337
Views
1
CrossRef citations to date
0
Altmetric
Review

Genetic Biomarkers in Hypertrophic Cardiomyopathy

&
Pages 505-516 | Published online: 02 Aug 2013

References

  • Maron BJ , GardinJM, FlackJM, GiddingSS, KurosakiTT, BildDE. Prevalence of hypertrophic cardiomyopathy in a general population of young adults.Echocardiographic analysis of 4111 subjects in the CARDIA study. Coronary Artery Risk Development in (Young) Adults. Circulation92(4), 785–789 (1995).
  • Elliott P , AnderssonB, ArbustiniEet al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on myocardial and pericardial diseases. Eur. Heart J. 29(2), 270–276 (2008).
  • Geisterfer-Lowrance AA , KassS, TanigawaGet al. A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell 62(5), 999–1006 (1990).
  • Jarcho JA , McKennaW, PareJAet al. Mapping a gene for familial hypertrophic cardiomyopathy to chromosome 14q1. N. Engl. J. Med. 321(20), 1372–1378 (1989).
  • Seidman CE , SeidmanJG. Identifying sarcomere gene mutations in hypertrophic cardiomyopathy: a personal history. Circulation Res.108(6), 743–750 (2011).
  • Gersh BJ , MaronBJ, BonowROet al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation 124(24), e783–e831 (2011).
  • Charron P , AradM, ArbustiniEet al. Genetic counselling and testing in cardiomyopathies: a position statement of the European Society of Cardiology Working Group on myocardial and pericardial diseases. Eur. Heart J. 31(22), 2715–2726 (2010).
  • Maron BJ , McKennaWJ, DanielsonGKet al. American College of Cardiology/European Society of Cardiology clinical expert consensus document on hypertrophic cardiomyopathy. A report of the American College of Cardiology Foundation Task Force on clinical expert consensus documents and the European Society of Cardiology Committee for practice guidelines. Eur. Heart J. 24(21), 1965–1991 (2003).
  • Castle WE . Mendel‘s law of heredity. Science18(456), 396–406 (1903).
  • Brigden W . Uncommon myocardial diseases: the non-coronary cardiomyopathies. Lancet273(7008), 1243–1249 (1957).
  • Pare JA , FraserRG, PirozynskiWJ, ShanksJA, StubingtonD. Hereditary cardiovascular dysplasia. A form of familial cardiomyopathy. Am. J. Med.31, 37–62 (1961).
  • Donis-Keller H , GreenP, HelmsCet al. A genetic linkage map of the human genome. Cell 51(2), 319–337 (1987).
  • International Human Genome Sequencing Consortium. Finishing the euchromatic sequence of the human genome. Nature431(7011), 931–945 (2004).
  • Bortot B , AthanasakisE, BrunFet al. High-throughput genotyping robot-assisted method for mutation detection in patients with hypertrophic cardiomyopathy. Diagn. Mol. Pathol. 20(3), 175–179 (2011).
  • Morita H , RehmHL, MenessesAet al. Shared genetic causes of cardiac hypertrophy in children and adults. N. Engl. J. Med. 358(18), 1899–1908 (2008).
  • Marian AJ , RobertsR. The molecular genetic basis for hypertrophic cardiomyopathy. J. Mol. Cell. Cardiol.33(4), 655–670 (2001).
  • Ho CY , SeidmanCE. A contemporary approach to hypertrophic cardiomyopathy. Circulation113(24), e858–e862 (2006).
  • Keren A , SyrrisP, McKennaWJ. Hypertrophic cardiomyopathy: the genetic determinants of clinical disease expression. Nat. Clin. Pract. Cardiovasc. Med.5(3), 158–168 (2008).
  • Watkins H , RosenzweigA, HwangDSet al. Characteristics and prognostic implications of myosin missense mutations in familial hypertrophic cardiomyopathy. N. Engl. J. Med. 326(17), 1108–1114 (1992).
  • Anan R , GreveG, ThierfelderLet al. Prognostic implications of novel beta cardiac myosin heavy chain gene mutations that cause familial hypertrophic cardiomyopathy. J. Clin. Invest. 93(1), 280–285 (1994).
  • Kelly DP , StraussAW. Inherited cardiomyopathies. N. Engl. J. Med.330(13), 913–919 (1994).
  • Ko YL , ChenJJ, TangTKet al. Malignant familial hypertrophic cardiomyopathy in a family with a 453Arg–Cys mutation in the beta-myosin heavy chain gene: coexistence of sudden death and end-stage heart failure. Hum. Genet. 97(5), 585–590 (1996).
