221
Views
17
CrossRef citations to date
0
Altmetric
Reviews

Mechanisms of lipase maturation

&
Pages 117-130 | Published online: 18 Jan 2017

Bibliography

  • McCoy MG, Sun GS, Marchadier D, Maugeais C, Glick JM, Rader DJ: Characterization of the lipolytic activity of endothelial lipase. J. Lipid Res. 43, 921–929 (2002).
  • Wong H, Schotz MC: The lipase gene family. J. Lipid Res. 43, 993–999 (2002).
  • Mead JR, Irvine SA, Ramji DP: Lipoprotein lipase: structure, function, regulation, and role in disease. J. Mol. Med. 80, 753–769 (2002).
  • Merkel M, Eckel RH, Goldberg IJ: Lipoprotein lipase: genetics, lipid uptake, and regulation. J. Lipid Res. 43, 1997–2006 (2002).
  • Stein Y, Stein O: Lipoprotein lipase and atherosclerosis. Atherosclerosis 170, 1–9 (2003).
  • Goldberg IJ, Eckel RH, Abumrad NA: Regulation of fatty acid uptake into tissues: lipoprotein lipase­ and CD36­mediated pathways. J. Lipid Res. 50(Suppl.) S86–S90 (2009).
  • Otarod JK, Goldberg IJ: Lipoprotein lipase and its role in regulation of plasma lipoproteins and cardiac risk. Curr. Atheroscler. Rep. 6, 335–342 (2004).
  • van Tilbeurgh H, Roussel A, Lalouel JM, Cambillau C: Lipoprotein lipase. Molecular model based on the pancreatic lipase x­ray structure: consequences for heparin binding and catalysis. J. Biol. Chem. 269, 4626–4633 (1994).
  • Wang H, Eckel RH: Lipoprotein lipase: from gene to obesity. Am. J. Physiol. Endocrinol. Metab. 297, E271–E288 (2009).
  • Perret B, Mabile L, Martinez L, Terce F, Barbaras R, Collet X: Hepatic lipase: structure/function relationship, synthesis, and regulation. J. Lipid Res. 43, 1163–1169 (2002).
  • Santamarina­Fojo S, Gonzalez­Navarro H, Freeman L, Wagner E, Nong Z: Hepatic lipase, lipoprotein metabolism, and atherogenesis. Arterioscler. Thromb. Vasc. Biol. 24, 1750–1754 (2004).
  • Cohen JC, Vega GL, Grundy SM: Hepatic lipase: new insights from genetic and metabolic studies. Curr. Opin. Lipidol. 10, 259–267 (1999).
  • Jansen, H, Verhoeven AJ, Sijbrands EJ: Hepatic lipase: a pro­ or anti­atherogenic protein? J. Lipid Res. 43, 1352–1362 (2002).
  • Rader DJ, Jaye M: Endothelial lipase: a new member of the triglyceride lipase gene family. Curr. Opin. Lipidol. 11, 141–147 (2000).
  • Broedl UC, Jin W, Rader DJ: Endothelial lipase: a modulator of lipoprotein metabolism upregulated by inflammation.Trends Cardiovasc. Med. 14, 202–206 (2004).
  • Badellino KO, Rader DJ: The role of endothelial lipase in high­density lipoprotein metabolism. Curr. Opin. Cardiol. 19, 392–395 (2004).
  • Wong H, Davis RC, Hill JS, Yang D, Schotz MC: Lipase engineering: a window into structure–function relationships.Methods Enzymol. 284, 171–184 (1997).
  • Derewenda ZS, Cambillau C: Effects of gene mutations in lipoprotein and hepatic lipases as interpreted by a molecular model of the pancreatic triglyceride lipase. J. Biol. Chem. 266, 23112–23119 (1991).
  • Williams KJ: Molecular processes that handle – and mishandle – dietary lipids. J. Clin. Invest. 118, 3247–3259 (2008).
  • Young SG, Davies BS, Fong LG et al.: GPIHBP1: an endothelial cell molecule important for the lipolytic processing of chylomicrons. Curr. Opin. Lipidol. 18, 389–396 (2007).
  • Hasham SN, Pillarisetti S: Vascular lipases, inflammation and atherosclerosis. Clin. Chim. Acta 372, 179–183 (2006).
