347
Views
31
CrossRef citations to date
0
Altmetric
Reviews

Lysosomes, cholesterol and atherosclerosis

Pages 853-865 | Published online: 18 Jan 2017

Bibliography

  • Finn AV, Nakano M, Narula J, Kolodgie FD, Virmani R: Concept of vulnerable/unstable plaque. Arterioscler. Thromb. Vasc. Biol. 30(7), 1282–1292 (2010).
  • Steinberg D: Thematic review series: the pathogenesis of atherosclerosis. An interpretive history of the cholesterol controversy: part I.J. Lipid Res. 45(9), 1583–1593 (2004). Review of the evolution of the cholesterol hypothesis of atherosclerosis.
  • Jerome WG: Advanced atherosclerotic foam cell formation has features of an acquired lysosomal storage disorder Rej. Res. 9, 245–255 (2006).
  • Goldstein JL, Ho YK, Basu SK, Brown MS: Binding sites on macrophages that mediate uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc. Natl Acad. Sci. USA 76, 333–337 (1979).
  • Goldstein J, Debose-Boyd R, Brown M: Protein sensors for membrane sterols. Cell 124, 35–46 (2006).
  • Greaves D, Gordon S: The macrophage scavenger receptor at 30 years of age: current knowledge and future challenges. J. Lipid Res. 50(Suppl.), S282–S286 (2009).
  • Woollard K, Geissmann F: Monocytes in atherosclerosis: subsets and functions.Nat. Rev. Cardiol. 7(2), 77–86 (2010).
  • Brown MS, Goldstein JL: Lipoprotein metabolism in the macrophage. Ann. Rev. Biochem. 52, 223–261 (1983).
  • Steinbrecher U, Lougheed M, Kwan W, Dirks M: Recognition of oxidized low density lipoprotein by the scavenger receptor of macrophages results from derivatization of apolipoprotein B by products of fatty acid peroxidation. J. Biol. Chem. 264, 15216–15223 (1989).
  • Buton X, Mamdouh Z, Ghosh R et al.: Unique cellular events occurring during the initial interaction of macrophages with matrixretained or methylated aggregated LDL.J. Biol. Chem. 274, 32112–32121 (1999).
  • Steinberg D, Parthasarathy S, Carew T, Khoo J, Witztum J: Beyond cholesterol, modification of low-density lipoproteins that increase its atherogenicity. N. Engl. J. Med. 320, 915–924 (1989).
  • Hoff H, Hoppe G: Structure of cholesterol-containing particles accumulating in atherosclerotic lesions and the mechanisms of their derivation. Curr. Opin. Lipidol. 6(5), 317–325 (1995).
  • Williams K, Tabas I: The response-toretention hypothesis of atherogenesis reinforced. Curr. Opin. Lipidol. 9, 471–474 (1998).
  • Rothblat GH, Rosen JM, Insull W, Yau AO, Small DM: Production of cholesteryl ester-rich anisotropic inclusions by mammalian cells in culture. Exp. Mol. Pathol. 26, 318–324 (1977).
  • Kruth H: Sequestration of aggregated low-density lipoproteins by macrophages.Curr. Opin. Lipidol. 13, 483–488 (2002).
  • Tabas I: Nonoxidative modifications of lipoproteins in atherogenesis. Ann. Rev. Nutr. 19, 123–139 (1999).
  • Tabas I: Macrophage death and defective inflammation resolution in atherosclerosis.Nat. Rev. Immunol. 10(1), 36–46 (2010).
  • Wolfbauer G, Glick JM, Minor LK, Rothblat GH: Development of the smooth muscle foam cell: uptake of macrophage lipid inclusions. Proc. Natl Acad. Sci. USA 83(20), 7760–7764 (1986).
  • Tabas I, Myers J, Innerarity T, Xu X, Arnold J, Maxfield F: The influence of particle size and multiple apoprotein E-receptor interactions on the endocytic targeting of b-VLDL in mouse.J. Cell Biol. 115, 1547–1560 (1991).
  • Kruth H, Chang J, Ifrim I, Zhang W-Y: Characterization of patocytosis: endocytosis into macrophage surface-connected compartments. Eur. J. Cell Biol. 78, 91–99 (1999).
