295
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Lipid–protein interactions in exocytotic release of hormones and neurotransmitters

, &
Pages 747-761 | Published online: 18 Jan 2017

Bibliography

  • Kinnunen PK, Holopainen JM: Mechanisms of initiation of membrane fusion: role of lipids. Biosci.Rep. 20(6), 465–482 (2000).
  • Kozlovsky Y, Chernomordik LV: Lipid intermediates in membrane fusion: formation, structure, and decay of hemifusion diaphragm. Biophys.J.83, 2635–2651 (2002).
  • ▪ Reviews the stalk formation theory, supporting it with mathematical models.
  • Lang T, Halemani ND, Rammner B: Interplay between lipids and the proteinaceous membrane fusion machinery. Prog.LipidRes.47, 461–469 (2008).
  • ▪ Deals with protein–lipid interplay during membrane fusion
  • Han X, Wang C-T, Bai J, Chapman ER, Jackson MB: Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 304, 289–292 (2004).
  • Papahadjopoulos D, Hui S, Vail WJ, Poste G: Studies on membrane fusion. I. Interactions of pure phospholipid membranes and the effect of myristic acid, lysolecithin, proteins and dimethylsulfoxide. Biochim.Biophys.Acta 448(2), 254–264 (1976).
  • Vogel SS, Chernomordik LV, Zimmerberg J: Calcium-triggered fusion of exocytotic granules requires proteins in only one membrane. J.Biol.Chem.267(36), 25640–25643 (1992).
  • Rohrbough J, Broadie K: Lipid regulation of the synaptic vesicle cycle. NatureRev. Neurosci.6, 139–150 (2005).
  • ▪ Discusses lipid regulation of the synaptic vesicle cycle; the article also includes a section about lipids in the endocytic cycle.
  • Donaldson JG: Phospholipase D in endocytosis and endosomal recycling pathways. Biochim.Biophys.Acta1791(9), 845–849 (2009).
  • Wickner W: Membrane fusion: five lipids, four SNAREs, three chaperones, two nucleotides, and a Rab, all dancing in a ring on yeast vacuoles. Annu.Rev.CellDev.Biol. 26, 115–136 (2010).
  • Lippincott-Schwartz J, Phair RD: Lipids and cholesterol as regulators of traffic in the endomembrane system. Annu.Rev.Biophys. 39, 559–578 (2010).
  • Jahn R, Scheller RD: SNAREs – engines for membrane fusion. Nat.Rev.Mol.CellBiol. 7(9), 631–643 (2006).
  • ▪ Extensively reviews SNAP receptor proteins.
  • Hong W: Snares and traffic. Biochim.Biophys. Acta1744(3), 493–517 (2005).
  • Söllner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE: A protein assembly–disassembly pathway invitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 75(3), 409–418 (1993).
  • Fasshauer D, Sutton RB, Brunger AT, Jahn R: Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q- and R-snares. Proc.NatlAcad.Sci.USA 95(26), 15781–15786 (1998).
  • Chamberlain LH, Burgoyne RD, Gould GW: Snare proteins are highly enriched in lipid rafts in PC12 cells: implications for the spatial control of exocytosis. Proc.NatlAcad. Sci.USA98(10), 5619–5624 (2001).
  • Lang T, Bruns D, Wenzel Detal.: SNAREs are concentrated in cholesterol-dependent clusters that define docking and fusion sites for exocytosis. EMBOJ.20(9), 2202–2213 (2001).
  • Lopez-Font I, Torregrosa-Hetland CJ, Villanueva J, Gutierrez LM: T-SNARE cluster organization and dynamics in chromaffin cells. J.Neurochem. 114(6), 1550–1556 (2010).
  • Goncalves PP, Stenovec M, Chowdhury HH, Grilc S, Kreft M, Zorec R: Prolactin secretion sites contain syntaxin-1 and differ from ganglioside monosialic acid rafts in rat lactotrophs. Endocrinology149(10), 4948–4957 (2008).
  • Chernomordik LV, Kozlov MM: Protein–lipid interplay in fusion and fission of biological membranes. Annu.Rev.Biochem. 72, 175–207 (2003).
