341
Views
2
CrossRef citations to date
0
Altmetric
Reviews

Farnesoid X receptor as a therapeutic target for dyslipidemia

Pages 587-594 | Published online: 18 Jan 2017

  • Superko HR, King S: Is lowering low-density lipoprotein an effective strategy to reduce cardiac risk? Lipid management to reduce cardiovascular risk – a new strategy Is required. Circulation 117, 560–568 (2008).
  • Discussion of the recent debate over the relative importance of LDL-C lowering for further reduction of cardiovascualr disease in humans.
  • LaRosa JC, Grundy SM, Waters DD et al.: Intensive lipid lowering with atorvastatin in patients with stable coronary disease. N. Engl. J. Med. 352, 1425–1435 (2005).
  • Davidson MH, Maki KC, Pearson TA et al.: Results of the National Cholesterol Education (NCEP) Program Evaluation Project Utilizing Novel E-Technology (NEPTUNE) II survey and implications for treatment under the recent NCEP Writing Group recommendations. Am. J. Cardiol. 96, 556–563 (2005).
  • Bansal S, Buring JE, Rifai N et al.: Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA 298, 309–316 (2008).
  • Nordestgaard BG, Benn M, Schnohr P, Tybjærg-Hansen A: Nonfasting triglycerides and risk of myocardial infarction, ischemic heart disease, and death in men and women. JAMA 298, 299–308 (2008).
  • Provides recent evidence for the importance of plasma triglyceride (TG) levels in the development of cardiovascular disease.
  • Bell GD, Lewis B, Petrie A, Dowling RH: Serum lipids in cholelithiasis: effect of chenodeoxycholic acid therapy. Br. Med. J. 3, 520–522 (1973).
  • Bateson MC, Maclean D, Evans JR, Bouchier AD: Chenodeoxycholic acid therapy for hypertriglyceridemia. Br. J. Clin. Pharmac. 5, 249–254 (1978).
  • Insull W: Clinical utility of bile acid sequestrants in the treatment of dyslipidemia: a scientific review. South. Med. J. 99, 257–273 (2006).
  • Review of the knowledge gained from the use of bile acid resins in humans.
  • Lipid Research Clinics Program: The Lipid Research Clinics Coronary Primary Prevention Trial Results. I Reduction in Incidence of Coronary Heart Disease. JAMA 251, 351–364 (1984).
  • Lipid Research Clinics Program: The Lipid Research Clinics Coronary Primary Prevention Trial results. II. The relationship of reduction in incidence of coronary heart disease to cholesterol lowering. JAMA 251, 365–374 (1984).
  • Schwarz M, Russell DW, Dietschy JM, Turley SD: Marked reduction in bile acid synthesis in cholesterol 7a-hydroxylase-deficient mice does not lead to diminished tissue cholesterol turnover or to hypercholesterolemia. J. Lipid Res. 39, 1833–1843 (1998).
  • Kesäniemi YA, Miettinen TA: Cholesterol absorption efficiency regulates plasma cholesterol level in the Finnish population. Eur. J. Clin. Invest. 17, 391–395 (1987).
  • van Himbergen TM, Matthan NR, Resteghini NA et al.: Comparison of the effects of maximal dose atorvastatin and rosuvastatin therapy on cholesterol synthesis and absorption markers. J. Lipid Res. 50, 730–739 (2009).
  • Gylling H, Vanhanen H, Miettinen TA: Effects of acipimox and cholestyramine on serum lipoproteins, non-cholesterol sterols and cholesterol absorption and elimination. Eur. J. Clin. Invest. 37, 111–115 (1989).
  • Dietschy JM, Turley SD, Spady DK: Role of liver in the maintenance of cholesterol and low density lipoprotein homeostasis in different animal species, including human. J. Lipid Res. 34, 1637–1659 (1993).
  • Nilsson LM, Abrahamsson A, Sahlin S et al.: Bile acids and lipoprotein metabolism: effects of cholestyramine and chenodeoxycholic acid on human hepatic mRNA expression. Biochem. Biophys. Res. Commun. 357, 707–711 (2007).
  • Important human data addressing the effect of the bile acid pool size on gene expression.
  • Abrahamsson A, Gustafsson U, Ellis E et al.: Feedback regulation of bile acid synthesis in human liver: importance of HNF-4a for regulation of CYP7A1. Biochem. Biophys. Res. Commun. 330, 395–399 (2005).
