62
Views
6
CrossRef citations to date
0
Altmetric
Reviews

Role of electronegative LDL and its associated antibodies in the pathogenesis of atherosclerosis

, &
Pages 719-729 | Published online: 18 Jan 2017

Bibliography

  • Gersh BJ, Sliwa K, Mayosi BM, Yusuf S: Novel therapeutic concepts: the epidemic of cardiovascular disease in the developing world: global implications. Eur. Heart J. 31(6), 642–648 (2010).
  • Loscalzo J: Molecular Mechanisms of Atherosclerosis. Taylor & Francis, UK and NY, USA (2005).
  • Hansson GK, Libby P: The immune response in atherosclerosis: a double-edged sword. Nat. Ver. Immunol. 6(7), 508–519 (2006).
  • Halvorsen B, Otterdal K, Dahl TB et al.: Atherosclerotic plaque stability – what determines the fate of a plaque? Prog. Cardiovasc. Dis. 51(3), 183–194 (2008).
  • Insull W Jr: The pathology of atherosclerosis: plaque development and plaque responses to medical treatment. Am. J. Med. 122(1A), 3–14 (2009).
  • De Spirito M, Brunelli R, Mei G et al.: Low density lipoprotein aged in plasma forms clusters resembling subendothelial droplets: aggregation via surface sites. Biophys. J. 9(11), 4239–4247 (2006).
  • Tabas I, Williams KJ, Borén J: Subendothelial lipoprotein retention as the initiating process in atherosclerosis: update and therapeutic implications. Circulation 116(16), 1832–1844 (2007).
  • Prassl R, Laggner P: Molecular structure of low density lipoprotein: current status and future challenges. Eur. Biophys. J. 38(2), 145–158 (2009).
  • Hevonoja T, Pentikainen MO, Hyvonen MT, Kovanen PT, Ala-Korpela M: Structure of low density lipoprotein (LDL) particles: basis for understanding molecular changes in modified LDL. Biochim. Biophys. Acta 1488(3), 189–210 (2000).
  • Kovanen PT, Pentikäinen MO: Circulating lipoproteins as proinflammatory and anti-inflammatory particles in atherogenesis. Curr. Opin. Lipidol. 14(5), 411–419 (2003).
  • Faulin TES, Garcia MCC, Abdalla DSP: Recent advances on detection of modified forms of low-density lipoproteins. Recent Pat. Endoc. Metab. Imm. Drug Disc. 3, 28–34 (2009).
  • Tao JL, Ruan XZ, Li H et al.: Endoplasmic reticulum stress is involved in acetylated low-density lipoprotein induced apoptosis in THP-1 differentiated macrophages. Chin. Med. J. 122(15), 1794–1799 (2009).
  • Qin C, Nagao T, Grosheva I, Maxfield FR, Pierini LM: Elevated plasma membrane cholesterol content alters macrophage signaling and function. Arterioscler. Thromb. Vasc. Biol. 26(2), 372–378 (2006).
  • Parthasarathy S, Raghavamenon A, Garelnabi MO, Santanam N: Oxidized low-density lipoprotein. Methods Mol. Biol. 610, 403–417 (2010).
  • Sigala F, Kotsinas A, Savari P et al.: Oxidized LDL in human carotid plaques is related to symptomatic carotid disease and lesion instability. J. Vasc. Surg. 52(3), 704–713 (2010).
  • Holvoet P, Jenny NS, Schreiner PJ, Tracy RP, Jacobs DR: Multi-Ethnic Study of Atherosclerosis. The relationship between oxidized LDL and other cardiovascular risk factors and subclinical CVD in different ethnic groups: the Multi-Ethnic Study of Atherosclerosis (MESA). Atherosclerosis 194(1), 245–252 (2007).
  • Meisinger C, Baumert J, Khuseyinova N, Loewel H, Koenig W: Plasma oxidized low-density lipoprotein, a strong predictor for acute coronary heart disease events in apparently healthy, middle-aged men from the general population. Circulation 112(5), 651–657 (2005).