  • Woo A , RakowskiH, LiewJCet al. Mutations of the beta myosin heavy chain gene in hypertrophic cardiomyopathy: critical functional sites determine prognosis. Heart 89(10), 1179–1185 (2003).
  • Fananapazir L , EpsteinND. Genotype–phenotype correlations in hypertrophic cardiomyopathy. Insights provided by comparisons of kindreds with distinct and identical beta-myosin heavy chain gene mutations. Circulation89(1), 22–32 (1994).
  • Seidman JG , SeidmanC. The genetic basis for cardiomyopathy: from mutation identification to mechanistic paradigms. Cell104(4), 557–567 (2001).
  • Tripathi S , SchultzI, BeckerEet al. Unequal allelic expression of wild-type and mutated beta-myosin in familial hypertrophic cardiomyopathy. Basic Res. Cardiol. 106(6), 1041–1055 (2011).
  • Lowey S , BrettonV, GulickJ, RobbinsJ, TrybusKM. Transgenic mouse alpha- and beta-cardiac myosins containing the R403Q mutation show isoform-dependent transient kinetic differences. J. Biol. Chem.288(21), 14780–14787 (2013).
  • Watkins H , ConnerD, ThierfelderLet al. Mutations in the cardiac myosin binding protein-C gene on chromosome 11 cause familial hypertrophic cardiomyopathy. Nat. Genet. 11(4), 434–437 (1995).
  • Niimura H , BachinskiLL, SangwatanarojSet al. Mutations in the gene for cardiac myosin-binding protein C and late-onset familial hypertrophic cardiomyopathy. N. Engl. J. Med. 338(18), 1248–1257 (1998).
  • Charron P , DubourgO, DesnosMet al. Genotype–phenotype correlations in familial hypertrophic cardiomyopathy. A comparison between mutations in the cardiac protein-C and the beta-myosin heavy chain genes. Eur. Heart J. 19(1), 139–145 (1998).
  • Niimura H , PattonKK, McKennaWJet al. Sarcomere protein gene mutations in hypertrophic cardiomyopathy of the elderly. Circulation 105(4), 446–451 (2002).
  • Christiaans I , BirnieE, van LangenIMet al. The yield of risk stratification for sudden cardiac death in hypertrophic cardiomyopathy myosin-binding protein C gene mutation carriers: focus on predictive screening. Eur. Heart J. 31(7), 842–848 (2010).
  • Teirlinck CH , SenniF, MaltiREet al. A human MYBPC3 mutation appearing about 10 centuries ago results in a hypertrophic cardiomyopathy with delayed onset, moderate evolution but with a risk of sudden death. BMC Med. Genet. 13, 105 (2012).
  • Moolman-Smook JC , de LangeWJ, BruwerEC, BrinkPA, CorfieldVA. The origins of hypertrophic cardiomyopathy-causing mutations in two South African subpopulations: a unique profile of both independent and founder events. Am. J. Hum. Genet. 65(5), 1308–1320 (1999).
  • Kaski JP , SyrrisP, EstebanMTet al. Prevalence of sarcomere protein gene mutations in preadolescent children with hypertrophic cardiomyopathy. Circ. Cardiovasc. Genet. 2(5), 436–441 (2009).
  • Page SP , KounasS, SyrrisPet al. Cardiac myosin binding protein C mutations in families with hypertrophic cardiomyopathy: disease expression in relation to age, gender, and long term outcome. Circ. Cardiovasc. Genet. 5(2), 156–166 (2012).
  • Marston S , CopelandO, JacquesAet al. Evidence from human myectomy samples that MYBPC3 mutations cause hypertrophic cardiomyopathy through haploinsufficiency. Circulation Res. 105(3), 219–222 (2009).
  • van Dijk SJ , DooijesD, Dos RemediosCet al. Cardiac myosin-binding protein C mutations and hypertrophic cardiomyopathy haploinsufficiency, deranged phosphorylation, and cardiomyocyte dysfunction. Circulation 119(11), 1473–1483 (2009).
  • Marston S , CopelandO, GehmlichK, SchlossarekS, CarrierL. How do MYBPC3 mutations cause hypertrophic cardiomyopathy?J. Muscle Res. Cell Motil.33(1), 75–80 (2012).
  • Thierfelder L , WatkinsH, MacraeCet al. Alpha-tropomyosin and cardiac troponin T mutations cause familial hypertrophic cardiomyopathy: a disease of the sarcomere. Cell 77(5), 701–712 (1994).