  • Berkenstam A, Kristensen J, Mellstrom K et al.: The thyroid hormone mimetic compound KB2115 lowers plasma LDL cholesterol and stimulates bile acid synthesis without cardiac effects in humans. Proc. Natl Acad. Sci. USA 105, 663–667 (2008).
  • Pullinger CR, Eng C, Salen G et al.: Human cholesterol 7a-hydroxylase (CYP7A1) deficiency has a hypercholesterolemic phenotype. J. Clin. Invest. 110, 109–117 (2002).
  • Spady D, Cuthbert JA, Willard MN, Meidell RS: Adenovirus-mediated transfer of a gene encoding cholesterol 7a-hydroxylase into hamsters increases hepatic enzyme activity and reduces plasma total and low density lipoprotein cholesterol. J. Clin. Invest. 96, 700–709 (1998).
  • Spady D, Cuthbert JA, Willard MN, Meidell RS: Overexpression of cholesterol 7a-hydroxylase (CYP7A) in mice lacking the low density lipoprotein (LDL) receptor gene. J. Biol. Chem. 273, 126–132 (1998).
  • Miyake JH, Duong-Polk XT, Taylor JM et al.: Transgenic expression of cholesterol-7-a-hydroxylase prevents atherosclerosis in C57BL/6J mice. Arterioscler. Thromb. Vasc. Biol. 22, 121–126 (2002).
  • Ratliff EP, Gutierrez A, Davis RA: Transgenic expression of CYP7A1 in LDL receptordeficient mice blocks diet-induced hypercholesterolemia. J. Lipid Res. 47, 1513–1520 (2006).
  • Fiorucci S, Rizzo G, Donini A, Distrutti E, Santucci L: Targeting farnesoid X receptor for liver and metabolic disorders. Trends Mol. Med. 13, 298–309 (2007).
  • Lu TT, Makishima M, Repa JJ et al.: Molecular basis for feedback regulation of bile acid synthesis by nuclear receptors. Mol. Cell 6, 507–515 (2000).
  • FXR activation is shown to strongly reduce atherosclerosis formation in multiple mouse models.
  • Comprehensive study of how various bile acids alter cholesterol absorption in mice.
  • Goodwin B, Jones SA, Price RR et al.: A regulatory cascade of the nuclear receptors FXR, SHP-1, and LRH-1 represses bile acid biosynthesis. Mol. Cell 6, 517–526 (2000).
  • One of the initial papers describing the importance of the FXR/SHP pathway in bile acid metabolism.
  • Inagaki T, Choi M, Moschetta A et al.: Fibroblast growth factor 15 functions as an enterohepatic signal to regulate bile acid homeostasis. Cell Metab. 2, 217–225 (2005).
  • Jung D, Inagaki T, Dawson PA et al.: FXR agonists and FGF15 reduce fecal bile acid excretion in a mouse model of bile acid malabsorption. J. Lipid Res. 48, 2693–2700 (2007).
  • Kim I, Ahn SH, Inagaki T et al.: Differential regulation of bile acid homeostasis by the farnesoid X receptor in liver and intestine. J. Lipid Res. 48, 2664–2672 (2007).
  • Wang DQ, Tazuma S, Cohen DE, Carey MC: Feeding natural hydrophilic bile acids inhibits intestinal cholesterol absorption: studies in the gallstonesusceptible mouse. Am. J. Physiol. Gastrointest. Liver Physiol. 285, G494–G502 (2003).
  • Hartman HB, Gardell SJ, Petucci CJ, Wang S, Krueger JA, Evans MJ: Activation of farnesoid X receptor prevents atherosclerotic lesion formation in LDLR-/- and apoE-/- mice. J. Lipid Res. 50, 1090–1100 (2009).
  • An overview of farnesoid X receptor (FXR) in regard to liver biology.
  • Kok T, Hulzebos CV, Wolters H et al.: Enterohepatic circulation of bile salts in farnesoid X receptor-deficient mice. J. Biol. Chem. 278, 41930–41937 (2003).
  • Lambert G, Amar MJA, Guo G et al.: The farnesoid X-receptor is an essential regulator of cholesterol homeostasis. J. Biol. Chem. 278, 2563–2570 (2003).
  • Hubbert ML, Zhang Y, Lee FY, Edwards PA: Regulation of hepatic Insig-2 by the farnesoid X receptor. Mol. Endocrinol. 21, 1359–1369 (2007).
  • Repa JJ, Berge KE, Pomajzl C, Richardson JA, Hobbs H, Mangelsdorf DJ: Regulation of ATP-binding cassette sterol transporters ABCG5 and ABCG8 by the liver X receptors a and b. J. Biol. Chem. 277, 18793–18800 (2002).