  • Uno M, Harada M, Takimoto O et al.: Elevation of plasma oxidized LDL in acute stroke patients is associated with ischemic lesions depicted by DWI and predictive of infarct enlargement. Neurol. Res. 27(1), 94–102 (2005).
  • Stocker R, Keaney JR: Role of oxidative modifications in atherosclerosis. Physiol. Rev. 84(4), 1381–1478 (2004).
  • Malle E, Marsche G, Arnhold J, Davies MJ: Modification of low-density lipoprotein by myeloperoxidase-derived oxidants and reagent hypochlorous acid. Biochim. Biophys. Acta 1761(4), 392–415 (2006).
  • Matsuura E, Hughes GR, Khamashta MA: Oxidation of LDL and its clinical implication. Autoimmun. Rev. 7(7), 558–566 (2008).
  • Annangudi SP, Deng Y, Gu X, Zhang W, Crabb JW, Salomon RG: Low-density lipoprotein has an enormous capacity to bind (E)-4-hydroxynon-2-enal (HNE): detection and characterization of lysyl and histidyl adducts containing multiple molecules of HNE. Chem. Res. Toxicol. 21(7), 1384–1395 (2008).
  • Leonarduzzi G, Chiarpotto E, Biasi F, Poli G: 4-hydroxynonenal and cholesterol oxidation products in atherosclerosis. Mol. Nutr. Food Res. 49(11), 1044–1049 (2005).
  • Viigimaa M, Abina J, Zemtsovskaya G et al.: Malondialdehyde-modified low-density lipoproteins as biomarker for atherosclerosis. Blood Press. 19(3), 164–168 (2010).
  • Asci G, Basci A, Shah SV et al.: Carbamylated low-density lipoprotein induces proliferation and increases adhesion molecule expression of human coronary artery smooth muscle cells. Nephrology 13(6), 480–486 (2008).
  • Shah SV, Apostolov EO, Ok E, Basnakian AG: Novel mechanisms in accelerated atherosclerosis in kidney disease. J. Ren. Nutr. 18(1), 65–69 (2008).
  • Ok E, Basnakian AG, Apostolov EO, Barri YM, Shah SV: Carbamylated low-density lipoprotein induces death of endothelial cells: a link to atherosclerosis in patients with kidney disease. Kidney Int. 68(1), 173–178 (2005).
  • Wang Z, Nicholls SJ, Rodriguez ER et al.: Protein carbamylation links inflammation, smoking, uremia and atherogenesis. Nat. Med. 13(10), 1176–1184 (2007).
  • Brown BE, Rashid I, Van Reyk DM, Davies MJ: Glycation of low-density lipoprotein results in the time-dependent accumulation of cholesteryl esters and apolipoprotein B-100 protein in primary human monocyte-derived macrophages. FEBS J. 274(6), 1530–1541 (2007).
  • Younis N, Sharma R, Soran H, Charlton-Menys V, Elseweidy M, Durrington PN: Glycation as an atherogenic modification of LDL. Curr. Opin. Lipidol. 19(4), 378–384 (2008).
  • Basta G, Schmidt AM, De Caterina R: Advanced glycation end products and vascular inflammation: implications for accelerated atherosclerosis in diabetes. Cardiovasc. Res. 63(4), 582–592 (2004).
  • Hodgkinson CP, Laxton RC, Patel K, Ye S: Advanced glycation end-product of low density lipoprotein activates the Toll-like 4 receptor pathway implications for diabetic atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 28(12), 2275–2281 (2008).
  • Avogaro P, Bittolon-Bon G, Cazzolato G: Presence of a modified low density lipoprotein in humans. Arteriosclerosis 8(1), 79–87 (1988).
  • Yang CY, Raya JL, Chen HH et al.: Isolation, characterization, and functional assessment of oxidatively modified subfractions of circulating low-density lipoproteins. Arterioscler. Thromb. Vasc. Biol. 23(6), 1083–1090 (2003).
  • Abe Y, Fornage M, Yang CY et al.: L5, the most electronegative subfraction of plasma LDL, induces endothelial vascular cell adhesion molecule 1 and CXC chemokines, which mediate mononuclear leukocyte adhesion. Atherosclerosis 192(1), 56–66 (2007).