  • Pappan KL, Pan Z, Kwon G et al.: Pancreatic b­cell lipoprotein lipase independently regulates islet glucose metabolism and normal insulin secretion. J. Biol. Chem. 280, 9023–9029 (2005).
  • Paradis ME, Badellino KO, Rader DJ et al.: Endothelial lipase is associated with inflammation in humans. J. Lipid Res. 47, 2808–2813 (2006).
  • Paradis ME, Badellino KO, Rader DJ et al.: Visceral adiposity and endothelial lipase.J. Clin. Endocrinol. Metab. 91, 3538–3543 (2006).
  • Pentikainen MO, Oksjoki R, Oorni K, Kovanen PT: Lipoprotein lipase in the arterial wall: linking LDL to the arterial extracellular matrix and much more. Arterioscler. Thromb. Vasc. Biol. 22, 211–217 (2002).
  • Preiss­Landl K, Zimmermann R, Hammerle G, Zechner R: Lipoprotein lipase: the regulation of tissue specific expression and its role in lipid and energy metabolism. Curr. Opin. Lipidol. 13, 471–481 (2002).
  • Pulawa LK, Eckel RH: Overexpression of muscle lipoprotein lipase and insulin sensitivity. Curr. Opin. Clin. Nutr. Metab. Care 5, 569–574 (2002).
  • Winkler FK, D’Arcy A, Hunziker W: Structure of human pancreatic lipase. Nature 343, 771–774 (1990).
  • Griffon N, Jin W, Petty TJ et al.: Identification of the active form of endothelial lipase, a homodimer in a head­to­tail conformation.J. Biol. Chem. 284, 23322–23330 (2009).
  • Schrag JD, Cygler M: Lipases and a/b hydrolase fold. Methods Enzymol. 284, 85–107 (1997).
  • Reis P, Holmberg K, Watzke H, Leser ME, Miller R: Lipases at interfaces: a review.Adv. Colloid Interface Sci. 147–148, 237–250 (2009).
  • Lowe ME: The triglyceride lipases of the pancreas. J. Lipid Res. 43, 2007–2016 (2002).
  • Hill JS, Davis RC, Yang D, Schotz MC, Wong H: Hepatic lipase: high­level expression and subunit structure determination. Methods Enzymol. 284, 232–246 (1997).
  • Wong H, Yang D, Hill JS, Davis RC, Nikazy J, Schotz MC: A molecular biology­ based approach to resolve the subunit orientation of lipoprotein lipase. Proc. Natl Acad. Sci. USA 94, 5594–5598 (1997).
  • Hide WA, Chan L, Li WH: Structure and evolution of the lipase superfamily. J. Lipid Res. 33, 167–178 (1992).
  • Brunzell JD: Familial lipoprotein lipase deficiency and other causes of chylomicronemia syndromes. In: The Metabolic Basis of Inherited Disease. Scriver RS, Beaudet AL, Sly WS (Eds). McGraw Hill, NY, USA, 1913–1932 (1995).
  • Weinstock PH, Bisgaier CL, Aalto­Setala K et al.: Severe hypertriglyceridemia, reduced high density lipoprotein, and neonatal death in lipoprotein lipase knockout mice. Mild hypertriglyceridemia with impaired very low density lipoprotein clearance in heterozygotes.J. Clin. Invest. 96, 2555–2568 (1995).
  • Peterfy M, Ben­Zeev O, Mao HZ et al.: Mutations in LMF1 cause combined lipase deficiency and severe hypertriglyceridemia.Nat. Genet. 39, 1483–1487 (2007). Identifies the only known lipase-specific chaperone, lipase maturation factor 1 (LMF1), as the protein affected by the cld mutation. It also identifies the first human patient with combined lipase deficiency resulting from a mutation in LMF1.
  • Beigneux AP, Davies BS, Gin P et al.: Glycosylphosphatidylinositol­anchored high­density lipoprotein­binding protein 1 plays a critical role in the lipolytic processing of chylomicrons. Cell Metab. 5, 279–291 (2007).
  • Aulchenko YS, Ripatti S, Lindqvist I et al.: Loci influencing lipid levels and coronary heart disease risk in 16 European population cohorts. Nat. Genet. 41, 47–55 (2009).
