FBN1 and TGFBR2 mutations in 65 probands with Marfan syndrome or Marfan-like phenotypes. Am. J. Med. Genet. A 149A(7), 1452–1459 (2009).
  • Hoffjan S . Genetic dissection of marfan syndrome and related connective tissue disorders: an update 2012. Mol. Syndromol.3(2), 47–58 (2012).
  • Hiratzka LF , BakrisGL, BeckmanJAet al. 2010 ACCF/AHA/AATS/ACR/ASA/SCA/SCAI/SIR/STS/SVM guidelines for the diagnosis and management of patients with thoracic aortic disease. A Report of the American College of Cardiology Foundation/American. Heart Association Task Force on Practice Guidelines, American Association for Thoracic Surgery, American College of Radiology, American Stroke Association, Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, Society of Interventional Radiology, Society of Thoracic Surgeons,and Society for Vascular Medicine. J. Am. Coll. Cardiol. 55(14), e27–e129 (2010).
  • Kim L , DevereuxRB, BassonCT. Impact of genetic insights into mendelian disease on cardiovascular clinical practice. Circulation123(5), 544–550 (2011).
  • Barrett PM , TopolEJ. The fibrillin-1 gene: unlocking new therapeutic pathways in cardiovascular disease. Heart99(2), 83–90 (2013).
  • Trimarchi S , SangiorgiG, SangXet al. In search of blood tests for thoracic aortic diseases. Ann. Thorac. Surg. 90(5), 1735–1742 (2010).
  • Matt P , SchoenhoffF, HabashiJet al. Circulating transforming growth factor-beta in Marfan syndrome. Circulation 120(6), 526–532 (2009).
  • Suzuki T , TrimarchiS, SawakiDet al. Circulating transforming growth factor-beta levels in acute aortic dissection. J. Am. Coll. Cardiol. 58(7), 775–775 (2011).
  • Franken R , den HartogAW, de WaardVet al. Circulating transforming growth factor-beta as a prognostic biomarker in Marfan syndrome. Int. J. Cardiol. doi:10.1016/j.ijcard.2013.03.033 (2013) (Epub ahead of print).
  • Jones JA , IkonomidisJS. The pathogenesis of aortopathy in Marfan syndrome and related diseases. Curr. Cardiol. Rep.12(2), 99–107 (2010).
  • Loeys BL , DietzHC, BravermanACet al. The revised Ghent nosology for the Marfan syndrome. J. Med. Genet. 47(7), 476–485 (2010).
  • Detaint D , AegerterP, TubachFet al. Rationale and design of a randomized clinical trial (Marfan Sartan) of angiotensin II receptor blocker therapy versus placebo in individuals with Marfan syndrome. Arch. Cardiovasc. Dis. 103(5), 317–325 (2010).
  • Loeys BL , ChenJ, NeptuneERet al. A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2. Nat. Genet. 37(3), 275–281 (2005).
  • Loeys BL , SchwarzeU, HolmTet al. Aneurysm syndromes caused by mutations in the TGF-beta receptor. N. Engl. J. Med. 355(8), 788–798 (2006).
  • Boileau C , GuoDC, HannaNet al. TGFB2 mutations cause familial thoracic aortic aneurysms and dissections associated with mild systemic features of Marfan syndrome. Nat. Genet. 44(8), 916–921 (2012).
  • Lindsay ME , SchepersD, BolarNAet al. Loss-of-function mutations in TGFB2 cause a syndromic presentation of thoracic aortic aneurysm. Nat. Genet. 44(8), 922–927 (2012).
  • Kent KC , CrenshawML, GohDL, DietzHC. Genotype–phenotype correlation in patients with bicuspid aortic valve and aneurysm. J. Thorac. Cardiovasc. Surg.146(1), 158–165.e1 (2012).
  • Biner S , RafiqueAM, RayI, CukO, SiegelRJ, TolstrupK. Aortopathy is prevalent in relatives of bicuspid aortic valve patients. J. Am. Coll. Cardiol.53(24), 2288–2295 (2009).