  • Harkewicz R, Hartvigsen K, Almazan F, Dennis EA, Witztum JL, Miller YI: Cholesteryl ester hydroperoxides are biologically active components of minimally oxidized low density lipoprotein. J. Biol. Chem. 283(16), 10241–10251 (2008).
  • Benz DJ, Mol M, Ezaki M et al.: Enhanced levels of lipoperoxides in low density lipoprotein incubated with murine fibroblast expressing high levels of human 15-lipoxygenase. J. Biol. Chem. 270(10), 5191–5197 (1995).
  • Ezaki M, Witztum JL, Steinberg D: Lipoperoxides in LDL incubated with fibroblasts that overexpress 15-lipoxygenase. J. Lipid Res. 36(9), 1996–2004 (1995).
  • Levitan I, Volkov S, Subbaiah PV: Oxidized LDL: diversity, patterns of recognition, and pathophysiology. Antioxid. Redox Signal. 13(1), 39–75 (2010).
  • Sanchez-Quesada JL, Benitez S, Ordóñez-Llanos J: Electronegative low-density lipoprotein. Curr. Opin. Lipidol. 15(3), 329–335 (2004).
  • Fabjan JS, Abuja PM, Schaur RJ, Sevanian A: Hypochlorite induces the formation of LDL(-), a potentially atherogenic low density lipoprotein subspecies. FEBS Lett. 499, 69–72 (2001).
  • Asatryan L, Hamilton RT, Isas JM, Hwang J, Kayed R, Sevanian A: LDL phospholipid hydrolysis produces modified electronegative particles with an unfolded apoB-100 protein. J. Lipid Res. 46(1), 115–122 (2005).
  • Greco G, Balogh G, Brunelli R et al.: Generation in human plasma of misfolded, aggregation-prone electronegative low density lipoprotein. Biophys. J. 97(2), 628–635 (2009).
  • De Castellarnau, C, Sanchez-Quesada JL, Benítez S: Electronegative LDL from normolipemic subjects induces IL-8 and monocyte chemotactic protein secretion by human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 20(10), 2281–2287 (2000).
  • Faulin TES, Sena KCM, Telles ERA, Grosso DM, Faulin EJB, Abdalla DSP: Validation of a novel ELISA for measurement of Electronegative LDL. Clin. Chem. Lab. Med. 46(12), 1769–1775 (2008).
  • Damasceno NR, Sevanian A, Apolinario E, Oliveira JM, Fernandes I, Abdalla DSP: Detection of electronegative low density lipoprotein (LDL-) in plasma and atherosclerotic lesions by monoclonal antibody-based immunoassays. Clin. Biochem. 39(1), 28–38 (2006).
  • Benítez S, Ordóñez-Llanos J, Franco M et al.: Effect of simvastatin in familial hypercholesterolemia on the affinity of electronegative low-density lipoprotein subfractions to the low-density lipoprotein receptor. Am. J. Cardiol. 93(4), 414–420 (2004).
  • Sánchez-Quesada JL, Otal-Entraigas C, Franco M et al.: Effect of simvastatin treatment on the electronegative low-density lipoprotein present in patients with heterozygous familial hypercholesterolemia. Am. J. Cardiol. 84(6), 655–659 (1999).
  • Queiroz Mello AP, Silva IT, Oliveira AS et al.: Electronegative low-density lipoprotein is associated with dense low-density lipoprotein in subjects with different levels of cardiovascular risk. Lipids 45(7), 619–625 (2010).
  • Moro E, Zambon C, Pianetti S, Cazzolato G, Pais M, Bittolo Bon G: Electronegative low density lipoprotein subform (LDL-) is increased in Type 2 (non-insulin-dependent) microalbuminuric diabetic patients and is closely associated with LDL susceptibility to oxidation. Acta Diabetol. 35(3), 161–164 (1998).
  • Sánchez-Quesada JL, Pérez A, Caixàs A et al.: Effect of glycemic optimization on electronegative low-density lipoprotein in diabetes: relation to nonenzymatic glycosylation and oxidative modification. J. Clin. Endocrinol. Metab. 86(7), 3243–3249 (2001).
