191
Views
1
CrossRef citations to date
0
Altmetric
Review

Genetic Biomarkers in Brugada Syndrome

, &
Pages 535-546 | Published online: 02 Aug 2013

References

  • Brugada P , BrugadaJ. Right bundle branch block, persistent ST segment elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. A multicenter report. J. Am. Coll. Cardiol.20(6), 1391–1396 (1992).
  • Vatta M , DumaineR, VargheseGet al. Genetic and biophysical basis of sudden unexplained nocturnal death syndrome (SUNDS), a disease allelic to Brugada syndrome. Hum. Mol. Genet. 11(3), 337–345 (2002).
  • Behr ER , DalageorgouC, ChristiansenMet al. Sudden arrhythmic death syndrome: familial evaluation identifies inheritable heart disease in the majority of families. Eur. Heart J. 29(13), 1670–1680 (2008).
  • Raju H , PapadakisM, GovindanMet al. Low prevalence of risk markers in cases of sudden death due to Brugada syndrome relevance to risk stratification in Brugada syndrome. J. Am. Coll. Cardiol. 57(23), 2340–2345 (2011).
  • Chen Q , KirschGE, ZhangDet al. Genetic basis and molecular mechanism for idiopathic ventricular fibrillation. Nature 392(6673), 293–296 (1998).
  • Li A , BehrER. Brugada syndrome: an update. Future Cardiol.9(2), 253–271 (2013).
  • Antzelevitch C , BrugadaP, BorggrefeMet al. Brugada syndrome: report of the second consensus conference: endorsed by the Heart Rhythm Society and the European Heart Rhythm Association. Circulation 111(5), 659–670 (2005).
  • Anselm DD , BaranchukA. Brugada phenocopy: redefinition and updated classification. Am. J. Cardiol.111(3), 453 (2013).
  • Yap YG , BehrER, CammAJ. Drug-induced Brugada syndrome. Europace11(8), 989–994 (2009).
  • Sarkozy A , PaparellaG, BoussyTet al. The usefulness of the consensus clinical diagnostic criteria in Brugada syndrome. Int. J. Cardiol. doi:10.1016/j.ijcard.2012.06.115 (2012) (Epub ahead of print).
  • Probst V , VeltmannC, EckardtLet al. Long-term prognosis of patients diagnosed with Brugada syndrome: results from the FINGER Brugada syndrome registry. Circulation 121(5), 635–643 (2010).
  • Crotti L , MarcouCA, TesterDJet al. Spectrum and prevalence of mutations involving BrS1- through BrS12-susceptibility genes in a cohort of unrelated patients referred for Brugada syndrome genetic testing: implications for genetic testing. J. Am. Coll. Cardiol. 60(15), 1410–1418 (2012).
  • Richter S , SarkozyA, PaparellaGet al. Number of electrocardiogram leads displaying the diagnostic coved-type pattern in Brugada syndrome: a diagnostic consensus criterion to be revised. Eur. Heart J. 31(11), 1357–1364 (2010).
  • Govindan M , BatchvarovVN, RajuHet al. Utility of high and standard right precordial leads during ajmaline testing for the diagnosis of Brugada syndrome. Heart 96(23), 1904–1908 (2010).
  • Yan GX , AntzelevitchC. Cellular basis for the Brugada syndrome and other mechanisms of arrhythmogenesis associated with ST-segment elevation. Circulation100(15), 1660–1666 (1999).
  • Meregalli PG , WildeAA, TanHL. Pathophysiological mechanisms of Brugada syndrome: depolarization disorder, repolarization disorder, or more?Cardiovasc. Res.67(3), 367–378 (2005).
  • Antzelevitch C . The Brugada syndrome: ionic basis and arrhythmia mechanisms. J. Cardiovasc. Electrophysiol.12(2), 268–272 (2001).
  • Hoogendijk MG , OpthofT, PostemaPG, WildeAA, de BakkerJMT, CoronelR. The Brugada ECG pattern: a marker of channelopathy, structural heart disease, or neither? Toward a unifying mechanism of the Brugada syndrome. Circ. Arrhythm. Electrophysiol. 3(3), 283–290 (2010).
  • Priori SG , NapolitanoC, GaspariniMet al. Clinical and genetic heterogeneity of right bundle branch block and ST-segment elevation syndrome: a prospective evaluation of 52 families. Circulation 102(20), 2509–2515 (2000).