  • Heuser JE, Reese TS: Evidence for recycling of synaptic vesicle membrane during transmitter release at the frog neuromuscular junction. J.Cell.Biol.57(2), 315–344 (1973).
  • Ceccarelli B, Hurlbut WP, Mauro A: Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J.Cell. Biol.57(2), 499–524 (1973).
  • Vardjan N, Stenovec M, Jorgacevski J, Kreft M, Zorec R: Subnanometer fusion pores in spontaneous exocytosis of peptidergic vesicles. J.Neurosci.27(17), 4737–4746 (2007).
  • ▪ Demonstrates that at transient openings, the fusion pore can be in the subnanometer range.
  • Wiederhold K, Fasshauer D: Is assembly of the SNARE complex enough to fuel membrane fusion? J.Biol.Chem.284(19), 13143–13152 (2009).
  • Chen X, Arac D, Wang TM, Gilpin CJ, Zimmerberg J, Rizo J: SNARE-mediated lipid mixing depends on the physical state of the vesicles. Biophys.J.90(6), 2062–2074 (2006).
  • Coorssen JR, Blank PS, Albertorio Fetal.: Regulated secretion: SNARE density, vesicle fusion and calcium dependence. J.Cell.Sci. 116(Pt 10), 2087–2097 (2003).
  • Dennison SM, Bowen ME, Brunger AT, Lentz BR: Neuronal snares do not trigger fusion between synthetic membranes but do promote PEG-mediated membrane fusion. Biophys.J.90(5), 1661–1675 (2006).
  • Williams D, Vicogne J, Zaitseva I, Mclaughlin S, Pessin JE: Evidence that electrostatic interactions between vesicleassociated membrane protein 2 and acidic phospholipids may modulate the fusion of transport vesicles with the plasma membrane. Mol.Biol.Cell20(23), 4910–4919 (2009).
  • Lam AD, Tryoen-Toth P, Tsai B, Vitale N, Stuenkel EL: SNARE-catalyzed fusion events are regulated by syntaxin1a–lipid interactions. Mol.Biol.Cell19(2), 485–497 (2008).
  • An SJ, Grabner CP, Zenisek D: Real-time visualization of complexin during single exocytic events. Nat.Neurosci.13(5), 577–583 (2010).
  • Jahn R, Lang T, Südhof T: Membrane fusion. Cell112(4), 519–533 (2003).
  • Chapman ER: Synaptotagmin: a Ca2+ sensor that triggers exocytosis? Nat.Rev.Mol.Cell Biol.3(7), 498–508 (2002).
  • Reim K, Mansour M, Varoqueaux Fetal.: Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell 104(1), 71–81 (2001).
  • Cai H, Reim K, Varoqueaux Fetal.: Complexin II plays a positive role in Ca2+-triggered exocytosis by facilitating vesicle priming. Proc.NatlAcad.Sci.USA 105(49), 19538–19543 (2008).
  • Rickman C, Jimenez JL, Graham MEetal.: Conserved prefusion protein assembly in regulated exocytosis. Mol.Biol.Cell17(1), 283–294 (2006).
  • Südhof TC, Jahn R: Membrane fusion and exocytosis. 68, 863–911 (1999).
  • Toonen RF, Verhage M: Vesicle trafficking: pleasure and pain from SM genes. 13(4), 177–186 (2003).
  • Verhage M, Maia AS, Plomp JJetal.: Synaptic assembly of the brain in the absence of neurotransmitter secretion. 287, 864–869 (2000).
  • Dulubova I, Sugita S, Hill Setal.: A conformational switch in syntaxin during exocytosis: role of Munc18. EMBOJ.18(16), 4372–4382 (1999).
  • Rickman C, Medine CN, Bergmann A, Duncan RR: Functionally and spatially distinct modes of Munc18-syntaxin 1 interaction. J.Biol.Chem.282(16), 12097–12103 (2007).
  • Dulubova I, Mikhail K, Siqi L, Huryeva I, Südhof TC, Rizo J: Munc18–1 binds directly to the neuronal snare complex. Proc.Natl Acad.Sci.USA104(8), 2697–2702 (2007).