  • Apolinário E, Ferderbar S, Pereira EC et al.: Minimally modified (electronegative) LDL(-) and anti-LDL(-) autoantibodies in diabetes mellitus and impaired glucose tolerance. Int. J. Atheroscler. 1(1), 42–47 (2006).
  • Ziouzenkova O, Asatryan L, Akmal M et al.: Oxidative cross-linking of apoB100 and hemoglobin results in low density lipoprotein modification in blood. Relevance to atherogenesis caused by hemodialysis. J. Biol. Chem. 274(27), 18916–18924 (1999).
  • Lobo J, Santos F, Grosso D et al.: Electronegative LDL and lipid abnormalities in patients undergoing hemodialysis and peritoneal dialysis. Nephron Clin. Pract. 108(4), 298–304 (2008).
  • Tomasik A, Jacheć W, Skrzep-Poloczek B, Widera-Romuk E, Wodniecki J, Wojciechowska C: Circulating electronegatively charged low-density lipoprotein in patients with angiographically documented coronary artery disease. Scand. J. Clin. Lab. Invest. 63(4), 259–265 (2003).
  • Oliveira JA, Sevanian A, Rodrigues RJ, Apolinario E, Abdalla DSP: Minimally modified electronegative LDL and its autoantibodies in acute and chronic coronary syndromes. Clin. Biochem. 39(7), 708–714 (2006).
  • ▪ Proposes that electronegative LDL, or LDL(-), and anti-LDL(-) autoantibodies may be useful markers to follow patients at a high risk for coronary events.
  • Benítez S, Sanchez-Quesada JL, Lucero L et al.: Changes in low-density lipoprotein electronegativity and oxidizability after aerobic exercise are related to the increase in associated non-esterified fatty acids. Atherosclerosis 160(1), 223–232 (2002).
  • Benítez S, Villegas V, Bancells C et al.: Impaired binding affinity of electronegative low-density lipoprotein (LDL) to the LDL receptor is related to nonesterified fatty acids and lysophosphatidylcholine content. Biochemistry 43(50), 15863–15872 (2004).
  • Goldstein JL, Brown MS: The LDL receptor. Arterioscler. Thromb. Vasc. Biol. 29(4), 431–438 (2009).
  • Blanco FJ, Villegas S, Benítez S et al.: 2D-NMR reveals different populations of exposed lysine residues in the apoB-100 protein of electronegative and electropositive fractions of LDL particles. J. Lipid Res. 51(6), 1560–1565 (2010).
  • Esper RJ, Nordaby RA, Vilariño JO, Paragano A, Cacharrón JL, Machado RA: Endothelial dysfunction: a comprehensive appraisal. Cardiovasc. Diabetol. 5, 4 (2006).
  • Rodríguez G, Mago N, Rosa F: Role of inflammation in atherogenesis. Invest. Clin. 50(1), 109–129 (2009).
  • Benítez S, Camacho M, Bancells C, Vila L, Sanchez-Quesada JL, Ordóñez-Llanos J: Wide proinflammatory effect of electronegative low-density lipoprotein on human endothelial cells assayed by a protein array. Biochim. Biophys. Acta 1761(9), 1014–1021 (2006).
  • De Castellarnau C, Bancells C, Benitez S, Reina M, Ordóñez-Llanos J, Sanchez-Quesada JL: Atherogenic and inflammatory profile of human arterial endothelial cells (HUAEC) in response to LDL subfractions. Clin. Chim. Acta 376(1), 233–236 (2007).
  • Demuth K, Myara I, Chappey B et al.: A cytotoxic electronegative LDL subfraction is present in human plasma. Arterioscler. Thromb. Vasc. Biol. 16(6), 773–783 (1996).
  • Chen CH, Jiang T, Yang JH et al.: Low-density lipoprotein in hypercholesterolemic human plasma induces vascular endothelial cell apoptosis by inhibiting fibroblast growth factor 2 transcription. Circulation 107(16), 2102–2108 (2003).
  • Chen HH, Hosken BD, Huang M et al.: Electronegative LDLs from familial hypercholesterolemic patients are physicochemically heterogeneous but uniformly proapoptotic. J. Lipid Res. 48(1), 177–184 (2007).