  • Kathiresan S, Willer CJ, Peloso GM et al.: Common variants at 30 loci contribute to polygenic dyslipidemia. Nat. Genet. 41, 56–65 (2009).
  • Sabatti C, Service SK, Hartikainen AL et al.: Genome­wide association analysis of metabolic traits in a birth cohort from a founder population. Nat. Genet. 41, 35–46 (2009).
  • Willer CJ, Sanna S, Jackson AU et al.: Newly identified loci that influence lipid concentrations and risk of coronary artery disease. Nat. Genet. 40, 161–169 (2008).
  • Austin MA, Hokanson JE, Edwards KL: Hypertriglyceridemia as a cardiovascular risk factor. Am. J. Cardiol. 81, B7–B12 (1998).
  • Pejic RN, Lee DT: Hypertriglyceridemia. J. Am. Board Fam. Med. 19, 310–316 (2006).
  • Groop L: Genetics of the metabolic syndrome. Br. J. Nutr. 83(Suppl. 1), S39–S48 (2000).
  • Ginsberg HN, Stalenhoef AF: The metabolic syndrome: targeting dyslipidaemia to reduce coronary risk. J. Cardiovasc. Risk 10, 121–128 (2003).
  • Zechner R, Strauss J, Frank S et al.: The role of lipoprotein lipase in adipose tissue development and metabolism. Int. J. Obes. Relat. Metab. Disord. 24(Suppl. 4), S53–S56 (2000).
  • Levak­Frank S, Radner H, Walsh A et al.: Muscle­specific overexpression of lipoprotein lipase causes a severe myopathy characterized by proliferation of mitochondria and peroxisomes in transgenic mice. J. Clin. Invest. 96, 976–986 (1995).
  • Merkel M, Weinstock PH, Chajek­Shaul T et al.: Lipoprotein lipase expression exclusively in liver. A mouse model for metabolism in the neonatal period and during cachexia. J. Clin. Invest. 102, 893–901 (1998).
  • Ferreira LD, Pulawa LK, Jensen DR, Eckel RH: Overexpressing human lipoprotein lipase in mouse skeletal muscle is associated with insulin resistance. Diabetes 50, 1064–1068 (2001).
  • Kim JK, Fillmore JJ, Chen Y et al.: Tissue­ specific overexpression of lipoprotein lipase causes tissue­specific insulin resistance. Proc. Natl Acad. Sci. USA 98, 7522–7527 (2001).
  • Jensen DR, Schlaepfer IR, Morin CL et al.: Prevention of diet­induced obesity in transgenic mice overexpressing skeletal muscle lipoprotein lipase. Am. J. Physiol. 273, R683–R689 (1997).
  • Goodarzi MO, Guo X, Taylor KD et al.: Lipoprotein lipase is a gene for insulin resistance in Mexican Americans. Diabetes 53, 214–220 (2004).
  • Holzl B, Iglseder B, Sandhofer A et al.: Insulin sensitivity is impaired in heterozygous carriers of lipoprotein lipase deficiency.Diabetologia 45, 378–384 (2002).
  • Jemaa R, Tuzet S, Portos C, Betoulle D, Apfelbaum M, Fumeron F: Lipoprotein lipase gene polymorphisms: associations with hypertriglyceridemia and body mass index in obese people. Int. J. Obes. Relat. Metab. Disord. 19, 270–274 (1995).
  • Radha V, Vimaleswaran KS, Ayyappa KA, Mohan V: Association of lipoprotein lipase gene polymorphisms with obesity and Type 2 diabetes in an Asian Indian population. Int. J. Obes. (Lond.) 31, 913–918 (2007).
  • Yagyu H, Chen G, Yokoyama M et al.: Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardiomyopathy. J. Clin. Invest. 111, 419–426 (2003).
  • Park TS, Hu Y, Noh HL et al.: Ceramide is a cardiotoxin in lipotoxic cardiomyopathy.J. Lipid Res. 49, 2101–2112 (2008).
  • McGavock JM, Lingvay I, Zib I et al.: Cardiac steatosis in diabetes mellitus: a 1H­magnetic resonance spectroscopy study.Circulation 116, 1170–1175 (2007).
  • Peterson LR, Herrero P, Schechtman KB et al.: Effect of obesity and insulin resistance on myocardial substrate metabolism and efficiency in young women. Circulation 109, 2191–2196 (2004).