  • Sievers HH , SieversHL. Aortopathy in bicuspid aortic valve disease – genes or hemodynamics? or Scylla and Charybdis?Eur. J. Cardiothorac. Surg.39(6), 803–804 (2011).
  • McKellar SH , TesterDJ, YagubyanM, MajumdarR, AckermanMJ, SundtTM3rd. Novel NOTCH1 mutations in patients with bicuspid aortic valve disease and thoracic aortic aneurysms. J. Thorac. Cardiovasc. Surg. 134(2), 290–296 (2007).
  • Della Corte A , BanconeC, QuartoCet al. Predictors of ascending aortic dilatation with bicuspid aortic valve: a wide spectrum of disease expression. Eur. J. Cardiothorac. Surg. 31(3), 397–404; discussion 404–405 (2007).
  • Forte A , Della CorteA, GrossiMet al. Early cell changes and TGFbeta pathway alterations in the aortopathy associated with bicuspid aortic valve stenosis. Clin. Sci. 124(2), 97–108 (2013).
  • Coucke PJ , WillaertA, WesselsMWet al. Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome. Nat. Genet. 38(4), 452–457 (2006).
  • Willaert A , KhatriS, CallewaertBLet al. GLUT10 is required for the development of the cardiovascular system and the notochord and connects mitochondrial function to TGFβ signaling. Hum. Mol. Genet. 21(6), 1248–1259 (2012).
  • Regalado ES , GuoDC, VillamizarCet al. Exome sequencing identifies SMAD3 mutations as a cause of familial thoracic aortic aneurysm and dissection with intracranial and other arterial aneurysms. Circ. Res. 109(6), 680–686 (2011).
  • van de Laar IM , van der LindeD, OeiEHet al. Phenotypic spectrum of the SMAD3-related aneurysms–osteoarthritis syndrome. J. Med. Genet. 49(1), 47–57 (2012).
  • van der Linde D , van de LaarIM, Bertoli-AvellaAMet al. Aggressive cardiovascular phenotype of aneurysms–osteoarthritis syndrome caused by pathogenic SMAD3 variants. J. Am. Coll. Cardiol. 60(5), 397–403 (2012).
  • Andrabi S , BekheirniaMR, Robbins-FurmanP, LewisRA, PriorTW, PotockiL. SMAD4 mutation segregating in a family with juvenile polyposis, aortopathy, and mitral valve dysfunction. Am. J. Med. Genet. A155A(5), 1165–1169 (2011).
  • Teekakirikul P , MilewiczDM, MillerDTet al. Thoracic aortic disease in two patients with juvenile polyposis syndrome and SMAD4 mutations. Am. J. Med. Genet. A 161A(1), 185–191 (2013).
  • Lindor NM , GunawardenaSR, ThibodeauSN. Mutations of SMAD4 account for both LAPS and Myhre syndromes. Am. J. Med. Genet. A158A(6), 1520–1521 (2012).
  • Le Goff C , MahautC, AbhyankarAet al. Mutations at a single codon in Mad homology 2 domain of SMAD4 cause Myhre syndrome. Nat. Genet. 44(1), 85–88 (2012).
  • Doyle AJ , DoyleJJ, BesslingSLet al. Mutations in the TGF-β repressor SKI cause Shprintzen–Goldberg syndrome with aortic aneurysm. Nat. Genet. 44(11), 1249–1254 (2012).
  • Berk DR , BentleyDD, BaylissSJ, LindA, UrbanZ. Cutis laxa: a review. J. Am. Acad. Dermatol.66(5), 842.e1–17 (2012).
  • Dietz HC . TGF-beta in the pathogenesis and prevention of disease: a matter of aneurysmic proportions. J. Clin. Invest.120(2), 403–407 (2010).
  • Guo DC , PannuH, Tran-FaduluVet al. Mutations in smooth muscle alpha-actin (ACTA2) lead to thoracic aortic aneurysms and dissections. Nat. Genet. 39(12), 1488–1493 (2007).
  • Guo DC , PapkeCL, Tran-FaduluVet al. Mutations in smooth muscle alpha-actin (ACTA2) cause coronary artery disease, stroke, and Moyamoya disease, along with thoracic aortic disease. Am. J. Hum. Genet. 84(5), 617–627 (2009).