  • Bancells C, Benítez S, Villegas S, Jorba O, Ordóñez-Llanos J, Sánchez-Quesada JL: Novel phospholipolytic activities associated with electronegative low-density lipoprotein are involved in increased self-aggregation. Biochemistry 47(31), 8186–8194 (2008).
  • Benitez S, Camacho M, Arcelus R et al.: Increased lysophosphatidylcholine and non-esterified fatty acid content in LDL induces chemokine release in endothelial cells – relationship with electronegative LDL. Atherosclerosis 177(2), 299–305 (2004).
  • Sanchez-Quesada JL, Benitez S, Perez A et al.: The inflammatory properties of electronegative low-density lipoprotein from Type 1 diabetic patients are related to increased platelet-activating factor acetylhydrolase activity. Diabetologia 48(10), 2162–2169 (2005).
  • Ziouzenkova O, Asatryan L, Sahady D et al.: Dual roles for lipolysis and oxidation in peroxisome proliferation-activator receptor responses to electronegative low density lipoprotein. J. Biol. Chem. 278(41), 39874–39881 (2003).
  • Benítez S, Bancells C, Ordóñez-Llanos J, Sánchez-Quesada JL: Pro-inflammatory action of LDL(-) on mononuclear cells is counteracted by increased IL10 production. Biochim. Biophys. Acta 1771(5), 613–622 (2007).
  • Shashkin P, Dragulev B, Ley K: Macrophage differentiation to foam cells. Curr. Pharm. Des. 11(23), 3061–3072 (2005).
  • Bobryshev YV: Monocyte recruitment and foam cell formation in atherosclerosis. Micron 37(3), 208–222 (2006).
  • Liu J, Thewke DP, Su YR, Linton MF, Fazio S, Sinensky MS: Reduced macrophage apoptosis is associated with accelerated atherosclerosis in low-density lipoprotein receptor-null mice. Arterioscler. Thromb. Vasc. Biol. 25(1), 174–179 (2005).
  • Tabas I: Consequences and therapeutic implications of macrophage apoptosis in atherosclerosis: the importance of lesion stage and phagocytic efficiency. Arterioscler. Thromb. Vasc. Biol. 25(11), 2255–2264 (2005).
  • Strasser A, Jost PJ, Nagata S: The many roles of FAS receptor signaling in the immune system. Immunity 30(2), 180–192 (2009).
  • Pedrosa AM, Faine LA, Grosso DM, De Las Heras B, Boscá L, Abdalla DSP: Electronegative LDL induction of apoptosis in macrophages: involvement of Nrf2. Biochim. Biophys. Acta 1801(4), 430–437 (2010).
  • ▪▪ Determines the pathways and mechanisms involved in macrophages apoptosis induced by LDL(-), as well the role of Nrf2 in this process.
  • Silverstein Rl: Inflammation, atherosclerosis, and arterial thrombosis: role of the scavenger receptor CD36. Cleve. Clin. J. Med. 76, 27–30 (2009).
  • Lundberg AM, Hansson GK: Innate immune signals in atherosclerosis. Clin. Immunol. 134(1), 5–24 (2010).
  • Andersson J, Libby P, Hansson GK: Adaptive immunity and atherosclerosis. Clin. Immunol. 134(1), 33–46 (2010).
  • Chou MY, Fogelstrand L, Hartvigsen K et al.: Oxidation-specific epitopes are dominant targets of innate natural antibodies in mice and humans. J. Clin. Invest. 119(5), 1335–1349 (2009).
  • Kunjathoor VV, Febbraio M, Podrez EA et al.: Scavenger receptors class A-I/II and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J. Biol. Chem. 277(51), 49982–49988 (2002).
  • Ogura S, Kakino A, Sato Y et al.: LOX-1: multifunctional receptor underlying cardiovascular dysfunction. Circ. J. 73(11), 1993–1999 (2009).
  • Witztum JL: You are right too! J. Clin. Invest. 115(8), 2072–2075 (2005).
  • ▪ Discusses the theoretical mechanisms by which macrophage foam cells could be generated and the receptors involved.