  • Sharma S, Adrogue JV, Golfman L et al.: Intramyocardial lipid accumulation in the failing human heart resembles the lipotoxic rat heart. FASEB J. 18, 1692–1700 (2004).
  • Babaev VR, Fazio S, Gleaves LA, Carter KJ, Semenkovich CF, Linton MF: Macrophage lipoprotein lipase promotes foam cell formation and atherosclerosis in vivo. J. Clin. Invest. 103, 1697–1705 (1999).
  • Wilson K, Fry GL, Chappell DA, Sigmund CD, Medh JD: Macrophage­ specific expression of human lipoprotein lipase accelerates atherosclerosis in transgenic apolipoprotein E knockout mice but not in C57BL/6 mice. Arterioscler. Thromb. Vasc. Biol. 21, 1809–1815 (2001).
  • Izar MC, Helfenstein T, Ihara SS et al.: Association of lipoprotein lipase D9N polymorphism with myocardial infarction in Type 2 diabetes: the genetics, outcomes, and lipids in Type 2 diabetes (GOLD) study. Atherosclerosis 204, 165–170 (2009).
  • Hegele RA, Little JA, Vezina C et al.: Hepatic lipase deficiency. Clinical, biochemical, and molecular genetic characteristics. Arterioscler. Thromb. 13, 720–728 (1993).
  • Knudsen P, Antikainen M, Uusi­Oukari M et al.: Heterozygous hepatic lipase deficiency, due to two missense mutations R186H and L334F, in the HL gene. Atherosclerosis 128, 165–174 (1997).
  • Jin W, Millar JS, Broedl U, Glick JM, Rader DJ: Inhibition of endothelial lipase causes increased HDL cholesterol levels in vivo. J. Clin. Invest. 111, 357–362 (2003).
  • Broedl UC, Maugeais C, Millar JS et al.: Endothelial lipase promotes the catabolism of ApoB­containing lipoproteins. Circ. Res. 94, 1554–1561 (2004).
  • Edmondson AC, Brown RJ, Kathiresan S et al.: Loss­of­function variants in endothelial lipase are a cause of elevated HDL cholesterol in humans. J. Clin. Invest. 119, 1042–1050 (2009).
  • Hebert DN, Molinari M: In and out of the ER: protein folding, quality control, degradation, and related human diseases.Physiol. Rev. 87, 1377–1408 (2007). Comprehensive review of protein folding in the endoplasmic reticulum (ER), with excellent explanations of co- and post-translational folding events, including the general folding factors and chaperones involved.
  • Trombetta ES, Helenius A: Conformational requirements for glycoprotein reglucosylation in the endoplasmic reticulum. J. Cell Biol. 148, 1123–1129 (2000).
  • Caramelo JJ, Parodi AJ: Getting in and out from calnexin/calreticulin cycles. J. Biol. Chem. 283, 10221–10225 (2008).
  • Ben­Zeev O, Doolittle MH: Maturation of hepatic lipase. Formation of functional enzyme in the endoplasmic reticulum is the rate­limiting step in its secretion. J. Biol. Chem. 279, 6171–6181 (2004). Analysis of the relative maturation rates of the lipase gene family, and the identification of the physical characteristics of hepatic lipase intermediates in the ER and their association with calnexin.
  • Doolittle MH, Ben­Zeev O, Bassilian S, Whitelegge JP, Peterfy M, Wong H: Hepatic lipase maturation: a partial proteome of interacting factors. J. Lipid Res. 50, 1173–1184 (2009). Proteomic-based study that identifies proteins associated with hepatic lipase during its folding and assembly. This is the first study to demonstrate that lipase maturation uses components of both major chaperone systems operating in the ER.
  • Ben­Zeev O, Stahnke G, Liu G, Davis RC, Doolittle MH: Lipoprotein lipase and hepatic lipase: the role of asparagine­linked glycosylation in the expression of a functional enzyme. J. Lipid Res. 35, 1511–1523 (1994).
  • Miller GC, Long CJ, Bojilova ED et al.: Role of N­linked glycosylation in the secretion and activity of endothelial lipase. J. Lipid Res. 45, 2080–2087 (2004).