  • Sodeck G , DomanovitsH, SchillingerMet al. Pre-operative N-terminal pro-brain natriuretic peptide predicts outcome in type A aortic dissection. J. Am. Coll. Cardiol. 51(11), 1092–1097 (2008).
  • Gutin LS , BakalovVK, RosingDR, AraiAE, GharibAM, BondyCA. N-terminal pro-brain natriuretic peptide levels and aortic diameters. Am. Heart J.164(3), 419–424 (2012).
  • Potocki L , BiW, Treadwell-DeeringDet al. Characterization of Potocki–Lupski syndrome (dup(17)(p11.2p11.2)) and delineation of a dosage-sensitive critical interval that can convey an autism phenotype. Am. J. Hum. Genet. 80(4), 633–649 (2007).
  • Jefferies JL , PignatelliRH, MartinezHRet al. Cardiovascular findings in duplication 17p11.2 syndrome. Genet. Med. 14(1), 90–94 (2012).
  • Ferner RE . Neuro-fibromatosis 1 and neuro-fibromatosis 2: a twenty first century perspective. Lancet Neurol.6(4), 340–351 (2007).
  • Lemaire SA , RussellL. Epidemiology of thoracic aortic dissection. Nat. Rev. Cardiol.8(2), 103–113 (2011).
  • Lemaire SA , McDonaldML, GuoDCet al. Genome-wide association study identifies a susceptibility locus for thoracic aortic aneurysms and aortic dissections spanning FBN1 at 15q21.1. Nat. Genet. 43(10), 996–1000 (2011).
  • Kalay N , CaglayanO, AkkayaHet al. The deletion polymorphism of the angiotensin-converting enzyme gene is associated with acute aortic dissection. Tohoku J. Exp. Med. 219(1), 33–37 (2009).
  • Jing QM , WangXZ, MaYYet al. Angiotensin-converting enzyme I/D polymorphism and the risk of thoracic aortic dissection in Chinese Han population. Mol. Biol. Rep. 40(2), 1249–1254 (2013).
  • Danyi P , ElefteriadesJA, JovinIS. Medical therapy of thoracic aortic aneurysms. Trends Cardiovasc. Med.22(7), 180–184 (2012).
  • Wooderchak-Donahue WL , O‘FallonB, FurtadoLVet al. A direct comparison of next generation sequencing enrichment methods using an aortopathy gene panel- clinical diagnostics perspective. BMC Med. Genomics 5, 50 (2012).
  • Rehm HL . Disease-targeted sequencing: a cornerstone in the clinic. Nat. Rev. Genet.14(4), 295–300 (2013).
  • Baetens M , Van LaerL, De LeeneerKet al. Applying massive parallel sequencing to molecular diagnosis of Marfan and Loeys–Dietz syndromes. Hum. Mutat. 32(9), 1053–1062 (2011).
  • Sakai H , SuzukiS, MizuguchiTet al. Rapid detection of gene mutations responsible for non-syndromic aortic aneurysm and dissection using two different methods: resequencing microarray technology and next-generation sequencing. Hum. Genet. 131(4), 591–599 (2012).
  • Jondeau G , MichelJB, BoileauC. The translational science of Marfan syndrome. Heart97(15), 1206–1214 (2011).
  • Regalado E , MedrekS, Tran-FaduluVet al. Autosomal dominant inheritance of a predisposition to thoracic aortic aneurysms and dissections and intracranial saccular aneurysms. Am. J. Med. Genet. A 155A(9), 2125–2130 (2011).
  • Bamshad MJ , NgSB, BighamAWet al. Exome sequencing as a tool for Mendelian disease gene discovery. Nat. Rev. Genet. 12(11), 745–755 (2011).
  • Gilissen C , HoischenA, BrunnerHG, VeltmanJA. Disease gene identification strategies for exome sequencing. Eur. J. Hum. Genet.20(5), 490–497 (2012).
  • Hatzaras IS , BibleJE, KoulliasGJ, TranquilliM, SinghM, ElefteriadesJA. Role of exertion or emotion as inciting events for acute aortic dissection. Am. J. Coll. Cardiol.100(9), 1470–1472 (2007).