  • Watkins H , McKennaWJ, ThierfelderLet al. Mutations in the genes for cardiac troponin T and alpha-tropomyosin in hypertrophic cardiomyopathy. N. Engl. J. Med. 332(16), 1058–1064 (1995).
  • Pasquale F , SyrrisP, KaskiJP, MogensenJ, McKennaWJ, ElliottP. Long-term outcomes in hypertrophic cardiomyopathy caused by mutations in the cardiac troponin T gene. Circ. Cardiovasc. Genet.5(1), 10–17 (2012).
  • Varnava AM , ElliottPM, BaboonianC, DavisonF, DaviesMJ, McKennaWJ. Hypertrophic cardiomyopathy: histopathological features of sudden death in cardiac troponin T disease. Circulation104(12), 1380–1384 (2001).
  • Manning EP , TardiffJC, SchwartzSD. Molecular effects of familial hypertrophic cardiomyopathy-related mutations in the TNT1 domain of cTnT. J. Mol. Biol.421(1), 54–66 (2012).
  • Kimura A , HaradaH, ParkJEet al. Mutations in the cardiac troponin I gene associated with hypertrophic cardiomyopathy. Nat. Genet. 16(4), 379–382 (1997).
  • Mogensen J , MurphyRT, KuboTet al. Frequency and clinical expression of cardiac troponin I mutations in 748 consecutive families with hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 44(12), 2315–2325 (2004).
  • Willott RH , GomesAV, ChangAN, ParvatiyarMS, PintoJR, PotterJD. Mutations in troponin that cause HCM, DCM and RCM: what can we learn about thin filament function?J. Mol. Cell. Cardiol.48(5), 882–892 (2010).
  • Watkins H , AnanR, CovielloDA, SpiritoP, SeidmanJG, SeidmanCE. A de novo mutation in alpha-tropomyosin that causes hypertrophic cardiomyopathy. Circulation91(9), 2302–2305 (1995).
  • Poetter K , JiangH, HassanzadehSet al. Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat. Genet. 13(1), 63–69 (1996).
  • Kabaeva ZT , PerrotA, WolterBet al. Systematic analysis of the regulatory and essential myosin light chain genes: genetic variants and mutations in hypertrophic cardiomyopathy. Eur. J. Hum. Genet. 10(11), 741–748 (2002).
  • Mogensen J , KlausenIC, PedersenAKet al. Alpha-cardiac actin is a novel disease gene in familial hypertrophic cardiomyopathy. J. Clin. Invest. 103(10), R39–R43 (1999).
  • Olson TM , MichelsVV, ThibodeauSN, TaiYS, KeatingMT. Actin mutations in dilated cardiomyopathy, a heritable form of heart failure. Science280(5364), 750–752 (1998).
  • Landstrom AP , ParvatiyarMS, PintoJRet al. Molecular and functional characterization of novel hypertrophic cardiomyopathy susceptibility mutations in TNNC1-encoded troponin C. J. Mol. Cell. Cardiol. 45(2), 281–288 (2008).
  • Geier C , PerrotA, OzcelikCet al. Mutations in the human muscle LIM protein gene in families with hypertrophic cardiomyopathy. Circulation 107(10), 1390–1395 (2003).
  • Vasile VC , WillML, OmmenSR, EdwardsWD, OlsonTM, AckermanMJ. Identification of a metavinculin missense mutation, R975W, associated with both hypertrophic and dilated cardiomyopathy. Mol. Genet. Metab.87(2), 169–174 (2006).
  • Osio A , TanL, ChenSNet al. Myozenin 2 is a novel gene for human hypertrophic cardiomyopathy. Circulation Res. 100(6), 766–768 (2007).
  • Carniel E , TaylorMR, SinagraGet al. Alpha-myosin heavy chain: a sarcomeric gene associated with dilated and hypertrophic phenotypes of cardiomyopathy. Circulation 112(1), 54–59 (2005).
  • Wang H , LiZ, WangJet al. Mutations in NEXN, a Z-disc gene, are associated with hypertrophic cardiomyopathy. Am. J. Hum. Genet. 87(5), 687–693 (2010).
  • Landstrom AP , WeislederN, BataldenKBet al. Mutations in JPH2-encoded junctophilin-2 associated with hypertrophic cardiomyopathy in humans. J. Mol. Cell. Cardiol. 42(6), 1026–1035 (2007).