  • Wolle J, Jansen H, Smith LC, Chan L: Functional role of N­linked glycosylation in human hepatic lipase: asparagine­56 is important for both enzyme activity and secretion. J. Lipid Res. 34, 2169–2176 (1993).
  • Zhang L, Lookene A, Wu G, Olivecrona G: Calcium triggers folding of lipoprotein lipase into active dimers. J. Biol. Chem. 280, 42580–42591 (2005). Elegant and important study examining lipase refolding from chemically denatured lipoprotein lipase (LPL). It describes the physical characteristics of LPL-folding intermediates and identifies factors essential in the folding and assembly of homodimers in vitro.
  • Ben­Zeev O, Doolittle MH, Davis RC, Elovson J, Schotz MC: Maturation of lipoprotein lipase. Expression of full catalytic activity requires glucose trimming but not translocation to the cis­Golgi compartment. J. Biol. Chem. 267, 6219–6227 (1992).
  • Ben­Zeev O, Mao HZ, Doolittle MH: Maturation of lipoprotein lipase in the endoplasmic reticulum. Concurrent formation of functional dimers and inactive aggregates. J. Biol. Chem. 277, 10727–10738 (2002). Analysis of the physical forms of LPL occurring in the ER, as well as measurement of their maturation kinetics. This is the first description of aggregation as a misfolded end point of LPL maturation in vivo; this study also demonstrates the stability of the LPL homodimer in the ER.
  • Briquet­Laugier V, Ben­Zeev O, White A, Doolittle MH: cld and lec23 are disparate mutations that affect maturation of lipoprotein lipase in the endoplasmic reticulum. J. Lipid Res. 40, 2044–2058 (1999).
  • Dejgaard S, Nicolay J, Taheri M, Thomas DY, Bergeron JJ: The ER glycoprotein quality control system. Curr. Issues Mol. Biol. 6, 29–42 (2004).
  • Sitia R, Braakman I: Quality control in the endoplasmic reticulum protein factory. Nature 426, 891–894 (2003).
  • Trombetta ES, Parodi AJ: Quality control and protein folding in the secretory pathway. Annu. Rev. Cell. Dev. Biol. 19, 649–676 (2003).
  • Ruddock LW, Molinari M: N­glycan processing in ER quality control. J. Cell Sci. 119, 4373–4380 (2006).
  • Schroder M, Kaufman RJ: ER stress and the unfolded protein response. Mutat. Res. 569, 29–63 (2005).
  • Meunier L, Usherwood YK, Chung KT, Hendershot LM: A subset of chaperones and folding enzymes form multiprotein complexes in endoplasmic reticulum to bind nascent proteins. Mol. Biol. Cell 13, 4456–4469 (2002).
  • Boedeker JC, Doolittle MH, White AL: Differential effect of combined lipase deficiency (cld/cld) on human hepatic lipase and lipoprotein lipase secretion. J. Lipid Res. 42, 1858–1864 (2001).
  • Zhang L, Wu G, Tate CG, Lookene A, Olivecrona G: Calreticulin promotes folding/ dimerization of human lipoprotein lipase expressed in insect cells (sf21). J. Biol. Chem. 278, 29344–29351 (2003).
  • Buck TM, Wright CM, Brodsky JL: The activities and function of molecular chaperones in the endoplasmic reticulum.Semin. Cell Dev. Biol. 18, 751–761 (2007).
  • Ni M, Lee AS: ER chaperones in mammalian development and human diseases. FEBS Lett. 581, 3641–3651 (2007).
  • Gething MJ: Role and regulation of the ER chaperone BiP. Semin. Cell Dev. Biol. 10, 465–472 (1999).
  • Blond­Elguindi S, Cwirla SE, Dower WJ et al.: Affinity panning of a library of peptides displayed on bacteriophages reveals the binding specificity of BiP. Cell 75, 717–728 (1993).
  • Paterniti JR Jr, Brown WV, Ginsberg HN, Artzt K: Combined lipase deficiency (cld): a lethal mutation on chromosome 17 of the mouse. Science 221, 167–169 (1983).
  • Reue K, Doolittle MH: Naturally occurring mutations in mice affecting lipid transport and metabolism. J. Lipid Res. 37, 1387–1405 (1996).