  • Brunner HG . The variability of genetic disease. N. Engl. J. Med.367(14), 1350–1352 (2012).
  • Eagle KA ; GenTAC Consortium. Rationale and design of the National Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions (GenTAC). Am. Heart J.157(2), 319–326 (2009).
  • Kroner BL , TolunayHE, BassonCTet al. The National Registry of Genetically Triggered Thoracic Aortic Aneurysms and Cardiovascular Conditions (GenTAC): results from Phase I and scientific opportunities in Phase II. Am. Heart J. 162(4), 627-U677 (2011).
  • Kuang SQ , GuoDC, PrakashSKet al. Recurrent chromosome 16p13.1 duplications are a risk factor for aortic dissections. PLoS Genet. 7(6), e1002118 (2011).
  • Habashi JP , JudgeDP, HolmTMet al. Losartan, an AT1 antagonist, prevents aortic aneurysm in a mouse model of Marfan syndrome. Science 312(5770), 117–121 (2006).
  • Gambarin FI , FavalliV, SerioAet al. Rationale and design of a trial evaluating the effects of losartan vs. nebivolol vs. the association of both on the progression of aortic root dilation in Marfan syndrome with FBN1 gene mutations. J. Cardiovasc. Med. 10(4), 354–362 (2009).
  • Lacro RV , DietzHC, WruckLMet al. Rationale and design of a randomized clinical trial of beta-blocker therapy (atenolol) versus angiotensin II receptor blocker therapy (losartan) in individuals with Marfan syndrome. Am. Heart J. 154(4), 624–631 (2007).
  • Radonic T , de WitteP, BaarsMJet al. Losartan therapy in adults with Marfan syndrome: study protocol of the multi-center randomized controlled COMPARE trial. Trials 11, 3 (2010).
  • Habashi JP , DoyleJJ, HolmTMet al. Angiotensin II type 2 receptor signaling attenuates aortic aneurysm in mice through ERK antagonism. Science 332(6027), 361–365 (2011).
  • McBride KL , GargV. Impact of Mendelian inheritance in cardiovascular disease. Ann. N.Y. Acad. Sci.1214, 122–137 (2010).
  • Pearson GD , DevereuxR, LoeysBet al. Report of the National Heart, Lung, and Blood Institute and National Marfan Foundation Working Group on research in Marfan syndrome and related disorders. Circulation 118(7), 785–791 (2008).
  • Castellano JM , KovacicJC, SanzJ, FusterV. Are we ignoring the dilated thoracic aorta?Ann. N.Y. Acad. Sci.1254, 164–174 (2012).
  • Iba Y , MinatoyaK, MatsudaHet al. Surgical experience with aggressive aortic pathologic process in Loeys–Dietz syndrome. Ann. Thorac. Surg. 94(5), 1413–1417 (2012).
  • Lehner B . Genotype to phenotype: lessons from model organisms for human genetics. Nat. Rev. Genet.14(3), 168–178 (2013).
  • Ho CY , MacraeCA. Defining the pathogenicity of DNA sequence variation. Circ. Cardiovasc. Genet.2(2), 95–97 (2009).
  • Lupski JR . Digenic inheritance and Mendelian disease. Nat. Genet.44(12), 1291–1292 (2012).
  • Kelly M , SemsarianC. Multiple mutations in genetic cardiovascular disease a marker of disease severity?Circ. Cardiovasc. Genet.2(2), 182–190 (2009).
  • Doyle JJ , GerberEE, DietzHC. Matrix-dependent perturbation of TGFβ signaling and disease. FEBS Lett.586(14), 2003–2015 (2012).
  • Renard M , HolmT, VeithRet al. Altered TGFbeta signaling and cardiovascular manifestations in patients with autosomal recessive cutis laxa type I caused by fibulin-4 deficiency. Eur. J. Hum. Genet. 18(8), 895–901 (2010).
  • Walz G . Everolimus in patients with autosomal dominant polycystic kidney disease. N. Engl. J. Med.363(9), 830–840 (2010).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.