  • Burgoyne RD, Barclay JW, Ciufo LF, Graham ME, Handley MTW, Morgan A: The functions of Munc18–1 in regulated exocytosis. Ann.NYAcad.Sci.1152, 76–86 (2009).
  • Richmond JE, Weimer RM, Jorgensen EM: An open form of syntaxin bypasses the requirement for unc-13 in vesicle priming. Nature412, 338–341 (2001).
  • Connell E, Darios F, Broersen Ketal.: Mechanism of arachidonic acid action on syntaxin–Munc18. EMBORep.8(4), 414–419 (2007).
  • ▪ Explains the function of arachidonic acid in regulated exocytosis.
  • Camoletto PG, Vara H, Morando Letal.: Synaptic vesicle docking: sphingosine regulates syntaxin1 interaction with Munc18. PLoSOne4(4), E5310 (2009).
  • Hata Y, Slaughter CA, Südhof TC: Synaptic vesicle fusion complex contains unc-18 homologue bound to syntaxin. Nature 366(6453), 347–351 (1993).
  • Wu MN, Littleton TJ, Bhat MA, Prokop A, Bellen HJ: Rop, the Drosophila sec1 homolog, interacts with syntaxin and regulates neurotransmitter release in a dosage-dependent manner.EMBOJ. 17(1), 127–139 (1998).
  • Arunachalam L, Han L, Tassew NGetal.: Munc18–1 is critical for plasma membrane localization of syntaxin1 but not of SNAP-25 in PC12 cells. Mol.Biol.Cell19(2), 722–734 (2008).
  • Rizo J, Chen X, Arac D: Unraveling the mechanisms of synaptotagmin and SNARE function in neurotransmitter release. Trends CellBiol.16(7), 339–350 (2006).
  • Grote E, Carr CM, Novick PJ: Ordering the final events in yeast exocytosis. J.CellBiol. 151(2), 439–452 (2000).
  • Graham ME, Handley MT, Barclay JWetal.: A gain-of-function mutant of Munc18–1 stimulates secretory granule recruitment and exocytosis and reveals a direct interaction of Munc18–1 with Rab3. Biochem.J.409(2), 407–416 (2008).
  • Van Weering Jr, Toonen Rf, Verhage M: The role of Rab3a in secretory vesicle docking requires association/dissociation of guanidine phosphates and Munc18–1. PLoSONE2(7), E616 (2007).
  • Zhai Rg, Vardinon-Friedman H, Cases-Langhoff Cetal.: Assembling the presynaptic active zone: a characterization of an active zone precursor vesicle. Neuron 29, 131–143 (2001).
  • Rizo J, Rosenmund C: Synaptic vesicle fusion. Nat.Struct.Mol.Biol.15(7), 665–674 (2008).
  • Varoqueaux F, Sigler A, Rhee Jetal.: Total arrest of spontaneous and evoked synaptic transmission but normal synaptogenesis in the absence of Munc13-mediated vesicle priming. Proc.NatlAcad.Sci.USA 99(13), 9037–9042 (2002).
  • Rosenmund C, Rettigy J, Brose N: Molecular mechanisms of active zone function. Curr.Opin.Neurobiol. 13, 509–519 (2003).
  • Betz A, Okamoto M, Benseler F, Brose N: Direct interaction of the rat unc-13 homologue Munc13–1 with then terminus of syntaxin. J.Biol.Chem.272(4), 2520–2526 (1997).
  • Guan R, Dai H, Rizo J: Binding of the Munc13–1 Mun domain to membrane-anchored snare complexes. Biochemistry 47, 1474–1481 (2008).
  • Bauer CS, Woolley RJ, Teschemacher AG, Seward EP: Potentiation of exocytosis by phospholipase C-coupled G-protein-coupled receptors requires the priming protein Munc13–1. J.Neurosci.27(1), 212–219 (2007).
  • Brose N, Rosenmund C: Move over protein kinase C, you’ve got company: alternative cellular effectors of diacylglycerol and phorbol esters. J.Cell.Sci.115(Pt 23), 4399–4411 (2002).
  • ▪ Explains diacylglycerol signal pathways and function of diacylglycerol in regulated exocytosis.
  • Betz A, Ashery U, Rickmann Metal.: Munc13–1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron21(1), 123–136 (1998).