  • Soccio R, Breslow J: Intracellular cholesterol transport. Arterioscl. Thromb. Vasc. Biol. 24, 1150–1160 (2004).
  • Ghosh S, St. Clair R, Rudel L: Mobilization of cytoplasmic CE droplets by overexpression of human macrophage cholesteryl ester hydrolase. J. Lipid Res. 44, 1883–1840 (2003).
  • Barter PJ, Rye KA: Molecular mechanisms of reverse cholesterol transport. Curr. Opin. Lipidol. 7(2), 82–87 (1996).
  • Yancey P, Bortnick A, Kellner-Weibel G, De la Liera-Moya M, Phillips M, Rothblat G: Importance of different pathways of cellular cholesterol efflux. Arterioscler. Thromb. Vasc. Biol. 23, 712–719 (2003).
  • De Duve C: The participation of lysosomes in the transformation of smooth muscle cells to foamy cells in the aorta of cholesterol fed rabbits. Acta Cardiol. Suppl. 20, 9–25 (1974).
  • Hers HG: The concept of inborn lysosomal disease. In: Lysosomes and Storage Diseases. Hers H, van Hooff F (Eds). Academic Press, NY, USA 141–171 (1973).
  • Vellodi A: Lysosomal storage disorders. Br. J. Haemotol. 128, 413–431 (2004).
  • Jerome WG, Lewis JC: Early atherogenesis in White Carneau pigeons II ultrastructural and cytochemical observations. Am. J. Pathol. 119, 210–222 (1985).
  • Fowler S, Berberian P, Shio H, Goldfischer S, Wolinsky H: Characterization of cell populations isolated from aortas of rhesus monkeys with experimental atherosclerosis.Circ. Res. 46, 520–530 (1980).
  • Miller B, Kothari H: Increased activity of lysosomal enzymes in human atherosclerotic aortas. Exp. Mol. Pathol. 10, 288–294 (1969).
  • Tardif J, Gregoire J, L’Allier P et al.: Effects of the acyl coenzyme A:cholesterol acyltransferase inhibitor avasimibe on human atherosclerotic lesions. Circulation 110, 3372–3377 (2004).
  • Nissen S, Tuzcu E, Brewer H et al.: Effect of ACAT inhibition on the progression of coronary atherosclerosis. N. Engl. J. Med. 354, 1253–1263 (2006).
  • Jerome WG, Lewis JC: Cellular dynamics in early atherosclerotic lesion progression in White Carneau pigeons. Spatial and temporal analysis of monocyte and smooth muscle invasion of the intima. Arterioscler. Thromb. Vasc. Biol. 17, 654–664 (1997).
  • Jerome WG, Lewis JC: Early atherogenesis in White Carneau pigeons. Effect of a short-term regression diet. Exp. Mol. Pathol. 53, 223–238 (1990).
  • Yancey PG, Jerome WG: Lysosomal cholesterol derived from mildly oxidized low density lipoprotein is resistant to efflux.J. Lipid Res. 42, 317–327 (2001).
  • Du H, Schiavi S, Wan N, Levine M, Witte D, Grabowski G: Reduction of atherosclerotic plaques by lysosomal acid lipase supplementation. Arterioscl. Thromb. Vasc. Biol. 24, 147–154 (2004).
  • Lingwood D, Simons K: Lipid rafts as a membrane organizing principal. Science 327, 46–50 (2010).
  • Smart EJ, Anderson RG: Alterations in membrane cholesterol that affect structure and function of caveolae. Methods Enzymol. 353, 131–139 (2002).
  • Bagnat M, Keranen S, Shevchenko A, Shevchenko A, Simons K: Lipid rafts function in biosynthetic delivery of proteins to the cell surface of yeast. Proc. Natl Acad. Sci. USA 97, 3254–3259 (2000).
  • Schroeder F, Gallegos A, Atshves BP et al.: Recent advances in membrane microdomains: rafts, caveolae, and intracellular cholesterol traficking. Exp. Biol. Med. 226, 873–890 (2001).
  • Liscum L: Niemann–Pick type C mutations cause lipid traffic jam. Traffic 1, 218–225 (2000).