  • Costet P, Krempf M, Cariou B: PCSK9 and LDL cholesterol: unravelling the target to design the bullet. Trends Biochem. Sci. 33, 426–434 (2008).
  • Langhia C, Le Maya C, Kourimatea S et al.: Activation of the farnesoid X receptor represses PCSK9 expression in human hepatocytes. FEBS Lett. 582, 949–955 (2008).
  • Watanabe M, Houten SM, Wang L et al.: Bile acids lower triglyceride levels via a pathway involving FXR, SHP, and SREBP-1c. J. Clin. Invest. 113, 1408–1418 (2004).
  • Wang L, Lee YK, Bundman D et al.: Redundant pathways for negative feedback regulation of bile acid production. Dev. Cell 2, 721–731 (2002).
  • One of the initial papers describing the importance of the FXR/small heterodimer partner (SHP) pathway in bile acid metabolism.
  • Boulias K, Katrakili N, Bamberg K, Underhill P, Greenfield A, Talianidis I: Regulation of hepatic metabolic pathways by the orphan nuclear receptor SHP. EMBO J. 24, 2624–2633 (2005).
  • Lai L, Harnish DC, Evans MJ: Estrogen receptor a regulates expression of the orphan receptor small heterodimer partner. J. Biol. Chem. 278, 36418–36429 (2003).
  • Bilz S, Samuel V, Morino K, Savage D, Choi CS, Shulman GI: Activation of the farnesoid X receptor improves lipid metabolism in combined hyperlipidemic hamsters. Am. J. Physiol. Endocrinol. Metab. 290, E716–E722 (2006).
  • Kast HR, Nguyen CM, Sinal CJ et al.: Farnesoid X-activated receptor induces apolipoprotein C-II transcription: a molecular mechanism linking plasma triglyceride levels to bile acids. Mol. Endocrinol. 15, 1720–1728 (2001).
  • Spotlights the control of ApoC-II expression by FXR and its role in regulation of plasma TG levels.
  • Claudel T, Inoue Y, Barbier O et al.: Farnesoid X receptor agonists suppress hepatic apolipoprotein CIII expression. Gastroenterology 125, 544–555 (2003).
  • Brown RJ, Rader DJ: Lipases as modulators of atherosclerosis in murine models. Curr. Drug Targets 8, 1307–1319 (2007).
  • Hirokane H, Nakahara M, Tachibana S, Shimizu M, Sato R: Bile acid reduces the secretion of very low density lipoprotein by repressing microsomal triglyceride transfer protein gene expression mediated by hepatocyte nuclear factor-4. J. Biol. Chem. 279, 45685–45692 (2004).
  • Anisfeld AM, Kast-Woelbern HR, Meyer ME et al.: Syndecan-1 expression is regulated in an isoform-specific manner by the farnesoid-X receptor. J. Biol. Chem. 278, 20420–20428 (2003).
  • Sirvent A, Claudel T, Martin G et al.: The farnesoid X receptor induces very low density lipoprotein receptor gene expression. FEBS Lett. 566, 173–177 (2004).
  • Pineda Torra I, Claudel T, Duval C et al.: Bile acids induce the expression of the human peroxisome proliferator-activated receptor a gene via activation of the farnesoid X receptor. Mol. Endocrinol. 17, 259–272 (2003).
  • Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ: Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell 102, 731–744 (2000).
  • Evans MJ, Mahaney PE, Borges-Marcucci L et al.: A synthetic farnesoid X receptor (FXR) agonist promotes cholesterol lowering in models of dyslipidemia. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G543–G552 (2009).
  • Zhang Y, Wang X, Vales C et al.: FXR deficiency causes reduced atherosclerosis in LDLR-/- mice. Arterioscler. Thromb. Vasc. Biol. 26, 2316–2321 (2006).
  • Hanniman EA, Lambert G, McCarthy TC, Sinal CJ: Loss of functional farnesoid X receptor increases atherosclerotic lesions in apolipoprotein E-deficient mice. J. Lipid Res. 46, 2595–2604 (2005).
  • Guo GL, Santamarina-Fojo S, Akiyama TE et al.: Effects of FXR in foam-cell formation and atherosclerosis development. Biochim. Biophys. Acta 1761, 1401–1409 (2006).