  • Rhee J, Betz A, Pyott Setal.: b phorbol ester- and diacylglycerol-induced augmentation of transmitter release is mediated by Munc13s and not by PKCs. Cell 108(1), 121–133 (2002).
  • Rosenmund C, Sigler A, Augustin I, Reim K, Brose N, Rhee J: Differential control of vesicle priming and short-term plasticity by Munc13 isoforms. Neuron33(3), 411–424 (2002).
  • Betz A, Thakur P, Junge Hetal.: Functional interaction of the active zone proteins Munc13–1 and RIM1 in synaptic vesicle priming. Neuron30(1), 183–196 (2001).
  • Wang Y, Sugita S, Sudhof TC: The RIM/ NIM family of neuronal C2 domain proteins. Interactions with Rab3 and a new class of src homology 3 domain proteins. J.Biol.Chem. 275(26), 20033–20044 (2000).
  • Südhof TC: The synaptic vesicle cycle. 27, 509–547 (2004).
  • Kaeser PS, Südhof TC: RIM function in short- and long-term synaptic plasticity. Biochem.Soc.Trans.33(Pt 6), 1345–1349 (2005).
  • Schoch S, Castillo PE, Jo Tetal.: RIM1a forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature415(6869), 321–326 (2002).
  • Dulubova I, Lou X, Lu Jetal.: A Munc13/ RIM/Rab3 tripartite complex: from priming to plasticity? EMBOJ.24(16), 2839–2850 (2005).
  • Powell Cm, Schoch S, Monteggia Letal.: The presynaptic active zone protein RIM1a is critical for normal learning and memory. Neuron42(1), 143–153 (2004).
  • Corvera S, D’arrigo A, Stenmark H: Phosphoinositides in membrane traffic. Curr. Opin.CellBiol.11(4), 460–465 (1999).
  • Poccia D, Larijani B: Phosphatidylinositol metabolism and membrane fusion. Biochem. J.418(2), 233–246 (2009).
  • ▪ Reviews phosphatidylinositol metabolism and explains the role of phosphatidylinositol-4,5-biphosphate in regulated exocytosis.
  • Martin TF: Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu.Rev.Cell Dev.Biol.14, 231–264 (1998).
  • Eberhard DA, Cooper CL, Low MG, Holz RW: Evidence that the inositol phospholipids are necessary for exocytosis. Loss of inositol phospholipids and inhibition of secretion in permeabilized cells caused by a bacterial phospholipase C and removal of ATP. Biochem.J.268(1), 15–25 (1990).
  • Hammond GR, Dove SK, Nicol A, Pinxteren JA, Zicha D, Schiavo G: Elimination of plasma membrane phosphatidylinositol (4,5)-bisphosphate is required for exocytosis from mast cells. J.Cell.Sci.119(Pt 10), 2084–2094 (2006).
  • Hay JC, Fisette PL, Jenkins GHetal.: ATP-dependent inositide phosphorylation required for Ca2+-activated secretion. Nature 374(6518), 173–177 (1995).
  • Milosevic I, Sorensen JB, Lang Tetal.: Plasmalemmal phosphatidylinositol-4,5-bisphosphate level regulates the releasable vesicle pool size in chromaffin cells. J.Neurosci.25(10), 2557–2565 (2005).
  • Waselle L, Gerona RR, Vitale N, Martin TF, Bader MF, Regazzi R: Role of phosphoinositide signaling in the control of insulin exocytosis. Mol.Endocrinol.19(12), 3097–3106 (2005).
  • Pike LJ, Miller JM: Cholesterol depletion delocalizes phosphatidylinositol bisphosphate and inhibits hormone-stimulated phosphatidylinositol turnover. J.Biol.Chem. 273(35), 22298–22304 (1998).
  • Aoyagi K, Sugaya T, Umeda M, Yamamoto S, Terakawa S, Takahashi M: The activation of exocytotic sites by the formation of phosphatidylinositol 4,5-bisphosphate microdomains at syntaxin clusters. J.Biol.Chem.280(17), 17346–17352 (2005).