  • Minamisawa S , SatoY, TatsuguchiYet al. Mutation of the phospholamban promoter associated with hypertrophic cardiomyopathy. Biochem. Biophys. Res. Commun. 304(1), 1–4 (2003).
  • Chiu C , TeboM, InglesJet al. Genetic screening of calcium regulation genes in familial hypertrophic cardiomyopathy. J. Mol. Cell. Cardiol. 43(3), 337–343 (2007).
  • Wicks EC , ElliottPM. Genetics and metabolic cardiomyopathies. Herz37(6), 598–610 (2012).
  • Arad M , MaronBJ, GorhamJMet al. Glycogen storage diseases presenting as hypertrophic cardiomyopathy. N. Engl. J. Med. 352(4), 362–372 (2005).
  • Rapezzi C , ArbustiniE, CaforioALet al. Diagnostic work-up in cardiomyopathies: bridging the gap between clinical phenotypes and final diagnosis. A position statement from the ESC Working Group on Myocardial and Pericardial Diseases. Eur. Heart J. 34(19), 1448–1458 (2013).
  • Elliott P , BakerR, PasqualeFet al. Prevalence of Anderson–Fabry disease in patients with hypertrophic cardiomyopathy: the European Anderson–Fabry disease survey. Heart 97(23), 1957–1960 (2011).
  • Meikle PJ , HopwoodJJ, ClagueAE, CareyWF. Prevalence of lysosomal storage disorders. JAMA281(3), 249–254 (1999).
  • Chimenti C , PieroniM, MorganteEet al. Prevalence of Fabry disease in female patients with late-onset hypertrophic cardiomyopathy. Circulation 110(9), 1047–1053 (2004).
  • Rohrbach M , ClarkeJT. Treatment of lysosomal storage disorders:progress with enzyme replacement therapy. Drugs67(18), 2697–2716 (2007).
  • Koopman WJ , WillemsPH, SmeitinkJA. Monogenic mitochondrial disorders. N. Engl. J. Med.366(12), 1132–1141 (2012).
  • Aoki Y , NiihoriT, KawameHet al. Germline mutations in HRAS proto-oncogene cause Costello syndrome. Nat. Genet. 37(10), 1038–1040 (2005).
  • Sarkozy A , ContiE, SeripaDet al. Correlation between PTPN11 gene mutations and congenital heart defects in Noonan and LEOPARD syndromes. J. Med. Genet. 40(9), 704–708 (2003).
  • Sharland M , BurchM, McKennaWM, PatonMA. A clinical study of Noonan syndrome. Arch. Dis. Child.67(2), 178–183 (1992).
  • Sala V , GalloS, LeoC, GattiS, GelbBD, CrepaldiT. Signaling to cardiac hypertrophy: insights from human and mouse RASopathies. Mol. Med.18, 938–947 (2012).
  • Gueneau L , BertrandAT, JaisJPet al. Mutations of the FHL1 gene cause Emery–Dreifuss muscular dystrophy. Am. J. Hum. Genet. 85(3), 338–353 (2009).
  • Vicart P , DupretJM, HazanJet al. Human desmin gene: cDNA sequence, regional localization and exclusion of the locus in a familial desmin-related myopathy. Hum. Genet. 98(4), 422–429 (1996).
  • Stoeckel ME , OsbornM, PorteA, SacrezA, BatzenschlagerA, WeberK. An unusual familial cardiomyopathy characterized by aberrant accumulations of desmin-type intermediate filaments. Virchows Arch. A Pathol. Anat. Histol.393(1), 53–60 (1981).
  • Armel TZ , LeinwandLA. Mutations in the beta-myosin rod cause myosin storage myopathy via multiple mechanisms. Proc. Natl Acad. Sci USA106(15), 6291–6296 (2009).
  • Laing NG , LaingBA, MeredithCet al. Autosomal dominant distal myopathy: linkage to chromosome 14. Am. J. Hum. Genet. 56(2), 422–427 (1995).
  • Dubrey SW , HawkinsPN, FalkRH. Amyloid diseases of the heart: assessment, diagnosis, and referral. Heart97(1), 75–84 (2011).
  • Lachmann HJ , BoothDR, BoothSEet al. Misdiagnosis of hereditary amyloidosis as AL (primary) amyloidosis. N. Engl. J. Med. 346(23), 1786–1791 (2002).
  • Jacobson DR , PastoreRD, YaghoubianRet al. Variant-sequence transthyretin (isoleucine 122) in late-onset cardiac amyloidosis in black Americans. N. Engl. J. Med. 336(7), 466–473 (1997).