  • Pfahnl AE , ViswanathanPC, WeissRet al. A sodium channel pore mutation causing Brugada syndrome. Heart Rhythm 4(1), 46–53 (2007).
  • London B , MichalecM, MehdiHet al. Mutation in glycerol-3-phosphate dehydrogenase 1 like gene (GPD1L) decreases cardiac Na+ current and causes inherited arrhythmias. Circulation 116(20), 2260–2268 (2007).
  • Weiss R . Clinical and molecular heterogeneity in the Brugada syndrome: a novel gene locus on chromosome 3. Circulation105(6), 707–713 (2001).
  • Antzelevitch C , PollevickGD, CordeiroJMet al. Loss-of-function mutations in the cardiac calcium channel underlie a new clinical entity characterized by ST-segment elevation, short QT intervals, and sudden cardiac death. Circulation 115(4), 442–449 (2007).
  • Makiyama T , AkaoM, HarunaYet al. Mutation analysis of the glycerol-3 phosphate dehydrogenase-1 like (GPD1L) gene in Japanese patients with Brugada syndrome. Circ. J. 72(10), 1705–1706 (2008).
  • Makita N , BehrE, ShimizuWet al. The E1784K mutation in SCN5A is associated with mixed clinical phenotype of type 3 long QT syndrome. J. Clin. Invest. 118(6), 2219–2229 (2008).
  • Smits JPP , KoopmannTT, WildersRet al. A mutation in the human cardiac sodium channel (E161K) contributes to sick sinus syndrome, conduction disease and Brugada syndrome in two families. J. Mol. Cell. Cardiol. 38(6), 969–981 (2005).
  • Tan HL , Bink-BoelkensMT, BezzinaCRet al. A sodium-channel mutation causes isolated cardiac conduction disease. Nature 409(6823), 1043–1047 (2001).
  • Benson DW , WangDW, DymentMet al. Congenital sick sinus syndrome caused by recessive mutations in the cardiac sodium channel gene (SCN5A). J. Clin. Invest. 112(7), 1019–1028 (2003).
  • Darbar D , KannankerilPJ, DonahueBSet al. Cardiac sodium channel (SCN5A) variants associated with atrial fibrillation. Circulation 117(15), 1927–1935 (2008).
  • Ishikawa T , SatoA, MarcouCAet al. A novel disease gene for Brugada syndrome: sarcolemmal membrane-associated protein gene mutations impair intracellular trafficking of hNav1.5. Circ. Arrhythm. Electrophysiol. 5(6), 1098–1107 (2012).
  • Liu H , ChatelS, SimardCet al. Molecular genetics and functional anomalies in a series of 248 Brugada cases with 11 mutations in the TRPM4 channel. PLoS ONE 8(1), e54131 (2013).
  • Kattygnarath D , MaugenreS, NeyroudNet al. MOG1: a new susceptibility gene for Brugada syndrome. Circ. Cardiovasc. Genet.4(3), 261–268 (2011).
  • Kapplinger JD , LandstromAP, SalisburyBAet al. Distinguishing arrhythmogenic right ventricular cardiomyopathy/dysplasia-associated mutations from background genetic noise. J. Am. Coll. Cardiol 57(23), 2317–2327 (2011).
  • Holst AG , SaberS, HoushmandMet al. Sodium current and potassium transient outward current genes in Brugada syndrome: screening and bioinformatics. Can. J. Cardiol. 28(2), 196–200 (2012).
  • Risgaard B , JabbariR, RefsgaardLet al. High prevalence of genetic variants previously associated with Brugada syndrome in new exome data. Clin. Genet. doi:10.1111/cge.12126. (2013) (Epub ahead of print).
  • Tan BH , ValdiviaCR, RokBAet al. Common human SCN5A polymorphisms have altered electrophysiology when expressed in Q1077 splice variants. Heart Rhythm 2(7), 741–747 (2005).
  • Baroudi G , CarbonneauE, PouliotV, ChahineM. SCN5A mutation (T1620M) causing Brugada syndrome exhibits different phenotypes when expressed in Xenopus oocytes and mammalian cells. FEBS Lett.467(1), 12–16 (2000).
  • Probst V , WildeAAM, BarcJet al. SCN5A mutations and the role of genetic background in the pathophysiology of Brugada syndrome. Circ. Cardiovasc. Genet.2(6), 552–557 (2009).