  • Grishanin RN, Kowalchyk JA, Klenchin VA etal.: CAPS acts at a prefusion step in dense-core vesicle exocytosis as a PIP2 binding protein. Neuron43(4), 551–562 (2004).
  • Rupnik M, Kreft M, Sikdar SKetal.: Rapid regulated dense-core vesicle exocytosis requires the CAPS protein. Proc.NatlAcad. Sci.USA97(10), 5627–5632 (2000).
  • James DJ, Khodthong C, Kowalchyk JA, Martin TF: Phosphatidylinositol 4,5-bisphosphate regulates SNARE-dependent membrane fusion. J.Cell.Biol. 182(2), 355–366 (2008).
  • Chernomordik LV, Zimmerberg J: Bending membranes to the task: structural intermediates in bilayer fusion. Curr.Opin. Struct.Biol.5(4), 541–547 (1995).
  • Melia TJ, You D, Tareste DC, Rothman JE: Lipidic antagonists to SNARE-mediated fusion. J.Biol.Chem.281(40), 29597–29605 (2006).
  • Wenk MR, De Camilli P: Protein–lipid interactions and phosphoinositide metabolism in membrane traffic: insights from vesicle recycling in nerve terminals. Proc.NatlAcad.Sci.USA101(22), 8262–8269 (2004).
  • Bootman MD, Collins TJ, Peppiatt CM etal.: Calcium signalling – an overview. Semin.CellDev.Biol.12(1), 3–10 (2001).
  • Wakelam MJ: Diacylglycerol – when is it an intracellular messenger? Biochim.Biophys. Acta1436(1–2), 117–126 (1998).
  • Churchward MA, Rogasevskaia T, Brandman DMetal.: Specific lipids supply critical negative spontaneous curvature – an essential component of native Ca2+-triggered membrane fusion. Biophys.J.94(10), 3976–3986 (2008).
  • ▪ Explores how lipids with different intrinsic shapes and curvatures affect membrane fusion.
  • Francis HW, Scott JC, Manis PB: Protein kinase C mediates potentiation of synaptic transmission by phorbol ester at parallel fibers in the dorsal cochlear nucleus. BrainRes. 951(1), 9–22 (2002).
  • Craig T, Evans G, Morgan A: Physiological regulation of Munc18/nSec1 phosphorylation on serine-313. J.Neurochem.86(6), 1450–1457 (2003).
  • Barclay JW, Craig TJ, Fisher RJetal.: Phosphorylation of Munc18 by protein kinase C regulates the kinetics of exocytosis. J.Biol.Chem.278(12), 10538–10545 (2003).
  • Wierda KD, Toonen RF, De Wit H, Brussaard AB, Verhage M: Interdependence of PKC-dependent and PKC-independent pathways for presynaptic plasticity. Neuron 54(2), 275–290 (2007).
  • Darios F, Connell E, Davletov B: Phospholipases and fatty acid signalling in exocytosis. J.Physiol.585(Pt 3), 699–704 (2007).
  • ▪ Reviews the role of phospholipases and their products in regulated exocytosis.
  • Coorssen JR: Phospholipase activation and secretion: evidence that PLA2, PLC, and PLD are not essential to exocytosis. AmJ.Physiol. 270(4 Pt 1), C1153–C1163 (1996).
  • Brown WJ, Chambers K, Doody A: Phospholipase A2 (PLA2) enzymes in membrane trafficking: mediators of membrane shape and function. Traffic4(4), 214–221 (2003).
  • Balsinde J, Winstead MV, Dennis EA: Phospholipase A2 regulation of arachidonic acid mobilization. FEBSLett.531(1), 2–6 (2002).
  • Karli UO, Schäfer T, Burger MM: Fusion of neurotransmitter vesicles with target membrane is calcium independent in a cell-free system. Proc.NatlAcad.Sci.USA 87(15), 5912–5915 (1990).
  • Rickman C, Davletov B: Arachidonic acid allows snare complex formation in the presence of Munc18. Chem.Biol.12(5), 545–553 (2005).
  • Humeau Y, Vitale N, Chasserot-Golaz S etal.: A role for phospholipase D1 in neurotransmitter release. Proc.NatlAcad. Sci.USA98(26), 15300–15305 (2001).