  • Mukherjee S, Maxfield FR: Role of membrane organization and membrane domains in endocytic lipid trafficking. Traffic 1, 203–211 (2000).
  • Maxfield FR, Tabas I: Role of cholesterol and lipid organization in disease. Nature 438, 612–621 (2005).
  • Pichler H, Riezman H: Where sterols are required for endocytosis. Biochim. Biophys. Acta 1666, 51–61 (2004).
  • Qin C, Nagao T, Grosheva I, Maxfield FR, Pierini L: Elevated plasma membrane cholesterol content alters macrophage signaling function. Arterioscler. Thromb. Vasc. Biol. 26, (2006). Establishes that excess lysosome membrane cholesterol inhibits lysosome proton pump activity and disturbs lysosome function.
  • Cox B, Griffin E, Ullery J, Jerome W: Effects of cellular cholesterol loading on macrophage foam cell lysosome acidification. J. Lipid Res. 48, 1012–1021 (2007). Highlights the role of lysosomes in atherosclerosis by demonstrating that exogenous LAL can reduce plaque size.
  • Sando G, Rosenbaum L: Human lysosomal acid lipase/cholesterol ester hydrolase. J. Biol. Chem. 260, 15186–15193 (1985).
  • Zhang G-J, Liu H-W, Yang L, Zhong Y-G, Zheng Y-Z: Influence of membrane physical state on the lysosomal proton permeability.J. Membrane Biol. 175, 53–62 (2000).
  • Grabe M, Oster G: Regulation of organelle acidity. J. Gen. Physiol. 117, 329–343 (2001).
  • Yuan X, Li W, Olsson A, Brunk U: The toxicity to macrophages of oxidized LDL is mediated through lysosomal damage.Atherosclerosis 133, 153–161 (1997). Lysosome membrane lipid alterations can produce leakiness leading to cell death.
  • Tabas I, Seimon T, Timmins J, Li G, Lim W: Macrophage apoptosis in advanced atherosclerosis. Ann. NY Acad. Sci. 1173(Suppl. 1), E40–E45 (2009).
  • Liscum L, Sturley S: Intracellular trafficking of Niemann-Pick C proteins 1 and 2: obligate components of subcellular lipid transport.Biochim. Biophys. Acta 1685, 22–27 (2004).
  • Assmann G, Seedorf U: Acid lipase deficiency: Wolman disease and cholesteryl ester storage disease. In: The Metabolic and Molecular Bases of Inherited Disease. Scriver C, Beaudet A, Sly W, Valle D (Eds). McGraw Hill Inc., NY, USA (1995).
  • Kruth HS, Ifrim I, Chang J, Addadi L, Peri-Treves D, Zhang W-Y: Monoclonal antibody detection of plasma membrane cholesterol microdomains responsive to cholesterol trafficking. J. Lipid Res. 42, 1492–1500 (2001).
  • Ridgway N: Interactions between metabolism and intracellular distribution of cholesterol and sphingomyelin. Biochim. Biophys. Acta 1484, 129–141 (2000).
  • Witting S, Maiorano J, Davidson W: Ceramide enhances cholesterol efflux to apolipoprotein A-I by increasing the cell surface presence of ATP-binding cassette transporter A1. J. Biol. Chem. 278, 40121–40127 (2003).
  • Gomez-Munoz A, Kong J, Sahl B, Steinbrecher U: Ceramide-1-phosphate blocks apoptosis through inhibition of acid sphingomyelinase in macrophages.J. Lipid Res. 45, 99–105 (2004).
  • Mathias S, Pena L, Kolesnick R: Signal transduction of stress via ceramide.Biochem. J. 335, 465–480 (1998).
  • Feng B, Yao P, Li Y et al.: The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat. Cell Biol. 5, 781–792 (2003). First demonstration that excess sterol in the endoplasmic reticulum can induce cell death.
  • Kellner-Weibel G, Jerome W, Small D et al.: Effects of intracellular free cholesterol accumulation on macrophage viability: a model for foam cell death. Arterioscler. Thromb. Vasc. Biol. 18, 423–431 (1998).