  • Giudicessi JR , AckermanMJ. Determinants of incomplete penetrance and variable expressivity in heritable cardiac arrhythmia syndromes. Transl. Res.161(1), 1–14 (2013).
  • Gellens ME . Primary structure and functional expression of the human cardiac tetrodotoxin-insensitive voltage-dependent sodium channel. Proc. Natl Acad. Sci. USA89(2), 554–558 (1992).
  • Clatot J , Ziyadeh-IsleemA, MaugenreSet al. Dominant-negative effect of SCN5A N-terminal mutations through the interaction of Na(v)1.5 α-subunits. Cardiovasc. Res. 96(1), 53–63 (2012).
  • Kapplinger JD , TesterDJ, AldersMet al. An international compendium of mutations in the SCN5A-encoded cardiac sodium channel in patients referred for Brugada syndrome genetic testing. Heart Rhythm 7(1), 33–46 (2010).
  • Ackerman MJ , PrioriSG, WillemsSet al. HRS/EHRA expert consensus statement on the state of genetic testing for the channelopathies and cardiomyopathies this document was developed as a partnership between the Heart Rhythm Society (HRS) and the European Heart Rhythm Association (EHRA). Heart Rhythm 8(8), 1308–1339 (2011).
  • Gollob MH , BlierL, BrugadaRet al. Recommendations for the use of genetic testing in the clinical evaluation of inherited cardiac arrhythmias associated with sudden cardiac death: Canadian Cardiovascular Society/Canadian Heart Rhythm Society joint position paper. Can. J. Cardiol. 27(2), 232–245 (2011).
  • Paul M , GerssJ, Schulze-BahrEet al. Role of programmed ventricular stimulation in patients with Brugada syndrome: a meta-analysis of worldwide published data. Eur. Heart J. 28(17), 2126–2133 (2007).
  • Priori SG , GaspariniM, NapolitanoCet al. Risk stratification in Brugada syndrome results of the PRELUDE (programmed electrical stimulation predictive value) Registry. J. Am. Coll. Cardiol. 59(1), 37–45 (2012).
  • Sarkozy A , SorgenteA, BoussyTet al. The value of a family history of sudden death in patients with diagnostic type I Brugada ECG pattern. Eur. Heart J. 32(17), 2153–2160 (2011).
  • Gehi AK , DuongTD, MetzLD, GomesJA, MehtaD. Risk stratification of individuals with the Brugada electrocardiogram: a meta-analysis. J. Cardiovasc. Electrophysiol.17(6), 577–583 (2006).
  • Nishii N , OgawaM, MoritaHet al. SCN5A mutation is associated with early and frequent recurrence of ventricular fibrillation in patients with Brugada syndrome. Circ. J.74(12), 2572–2578 (2010).
  • Meregalli PG , TanHL, ProbstVet al. Type of SCN5A mutation determines clinical severity and degree of conduction slowing in loss-of-function sodium channelopathies. Heart Rhythm 6(3), 341–348 (2009).
  • Smits JP , EckardtL, ProbstVet al. Genotype–phenotype relationship in Brugada syndrome: electrocardiographic features differentiate SCN5A-related patients from non-SCN5A-related patients. J. Am. Coll. Cardiol. 40(2), 350–356 (2002).
  • Hong K , BrugadaJ, OlivaAet al. Value of electrocardiographic parameters and ajmaline test in the diagnosis of Brugada syndrome caused by SCN5A mutations. Circulation 110(19), 3023–3027 (2004).
  • Santos LF , RodriguesB, MoreiraDet al. Criteria to predict carriers of a novel SCN5A mutation in a large Portuguese family affected by the Brugada syndrome. Europace 14(6), 882–888 (2012).
  • Probst V , AllouisM, SacherFet al. Progressive cardiac conduction defect is the prevailing phenotype in carriers of a Brugada syndrome SCN5A mutation. J. Cardiovasc. Electrophysiol. 17(3), 270–275 (2006).
  • Makiyama T , AkaoM, TsujiKet al. High risk for bradyarrhythmic complications in patients with Brugada syndrome caused by SCN5A gene mutations. J. Am. Coll. Cardiol. 46(11), 2100–2106 (2005).
  • Nagy SZ , ChanCF. Brugada syndrome unmasked by febrile illness in a previously healthy male patient with history of syncope. Heart98(21), 1610 (2012).