  • Vitale N, Caumont A, Chasserot-Golaz S etal.: Phospholipase D1: a key factor for the exocytotic machinery in neuroendocrine cells. EMBOJ.20(10), 2424–2434 (2001).
  • Zeniou-Meyer M, Zabari N, Ashery Uetal.: Phospholipase D1 production of phosphatidic acid at the plasma membrane promotes exocytosis of large dense-core granules at a late stage. J.Biol.Chem.282(30), 21746–21757 (2007).
  • Darios F, Davletov B: Omega-3 and omega-6 fatty acids stimulate cell membrane expansion by acting on syntaxin 3. Nature440(7085), 813–817 (2006).
  • ▪ Explores the role of omega-3 and omega-6 polyunsaturated fatty acids in regulated exocytosis.
  • Svennerholm L: Distribution and fatty acid composition of phosphoglycerides in normal human brain. J.LipidRes.9(5), 570–579 (1968).
  • Meloni I, Muscettola M, Raynaud Metal.: Facl4, encoding fatty acid-CoA ligase 4, is mutated in nonspecific X-linked mental retardation. Nat.Genet.30(4), 436–440 (2002).
  • Wainwright PE: Dietary essential fatty acids and brain function: a developmental perspective on mechanisms. Proc.Nutr.Soc. 61(1), 61–69 (2002).
  • Huang FD, Woodruff E, Mohrmann R, Broadie K: Rolling blackout is required for synaptic vesicle exocytosis. J.Neurosci.26(9), 2369–2379 (2006).
  • Huang FD, Matthies HJ, Speese SD, Smith MA, Broadie K: Rolling blackout, a newly identified PIP2–DAG pathway lipase required for Drosophila phototransduction. Nat.Neurosci.7(10), 1070–1078 (2004).
  • Vijayakrishnan N, Broadie K: Temperature-sensitive paralytic mutants: insights into the synaptic vesicle cycle. Biochem.Soc.Trans. 34(Pt 1), 81–87 (2006).
  • Jorgacevski J, Fosnaric M, Vardjan Netal.: Fusion pore stability of peptidergic vesicles. Mol.Membr.Biol.27(2–3), 65–80 (2010).
  • Bisogno T, Howell F, Williams Getal.: Cloning of the first sn1-DAG lipases points to the spatial and temporal regulation of endocannabinoid signaling in the brain. J.Cell.Biol.163(3), 463–468 (2003).
  • Vijayakrishnan N, Woodruff EA 3rd, Broadie K: Rolling blackout is required for bulk endocytosis in non-neuronal cells and neuronal synapses. J.Cell.Sci.122(Pt 1), 114–125 (2009).
  • Simon CG Jr, Holloway PW, Gear AR: Exchange of C(16)-ceramide between phospholipid vesicles. Biochemistry38(44), 14676–14682 (1999).
  • Venkataraman K, Futerman AH: Ceramide as a second messenger: sticky solutions to sticky problems. TrendsCellBiol.10(10), 408–412 (2000).
  • Massey JB: Interaction of ceramides with phosphatidylcholine, sphingomyelin and sphingomyelin/cholesterol bilayers. Biochim. Biophys.Acta1510(1–2), 167–184 (2001).
  • Van Blitterswijk WJ, Van Der Luit AH, Veldman RJ, Verheij M, Borst J: Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem.J.369(Pt 2), 199–211 (2003).
  • Rohrbough J, Rushton E, Palanker Letal.: Ceramidase regulates synaptic vesicle exocytosis and trafficking. J.Neurosci. 24(36), 7789–7803 (2004).
  • Brown DA, London E: Structure and function of sphingolipid- and cholesterol-rich membrane rafts. J.Biol.Chem.275(23), 17221–17224 (2000).
  • Pagano Re, Puri V, Dominguez M, Marks DL: Membrane traffic in sphingolipid storage diseases. Traffic1(11), 807–815 (2000).
  • Watanabe R, Funato K, Venkataraman K, Futerman AH, Riezman H: Sphingolipids are required for the stable membrane association of glycosylphosphatidylinositol-anchored proteins in yeast. J.Biol.Chem.277(51), 49538–49544 (2002).