  • Davis RC, Ben­Zeev O, Martin D, Doolittle MH: Combined lipase deficiency in the mouse. Evidence of impaired lipase processing and secretion. J. Biol. Chem. 265, 17960–17966 (1990).
  • Scow RO, Schultz CJ, Park JW, Blanchette­Mackie EJ: Combined lipase deficiency (cld/cld) in mice affects differently post­translational processing of lipoprotein lipase, hepatic lipase and pancreatic lipase. Chem. Phys. Lipids 93, 149–155 (1998).
  • Olivecrona T, Chernick SS, Bengtsson­Olivecrona G, Paterniti JR Jr, Brown WV, Scow RO: Combined lipase deficiency (cld/cld) in mice. Demonstration that an inactive form of lipoprotein lipase is synthesized. J. Biol. Chem. 260, 2552–2557 (1985).
  • Blanchette­Mackie EJ, Wetzel MG, Chernick SS, Paterniti JR Jr, Brown WV, Scow RO: Effect of the combined lipase deficiency mutation (cld/cld) on ultrastructure of tissues in mice. Diaphragm, heart, brown adipose tissue, lung, and liver. Lab. Invest. 55, 347–362 (1986).
  • Peterfy M, Mao HZ, Doolittle MH: The cld mutation: narrowing the critical chromosomal region and selecting candidate genes. Mamm. Genome 17, 1013–1024 (2006).
  • Cefalu AB, Noto D, Arpi ML et al.: Novel LMF1 nonsense mutation in a patient with severe hypertriglyceridemia. J. Clin. Endocrin. Metab. 94, 4584–4590 (2009).
  • Doolittle MH, Neher SB, Ben­Zeev O et al.: Lipase maturation factor 1 (LMF1): Membrane topology and interaction with lipase proteins in the endoplasmic reticulum. J. Biol. Chem. 284, 33623–33633(2009). Recent study characterizing the membrane topology of LMF1, demonstrating the domain structure of this lipase-specific chaperone. It also demonstrates, for the first time, that lipases in the ER physically associate with LMF1 and locates the binding site to a specific LMF1 domain.
  • Sonnhammer EL, Eddy SR, Durbin R: Pfam: a comprehensive database of protein domain families based on seed alignments.Proteins 28, 405–420 (1997).
  • Molinari M, Eriksson KK, Calanca V et al.: Contrasting functions of calreticulin and calnexin in glycoprotein folding and ER quality control. Mol. Cell 13, 125–135 (2004).
  • Molinari M, Helenius A: Chaperone selection during glycoprotein translocation into the endoplasmic reticulum. Science 288, 331–333 (2000).
  • Lookene A, Zhang L, Hultin M, Olivecrona G: Rapid subunit exchange in dimeric lipoprotein lipase and properties of the inactive monomer. J. Biol. Chem. 279, 49964–49972 (2004).
  • Lookene A, Zhang L, Tougu V, Olivecrona G: 1,1´­bis(anilino)­4­,4´­bis(naphtalene)­8,8´­ disulfonate acts as an inhibitor of lipoprotein lipase and competes for binding with apolipoprotein CII. J. Biol. Chem. 278, 37183–37194 (2003).
  • Osibow K, Frank S, Malli R, Zechner R, Graier WF: Mitochondria maintain maturation and secretion of lipoprotein lipase in the endoplasmic reticulum. Biochem. J. 396, 173–182 (2006).
  • Rozema D, Gellman SH: Artificial chaperone­ assisted refolding of denatured­reduced lysozyme: modulation of the competition between renaturation and aggregation.Biochemistry 35, 15760–15771 (1996).
  • Chevet E, Wong HN, Gerber D et al.: Phosphorylation by CK2 and MAPK enhances calnexin association with ribosomes.Embo. J. 18, 3655–3666 (1999).
  • Ritter C, Quirin K, Kowarik M, Helenius A: Minor folding defects trigger local modification of glycoproteins by the ER folding sensor GT. Embo. J. 24, 1730–1738 (2005).
  • Taylor SC, Ferguson AD, Bergeron JJ, Thomas DY: The ER protein folding sensor UDP­glucose glycoprotein glucosyltransferase modifies substrates distant to local changes in glycoprotein conformation. Nat. Struct. Mol. Biol. 11, 128–134 (2004).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.