  • Bjorkhem I, Andersson O, Diczfalusy U et al.: Atherosclerosis and sterol 27-hydroxylase: evidence for a role this enzyme in elimination of cholesterol from macrophages. Proc. Natl Acad. Sci. USA 91, 8592–8596 (1994).
  • Fu X, Menke J, Chen Y et al.: 27-Hydroxycholesterol is an endogenous ligand for liver X receptor in cholesterolloaded macrophages. J. Biol. Chem. 276, 38378–38387 (2001).
  • Szanto A, Benko S, Szatmari I et al.: Transcriptional regulation of human CYP27 integrates retinoid, peroxisome proliferationactivated receptor, and liver X receptor signaling in macrophages. Molec. Biol. Cell 24, 8154–8166 (2004).
  • Lund-Katz S, Phillips MC: High density lipoprotein structure-function and role in reverse cholesterol transport. Subcell. Biochem. 51, 183–227 (2010).
  • Ooi T, Ooi D: The atherogenic significance of an elevated plasma triglyceride level. Critical Rev. Clin. Lab. Sci. 35, 489–516 (1998).
  • Rapp J, Lespine A, Hamilton R et al.: Triglyceride-rich lipoproteins isolated by selected-affinity anti-apolipoprotein B immunosorption from human atherosclerotic plaque. Arterioscler. Thromb. 14, 1767–1774 (1994).
  • Mattsson H, Johansson H, Ottosson M, Bondjers G, Wiklund O: Expression of lipoprotein lipase mRNA and secretion in macrophages isolated from human atherosclerotic aorta. JCI 92(4), 1759–1765 (1993).
  • Mukhin D, Orekhov A, Andreeva E, Schindeler E, Smirnov V: Lipids in cells of atherosclerotic and uninvolved human aorta. III. Lipid distribution in intimal sublayers. Exp. Mol. Pathol. 54(1), 22–30 (1991).
  • Garner B, Baoutina A, Dean R, Jessup W: Regulation of serum-induced lipid accumulation in human monocyte-derived macrophages by interferon-gamma. Correlations with apolipoprotein E production, lipoprotein lipase activity and LDL receptor-related protein expression. Atherosclerosis 128(1), 47–58 (1997).
  • Kritharides L, Christian A, Stoudt G, Morel D, Rothblat G: Cholesterol metabolism and efflux in human THP-1 macrophages. Arterioscl. Thromb. Vasc. Biol. 18, 1589–1599 (1998).
  • Mahlberg F, Glick JM, Jerome WG, Rothblat GH: Metabolism of cholesteryl ester lipid droplets in a J774 macrophage foam cell model. Biochim. Biophys. Acta 1045, 291–298 (1990).
  • Snow J, Glick J, Phillips M: The phase behavior of cholesteryl esters in intracellular inclusions.J. Biol. Chem. 267(26), 18564–18572 (1992).
  • Adelman SJ, Glick JM, Phillips MC, Rothblat GH: Lipid composition and physical state effects on cellular cholesteryl ester clearance. J. Biol. Chem. 259, 13844–13850 (1984).
  • Zhao B, Fisher B, St Clair R, Rudel L, Ghosh S: Redistribution of macrophage cholesteryl ester hydrolase from cytoplasm to lipid droplets upon lipid loading. J. Lipid Res. 46, 2114–2121 (2005).
  • Chawla A, Boisvert WA, Lee C-H et al.: A PPARg–LXR–ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis. Mol. Cell 7(1), 161–171 (2001).
  • Zelcer N, Tontonoz P: Liver X receptors as integrators of metabolic and inflammatory signaling. J. Clin. Invest. 116, 607–614 (2006).
  • Saha P, Modarai B, Humphries J et al.: The monocyte/macrophage as a therapeutic target in atherosclerosis. Curr. Opin. Pharmacol. 9(2), 109–118 (2009).
  • Libby P, Okamoto Y, Rocha VZ, Folco E: Inflammation in atherosclerosis: transition from theory to practice. Circ. J. 74(2), 213–220 (2010).
  • Miller Y, Choi S, Fang L, Harkewicz R: Toll-like receptor-4 and lipoprotein accumulation in macrophages. Trends Cardiovasc. Med. 19(7), 227–232 (2009).