  • Lahiri S, Futerman AH: The metabolism and function of sphingolipids and glycosphingolipids. Cell.Mol.LifeSci.64(17), 2270–2284 (2007).
  • Titievsky A, Titievskaya I, Pasternack M, Kaila K, Törnquist K: Sphingosine inhibits voltage-operated calcium channels in GH4C1 cells. J.Biol.Chem.273(1), 242–247 (1998).
  • Colombaioni L, Garcia-Gil M: Sphingolipid metabolites in neural signalling and function. BrainRes.BrainRes.Rev.46(3), 328–355 (2004).
  • Cuvillier O: Sphingosine in apoptosis signaling. Biochim.Biophys.Acta1585(2–3), 153–162 (2002).
  • Darios F, Wasser C, Shakirzyanova Aetal.: Sphingosine facilitates SNARE complex assembly and activates synaptic vesicle exocytosis. Neuron62(5), 683–694 (2009).
  • ▪ Demonstrates that sphingosine facilitates SNAP receptor complex assembly by activating synaptobrevin in synaptic vesicles.
  • Neher E, Marty A: Discrete changes of cell membrane capacitance observed under conditions of enhanced secretion in bovine adrenal chromaffin cells. Proc.NatlAcad. Sci.USA79(21), 6712–6716 (1982).
  • Lucero HA, Robbins PW: Lipid rafts–protein association and the regulation of protein activity. Arch.Biochem.Biophys.426(2), 208–224 (2004).
  • Silvius Jr: Role of cholesterol in lipid raft formation: lessons from lipid model systems. Biochim.Biophys.Acta1610(2), 174–183 (2003).
  • Lindner R, Naim HY: Domains in biological membranes. Exp.CellRes.315(17), 2871–2878 (2009).
  • Salaün C, James DJ, Chamberlain LH: Lipid rafts and the regulation of exocytosis. Traffic 5(4), 255–264 (2004).
  • Furber KL, Churchward MA, Rogasevskaia TP, Coorssen JR: Identifying critical components of native Ca2+-triggered membrane fusion. Integrating studies of proteins and lipids. Ann.NYAcad.Sci.1152, 121–134 (2009).
  • Churchward MA, Coorssen JR: Cholesterol, regulated exocytosis and the physiological fusion machine. Biochem.J.423(1), 1–14 (2009).
  • ▪ Reviews the roles of cholesterol in regulated exocytosis.
  • Churchward MA, Rogasevskaia T, Höfgen J, Bau J, Coorssen JR: Cholesterol facilitates the native mechanism of Ca2+-triggered membrane fusion. J.Cell.Sci.118(Pt 20), 4833–4848 (2005).
  • ▪ Identifies cholesterol as a critical component of fusion machinery.
  • Dufourc EJ: Sterols and membrane dynamics. J.Chem.Biol.1(1–4), 63–77 (2008).
  • Mitter D, Reisinger C, Hinz Betal.: The synaptophysin/synaptobrevin interaction critically depends on the cholesterol content. J.Neurochem.84(1), 35–42 (2003).
  • Wang N, Kwan C, Gong X, De Chaves E, Tse A, Tse F: Influence of cholesterol on catecholamine release from the fusion pore of large dense core chromaffin granules. J.Neurosci.30(11), 3904–3911 (2010).
  • Wasser CR, Ertunc M, Liu X, Kavalali ET: Cholesterol-dependent balance between evoked and spontaneous synaptic vesicle recycling. J.Physiol.579(Pt 2), 413–429 (2007).
  • Karten B, Vance DE, Campenot RB, Vance JE: Cholesterol accumulates in cell bodies, but is decreased in distal axons, of Niemann–Pick C1-deficient neurons. J.Neurochem.83(5), 1154–1163 (2002).
  • Karten B, Vance DE, Campenot RB, Vance JE: Trafficking of cholesterol from cell bodies to distal axons in Niemann Pick C1-deficient neurons. J.Biol.Chem.278(6), 4168–4175 (2003).
  • Vardjan N, Stenovec M, Jorgacevski J, Kreft M, Zorec R: Elementary properties of spontaneous fusion of peptidergic vesicles: fusion pore gating. J.Physiol.585(Pt 3), 655–661 (2007).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.