  • van Berkel TJ, Out R, Hoekstra M, Kuiper J, Biessen E, van Eck M: Scavenger receptors: friend or foe in atherosclerosis? Curr. Opin. Lipidol. 16(5), 525–535 (2005).
  • Yoshida H, Quehenberger O, Kondratenko N, Green S, Steinberg D: Minimally oxidized low-density lipoprotein increases expression of scavenger receptor A, CD36, and macrosialin in resident mouse peritoneal macrophages. Arterioscler. Thromb. Vasc. Biol. 18(5), 794–802 (1998).
  • Lu J, Yang JH, Burns AR et al.: Mediation of electronegative low-density lipoprotein signaling by LOX-1: a possible mechanism of endothelial apoptosis. Circ. Res. 104(5), 619–627 (2009).
  • Miller YI, Viriyakosol S, Binder CJ, Feramisco JR, Kirkland TN, Witztum JL: Minimally modified LDL binds to CD14, induces macrophage spreading via TLR4/MD-2, and inhibits phagocytosis of apoptotic cells. J. Biol. Chem. 278(3), 1561–1568 (2003).
  • ▪▪ Demonstrates for the first time that CD14 and Toll-like recepotr 4/MD-2 are involved in minimally modified LDL effects.
  • Miller YI, Viriyakosol S, Worrall DS, Boullier A, Butler S, Witztum JL: Toll-like receptor 4-dependent and -independent cytokine secretion induced by minimally oxidized low-density lipoprotein in macrophages. Arterioscler. Thromb. Vasc. Biol. 25(6), 1213–1219 (2005).
  • Choi SH, Harkewicz R, Lee JH et al.: Lipoprotein accumulation in macrophages via Toll-like receptor-4-dependent fluid phase uptake. Circ. Res. 104(12), 1355–1363 (2009).
  • Mullick AE, Tobias OS, Curtiss LK: Toll-like receptors and atherosclerosis: key contributors in disease and health? Immunol. Res. 34(3), 193–209 (2006).
  • Miller YI: Toll-like receptors and atherosclerosis: oxidized LDL as an endogenous Toll-like receptor ligand. Future Cardiol. 1(6), 785–792 (2005).
  • Milioti N, Bermudez-Fajardo A, Penichet ML, Oviedo-Orta E: Antigeninduced immunomodulation in the pathogenesis of atherosclerosis. Clin. Dev. Immunol. 7, 235–239 (2008).
  • Virella G, Thorpe SR, Alderson NL: Definition of the immunogenic forms of modified human LDL recognized by human autoantibodies and by rabbit hyperimmune antibodies. J. Lipid. Res. 45(10), 1859–1867 (2004).
  • Mironova MA, Klein RL, Virella GT, Lopes-Virella MF: Anti-modified LDL antibodies, LDL-containing immune complexes, and susceptibility of LDL to in vitro oxidation in patients with Type 2 diabetes. Diabetes 49(6), 1033–1041 (2000).
  • Burut DF, Karim Y, Ferns GA: The role of immune complexes in atherogenesis. Angiology 61(7), 679–689 (2010).
  • Van Leeuwen M, Damoiseaux J, Duijvestijna A, Tervaert JW: The therapeutic potential of targeting B cells and anti-oxLDL antibodies in atherosclerosis. Autoimm. Rev. 9(1), 53–57 (2009).
  • Stoll G, Bendszus M: Inflammation and atherosclerosis: novel insights into plaque formation and destabilization. Stroke 37(7), 1923–1932 (2006).
  • Packard RR, Lichtman AH, Libby P: Innate and adaptive immunity in atherosclerosis. Semin. Immunopathol. 31(1), 5–22 (2009).
  • Siqueira AA, Osiro K, Hirai AT, Abdalla DSP, Ferreira SRG: Antibodies against charged subfractions of LDLs are associated with disturbed ankle–brachial index and cardiovascular risk factors in a Japanese–Brazilian population with high prevalence of dislipidemias. Int. J. Atheroscl. 2(1), 68–74 (2007).