  • Banypersad SM , MoonJC, WhelanC, HawkinsPN, WechalekarAD. Updates in cardiac amyloidosis: a review. J. Am Heart Assoc.1(2), e000364 (2012).
  • Dungu JN , AndersonLJ, WhelanCJ, HawkinsPN. Cardiac transthyretin amyloidosis. Heart98(21), 1546–1554 (2012).
  • Baccouche H , MaunzM, BeckTet al. Differentiating cardiac amyloidosis and hypertrophic cardiomyopathy by use of three-dimensional speckle tracking echocardiography. Echocardiography 29(6), 668–677 (2012).
  • Sado DM , FlettAS, BanypersadSMet al. Cardiovascular magnetic resonance measurement of myocardial extracellular volume in health and disease. Heart 98(19), 1436–1441 (2012).
  • Sharma S , MaronBJ, WhyteG, FirooziS, ElliottPM, McKennaWJ. Physiologic limits of left ventricular hypertrophy in elite junior athletes: relevance to differential diagnosis of athlete‘s heart and hypertrophic cardiomyopathy. J. Am. Coll. Cardiol.40(8), 1431–1436 (2002).
  • Basavarajaiah S , BoraitaA, WhyteGet al. Ethnic differences in left ventricular remodeling in highly-trained athletes relevance to differentiating physiologic left ventricular hypertrophy from hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 51(23), 2256–2262 (2008).
  • Olivotto I , CecchiF, PoggesiC, YacoubMH. Developmental origins of hypertrophic cardiomyopathy phenotypes: a unifying hypothesis. Nat. Rev. Cardiol.6(4), 317–321 (2009).
  • Ashrafian H , RedwoodC, BlairE, WatkinsH. Hypertrophic cardiomyopathy: a paradigm for myocardial energy depletion. Trends Genet.19(5), 263–268 (2003).
  • Olivotto I , MaronMS, AdabagASet al. Gender-related differences in the clinical presentation and outcome of hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 46(3), 480–487 (2005).
  • Jensen MK , HavndrupO, ChristiansenMet al. Penetrance of hypertrophic cardiomyopathy in children and adolescents: a 12 year follow-up study of clinical screening and predictive genetic testing. Circulation 127(1), 48–54 (2013).
  • Van Driest SL , VasileVC, OmmenSRet al. Myosin binding protein C mutations and compound heterozygosity in hypertrophic cardiomyopathy. J. Am. Coll. Cardiol. 44(9), 1903–1910 (2004).
  • Ingles J , DoolanA, ChiuC, SeidmanJ, SeidmanC, SemsarianC. Compound and double mutations in patients with hypertrophic cardiomyopathy: implications for genetic testing and counselling. J. Med. Genet.42(10), e59 (2005).
  • Lopes LR , ZekavatiA, SyrrisPet al. Genetic complexity in hypertrophic cardiomyopathy revealed by high-throughput sequencing. J. Med. Genet. 50(4), 228–239 (2013).
  • Watkins H . Assigning a causal role to genetic variants in hypertrophic cardiomyopathy. Circ. Cardiovasc. Genet.6(1), 2–4 (2013).
  • Fahrner JA , MurphyAM, Gunay-AygunM. Hypertrophic cardiomyopathy: how far should we go with genetic testing?Am. J. Med. Genet. A161A(1), 232–233 (2013).
  • Shah S , NelsonCP, GauntTRet al. Four genetic loci influencing electrocardiographic indices of left ventricular hypertrophy. Circ. Cardiovasc. Genet. 4(6), 626–635 (2011).
  • Hong KW , ShinDJ, LeeSHet al. Common variants in RYR1 are associated with left ventricular hypertrophy assessed by electrocardiogram. Eur. Heart J. 33(10), 1250–1256 (2012).
  • Perkins MJ , Van DriestSL, EllsworthEGet al. Gene-specific modifying effects of pro-LVH polymorphisms involving the rennin–angiotensin–aldosterone system among 389 unrelated patients with hypertrophic cardiomyopathy. Eur. Heart J. 26(22), 2457–2462 (2005).
  • Lechin M , QuinonesMA, OmranAet al. Angiotensin-I converting enzyme genotypes and left ventricular hypertrophy in patients with hypertrophic cardiomyopathy. Circulation 92(7), 1808–1812 (1995).