  • Junttila MJ , GonzalezM, LizotteEet al. Induced Brugada-type electrocardiogram, a sign for imminent malignant arrhythmias. Circulation 117(14), 1890–1893 (2008).
  • Dumaine R , TowbinJA, BrugadaPet al. Ionic mechanisms responsible for the electrocardiographic phenotype of the Brugada syndrome are temperature dependent. Circ. Res. 85(9), 803–809 (1999).
  • Keller DI , HuangH, ZhaoJet al. A novel SCN5A mutation, F1344S, identified in a patient with Brugada syndrome and fever-induced ventricular fibrillation. Cardiovasc. Res. 70(3), 521–529 (2006).
  • Samani K , WuG, AiTet al. A novel SCN5A mutation V1340I in Brugada syndrome augmenting arrhythmias during febrile illness. Heart Rhythm 6(9), 1318–1326 (2009).
  • Poelzing S , ForleoC, SamodellMet al. SCN5A polymorphism restores trafficking of a Brugada syndrome mutation on a separate gene. Circulation114(5), 368–376 (2006).
  • Lizotte E , JunttilaMJ, DubeMPet al. Genetic modulation of Brugada syndrome by a common polymorphism. J. Cardiovasc. Electrophysiol. 20(10), 1137–1141 (2009).
  • Bezzina CR , ShimizuW, YangPet al. Common sodium channel promoter haplotype in asian subjects underlies variability in cardiac conduction. Circulation 113(3), 338–344 (2006).
  • Sommariva E , PapponeC, Martinelli BoneschiFet al. Genetics can contribute to the prognosis of Brugada syndrome: a pilot model for risk stratification. Eur. J. Hum. Genet. doi:10.1038/ejhg.2012.289 (2013) (Epub ahead of print).
  • Frustaci A , PrioriSG, PieroniMet al. Cardiac histological substrate in patients with clinical phenotype of Brugada syndrome. Circulation 112(24), 3680–3687 (2005).
  • Catalano O , AntonaciS, MoroGet al. Magnetic resonance investigations in Brugada syndrome reveal unexpectedly high rate of structural abnormalities. Eur. Heart J. 30(18), 2241–2248 (2009).
  • Coronel R , CasiniS, KoopmannTTet al. Right ventricular fibrosis and conduction delay in a patient with clinical signs of Brugada syndrome: a combined electrophysiological, genetic, histopathologic, and computational study. Circulation 112(18), 2769–2777 (2005).
  • Hoogendijk MG . Diagnostic dilemmas: overlapping features of brugada syndrome and arrhythmogenic right ventricular cardiomyopathy. Front. Physiol.3, 144 (2012).
  • Olson TM , MichelsVV, BallewJDet al. Sodium channel mutations and susceptibility to heart failure and atrial fibrillation. JAMA 293(4), 447–454 (2005).
  • van H oorn F, Campian ME, Spijkerboer A et al.SCN5A mutations in Brugada syndrome are associated with increased cardiac dimensions and reduced contractility. PLoS ONE7(8), e42037 (2012).
  • Hermida JS , DenjoyI, ClercJet al. Hydroquinidine therapy in Brugada syndrome. J. Am. Coll. Cardiol. 43(10), 1853–1860 (2004).
  • Belhassen B , GlickA, ViskinS. Efficacy of quinidine in high-risk patients with Brugada syndrome. Circulation110(13), 1731–1737 (2004).
  • Mizusawa Y , SakuradaH, NishizakiM, HiraokaM. Effects of low-dose quinidine on ventricular tachyarrhythmias in patients with Brugada syndrome: low-dose quinidine therapy as an adjunctive treatment. J. Cardiovasc. Pharmacol.47(3), 359–364 (2006).
  • Valdivia CR , TesterDJ, RokBAet al. A trafficking defective, Brugada syndrome-causing SCN5A mutation rescued by drugs. Cardiovasc. Res. 62(1), 53–62 (2004).
  • Shinlapawittayatorn K , DudashLA, DuXXet al. A novel strategy using cardiac sodium channel polymorphic fragments to rescue trafficking-deficient SCN5A mutations. Circ. Cardiovasc. Genet. 4(5), 500–509 (2011).
  • Teng S , GaoL, PaajanenV, PuJ, FanZ. Readthrough of nonsense mutation W822X in the SCN5A gene can effectively restore expression of cardiac Na+ channels. Cardiovasc. Res.83(3), 473–480 (2009).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.