  • Zhang B, Matsunaga A, Rainwater DL et al.: Effects of Rosuvastatin on Electronegative LDL as Characterized by Capillary Isotachophoresis: the ROSARY study. J. Lipid Res. 50(9), 1832–1841 (2008).
  • Zhang B, Miura S, Yanagi D et al.: Reduction of charge-modified LDL by statin therapy in patients with CHD or CHD risk factors and elevated LDL-C levels: the SPECIAL Study. Atherosclerosis 201(2), 353–359 (2008).
  • Mafra D, Santos FR, Lobo JC et al.: Alpha-tocopherol supplementation decreases electronegative low-density lipoprotein concentration [LDL(-)] in haemodialysis patients. Nephrol. Dial. Transplant. 24(5), 1587–1592 (2009).
  • Teixeira Damasceno NR, Apolinário E, Dias Flauzino F, Fernandes I, Abdalla DSP: Soy isoflavones reduce electronegative low-density lipoprotein (LDL(-)) and anti-LDL(-) autoantibodies in experimental atherosclerosis. Eur. J. Nutr. 46(3), 125–132 (2007).
  • Natella F, Fidale M, Tubaro F, Ursini F, Scaccini C: Selenium supplementation prevents the increase in atherogenic electronegative LDL (LDL minus) in the postprandial phase. Nutr. Metab. Cardiovasc. Dis. 17(9), 649–656 (2007).
  • Shi GP: Immunomodulation of vascular diseases: atherosclerosis and autoimmunity. Eur J. Vasc. Endovasc. Surg. 39(4), 485–494 (2010).
  • Hansson GK, Nilsson J: Vaccination against atherosclerosis? Induction of atheroprotective immunity. Semin. Immunopathol. 31(1), 95–101 (2009).
  • Van Puijvelde GH, Van ES T, Habets KL, Hauer AD, Van Berkel TJ, Kuiper J: A vaccine against atherosclerosis: myth or reality? Future Cardiol. 4(2), 125–133 (2008).
  • Asgary S, Saberi SA, Azampanah S: Effect of immunization against ox-LDL with two different antigens on formation and development of atherosclerosis. Lipids Health Dis. 24, 6–32 (2007).
  • Habets KL, Van Puijvelde GH, Van Duivenvoorde LM et al.: Vaccination using oxidized low-density lipoprotein-pulsed dendritic cells reduces atherosclerosis in LDL receptor-deficient mice. Cardiovasc. Res. 85(3), 622–630 (2010).
  • ▪ Indicates that vaccination with oxidized LDL-pulsed mature dendritic cells provides a novel strategy for the immunomodulation of atherosclerosis.
  • Chyu KY, Zhao X, Reyes OS et al.: Immunization using an Apo B-100 related epitope reduces atherosclerosis and plaque inflammation in hypercholesterolemic apo E (-/-) mice. Biochem. Biophys. Res. Commun. 338(4), 1982–1989 (2005).
  • Nilsson J, Fredrikson GN, Björkbacka H, Chyu KY, Shah PK: Vaccines modulating lipoprotein autoimmunity as a possible future therapy for cardiovascular disease. J. Intern. Med. 266 (3), 221–231 (2009).
  • De Carvalho JF, Pereira RM, Shoenfeld Y: Vaccination for atherosclerosis. Clin. Rev. Allergy Immunol. 38(2–3), 135–140 (2010).
  • Schiopu A, Bengtsson J, Söderberg I et al.: Recombinant human antibodies against aldehyde-modified apolipoprotein B-100 peptide sequences inhibit atherosclerosis. Circulation 110(14), 2047–2052 (2004).
  • Faria-Neto JR, Chyu KY, Li X et al.: Passive immunization with monoclonal IgM antibodies against phosphorylcholine reduces accelerated vein graft atherosclerosis in apolipoprotein E-null mice. Atherosclerosis 189(1), 83–90 (2006).
  • Grosso DM, Ferderbar S, Wanschel AC, Krieger MH, Higushi ML, Abdalla DSP: Antibodies against electronegative LDL inhibit atherosclerosis in LDLr-1- mice. Braz. J. Med. Biol. Res. 41(12), 1086–1092 (2008).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.