  • Kaufman BD , AuerbachS, ReddySet al. RAAS gene polymorphisms influence progression of pediatric hypertrophic cardiomyopathy. Hum. Genet.122(5), 515–523 (2007).
  • Hwang JJ , AllenPD, TsengGCet al. Microarray gene expression profiles in dilated and hypertrophic cardiomyopathic end-stage heart failure. Physiol. Genomics 10(1), 31–44 (2002).
  • Rajan S , WilliamsSS, JagatheesanGet al. Microarray analysis of gene expression during early stages of mild and severe cardiac hypertrophy. Physiol. Genomics 27(3), 309–317 (2006).
  • Ivandic BT , MastitskySE, SchonsiegelFet al. Whole-genome analysis of gene expression associates the ubiquitin–proteasome system with the cardiomyopathy phenotype in disease-sensitized congenic mouse strains. Cardiovasc. Res. 94(1), 87–95 (2012).
  • Konhilas JP , WatsonPA, MaassAet al. Exercise can prevent and reverse the severity of hypertrophic cardiomyopathy. Circulation Res. 98(4), 540–548 (2006).
  • Hatcher CJ , BassonCT. Taking a bite out of hypertrophic cardiomyopathy: soy diet and disease. J. Clin. Invest.116(1), 16–19 (2006).
  • Gruner C , IvanovJ, CareMet al. Toronto hypertrophic cardiomyopathy genotype score for prediction of a positive genotype in hypertrophic cardiomyopathy. Circ. Cardiovasc. Genet. 6(1), 19–26 (2013).
  • Van Driest SL , MaronBJ, AckermanMJ. From malignant mutations to malignant domains: the continuing search for prognostic significance in the mutant genes causing hypertrophic cardiomyopathy. Heart90(1), 7–8 (2004).
  • Charron P . Genetic analysis for predictive screening in hypertrophic cardiomyopathy. Heart98(8), 603–604 (2012).
  • Ho CY . Genetic considerations in hypertrophic cardiomyopathy. Prog. Cardiovasc. Dis.54(6), 456–460 (2012).
  • Bratt EL , Ostman-SmithI, Sparud-LundinC, AxelssonBA. Parents‘ experiences of having an asymptomatic child diagnosed with hypertrophic cardiomyopathy through family screening. Cardiol. Young21(1), 8–14 (2011).
  • Ross LF , SaalHM, DavidKLet al. Ethical and policy issues in genetic testing and screening of children. Pediatrics 131(3), 620–622 (2013).
  • Cambronero F , MarinF, RoldanV, Hernandez-RomeroD, ValdesM, LipGY. Biomarkers of pathophysiology in hypertrophic cardiomyopathy: implications for clinical management and prognosis. Eur. Heart J.30(2), 139–151 (2009).
  • Kubo T , KitaokaH, OkawaMet al. Combined measurements of cardiac troponin I and brain natriuretic peptide are useful for predicting adverse outcomes in hypertrophic cardiomyopathy. Circ. J. 75(4), 919–926 (2011).
  • Coats CJ , GallagherMJ, FoleyMet al. Relation between serum N-terminal pro-brain natriuretic peptide and prognosis in patients with hypertrophic cardiomyopathy. Eur. Heart J. doi:10.1093/eurheartj/eht070 (2013) (Epub ahead of print).
  • Ho CY , LopezB, Coelho-FilhoORet al. Myocardial fibrosis as an early manifestation of hypertrophic cardiomyopathy. N. Engl. J. Med. 363(6), 552–563 (2010).
  • Ho CY , AbbasiSA, NeilanTGet al. T1 measurements identify extracellular volume expansion in hypertrophic cardiomyopathy sarcomere mutation carriers with and without left ventricular hypertrophy. Circ. Cardiovasc. Imaging 6(3), 415–422 (2013).
  • Chiu C , TeboM, InglesJet al. Genetic screening of calcium regulation genes in familial hypertrophic cardiomyopathy. J. Mol. Cell Cardiol. 43(3), 337–343 (2007).
  • Hayashi T , ArimuraT, Itoh-SatohM et al. Tcap gene mutations in hypertrophic cardiomyopathy and dilated cardiomyopathy. J. Am. Coll. Cardiol.44(11), 2192–2201 (2004).
  • Chiu C , BagnallRD, InglesJet al. Mutations in alpha-actinin-2 cause hypertrophic cardiomyopathy: a genome-wide analysis. J. Am. Coll. Cardiol. 55(11), 1127–1135 (2010).

▪ Website

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.