  • Hu T, Chouinar M, Cox AL et al.: Farnesoid X receptor agonist reduces serum asymmetric dimethylarginine levels through hepatic dimethylarginine dimethylaminohydrolase-1 gene regulation. J. Biol. Chem. 281, 39831–39838 (2006).
  • Bishop-Bailey D, Walsh DT, Warner TD: Expression and activation of the farnesoid X receptor in the vasculature. Proc. Natl Acad. Sci. USA 101, 3668–3673 (2004).
  • Pellicciari R, Fiorucci S, Camaioni E et al.: 6a-ethyl-chenodeoxycholic acid (6-ECDCA), a potent and selective FXR agonist endowed with anticholestatic activity. J. Med. Chem. 45, 3569–3572 (2002).
  • Maloney PR, Parks DJ, Haffner CD et al.: Identification of a chemical tool for the orphan nuclear receptor FXR. J. Med. Chem. 43, 2971–2974 (2000).
  • Flatt B, Martin R, Wang TL et al.: Discovery of XL335 (WAY-362450), a highly potent, selective, and orally active agonist of the farnesoid X receptor. J. Med. Chem. 52, 904–907 (2009).
  • Mencarelli A, Renga B, Distrutti E, Fiorucci S: Antiatherosclerotic effect of farnesoid X receptor. Am. J. Physiol. Heart Circ. Physiol. 296, H272–H281 (2009).
  • Another paper using a distinct FXR ligand to demonstrate that FXR activation reduces atherosclerosis in the mouse.
  • Zhang Y, Lee FY, Barrera G et al.: Activation of the nuclear receptor FXR improves hyperglycemia and hyperlipidemia in diabetic mice. Proc. Natl Acad. Sci. USA 103, 1006–1011 (2006).
  • Authoritative review of the details of FXR and its biology.
  • Demonstrates a potential utility for FXR in both dyslipidemia and diabetes.
  • Claudel T, Sturm E, Duez H et al.: Bile acid-activated nuclear receptor FXR suppresses apolipoprotein A-I transcription via a negative FXR response element. J. Clin. Invest. 109, 961–971 (2002).
  • Sanyal S, Bavner A, Haroniti A et al.: Involvement of repressor complex subunit GPS2 in transcriptional pathways governing human bile acid biosynthesis. Proc. Natl. Acad. Sci. USA 40, 15665–15670 (2007).
  • Goodwin B, Watson MA, Kim H et al.: Differential regulation of rat and human CYP7A1 by the nuclear oxysterol receptor liver X receptor-a. Mol. Endocrinol. 17, 386–394 (2003).
  • Quinet EM, Basso MD, Halpern AR et al.: LXR ligand lowers LDL cholesterol in primates, is lipid neutral in hamster, and reduces atherosclerosis in mouse. J. Lipid Res. DOI: 10.11984/jlr.M900037-JLR200 (2009) (Epub ahead of print).
  • Downes M, Verdecia MA, Roecker A et al.: A chemical, genetic, and structural analysis of the nuclear bile acid receptor FXR. Mol. Cell 11, 1079–1092 (2003).
  • Wang S, Lai K, Moy FJ, Bhat A, Hartman HB, Evans MJ: The nuclear hormone receptor farnesoid X receptor (FXR) is activated by androsterone. Endocrinology 147, 4025–4033 (2006).
  • Xing Y, Saner-Amigh K, Nakamura Y et al.: The farnesoid X receptor regulates transcription of 3b-hydroxysteroid dehydrogenase type 2 in human adrenal cells. Mol. Cell. Endocrinol. 299, 153–162 (2009).
  • Henry RR, Mudaliar S, Morrow L et al.: 13-LB. Farnesoid-X Receptor Agonists: A New Therapeutic Class for Diabetes and Fatty Liver Disease? The First FXR Therapeutic Study in Diabetes. Presented at: American Diabetes Association’s 69th Annual Scientific Sessions. New Orleans, LA, USA, 5–9 June (2009).
  • Szapary PO, Wolfe ML, Bloedon LT et al.: Guggulipid for the treatment of hypercholesterolemia. A randomized controlled trial. JAMA 290, 765–772 (2003).
  • Burris TP, Montros C, Houck KA et al.: The hypolipidemic natural product guggulsterone is a promiscuous steroid receptor ligand. Mol. Pharmacol. 67, 948–954 (2005).
  • Lefebvre P, Cariou B, Lien F, Kuipers F, Staels B: Role of bile acids and bile acid receptors in metabolic regulations. Physiol. Rev. 89, 147–191 (2009).
  • Initial description of FXR-deficient mice.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.