  • Ullery-Ricewick J, Cox B, Griffin E, Jerome W: Triglyceride alters lysosomal cholesteryl ester metabolism in cholesterylester laden macrophage foam cells. J. Lipid Res. 50, 2014–2026 (2009). Demonstrates that triglycerides can re-establish lysosome function in sterol-engorged macrophages.
  • Skarlatos SI, Dichek HL, Fojo SS, Brewer HB, Kruth HS: Absence of triglyceride c-deficient human monocyte-macrophages incubated with human very low density lipoprotein.J. Clin. Endocrinol. Metab. 76(3), 793–796 (1993). First conclusive demonstration to suggest that surface hydrolysis of triglyceride and fatty acid uptake are major routes for intracellular triglyceride accumulation in normal cells.
  • Brown R, Rader D: Lipases as modulators of atherosclerosis in murine models. Curr. Drug Targets 8(12), 1307–1319 (2007).
  • Olivecrona G, Olivecrona T: Triglyceride lipases and atherosclerosis. Curr. Opin. Lipidol. 21(5), 409–415 (2010).
  • Ruiz-Gutierrez V, Morgado N, Prada JL, Perez-Jimenez F, Muriana F: Composition of human VLDL triacylglycerols after ingestion of olive oil and high oleic sunflower oil.J. Nutr. 128(3), 570–576 (1998).
  • Jaureguiberry M, Tricerri M, Sanchez S et al.: Membrane organization and regulation of cellular cholesterol homeostasis. J. Membr. Biol. 234(3), 183–194 (2010).
  • Leekumjorn S, Cho H, Wu Y, Wright N, Sum A, Chan C: The role of fatty acid unsaturation in minimizing biophysical changes on the structure and local effects of bilayer membranes. Biochim. Biophys. Acta 1788(7), 1508–1516 (2009).
  • Singh R, Kaushik S, Wang Y et al.: Autophagy regulates lipid metabolism. Nature 458, 1131–1137 (2009).
  • Gianturco S, Bradley W: Pathophysiology of triglyceride-rich lipoproteins in atherothrombosis: cellular aspects. Clin. Cardiol. 22(Suppl. 6), II7–II14 (1999).
  • Gianturco S, Ramprasad M, Lin A, Song R, Bradley W: Cellular binding site and membrane binding proteins for triglyceride-rich lipoproteins in human monocyte-macrophages and THP-1 monocytic cells.J. Lipid Res. 35(9), 1674–1687 (1994).
  • Jones N, Allen NS, Lewis JC: b-VLDL uptake by pigeon monocyte-derived macrophages: correlation of binding dynamics with three-dimensional ultrastructure. Cell Motil. Cytoskel. 19, 139–151 (1991).
  • Tabas I, Lim S, Xu XX, Maxfield FR: Endocytosed b-VLDL and LDL are delivered to different intracellular vesicles in mouse peritoneal macrophages. J. Cell Biol. 111, 929–940 (1990).
  • Glick JM, Adelman SJ, Phillips MC, Rothblat GH: Cellular cholesteryl ester clearance. Relationship to the physical state of cholesteryl ester inclusions. J. Biol. Chem. 258, 13425–13430 (1983).
  • Minor LK, Mahlberg FH, Jerome WG, Lewis JC, Rothblat GH, Glick JM: Lysosomal hydrolysis of lipids in a cell culture model of smooth muscle foam cells. Exp. Mol. Pathol. 54, 159–171 (1991).
  • Lada AT, Willingham MC, St Clair R: Triglyceride depletion in THP-1 cells alters cholesteryl ester physical state and cholesterol efflux. J. Lipid Res. 43, 618–628 (2002).
  • Minor LK, Rothblat GH, Glick JM: Triglyceride and cholesteryl ester hydrolysis in a cell culture model of smooth muscle foam cells. J. Lipid Res. 30, 189–197 (1989).
  • Hokanson J, Austin M: Plasma triglyceride level is a risk factor for cardiovascular disease independent of high-density lipoprotein cholesterol level: a meta-analysis of population-based prospective studies.J. Cardiovasc. Risk 3(2), 213–219 (1996).
  • Williams KJ, Feig JE, Fisher EA: Cellular and molecular mechanisms for rapid regression of atherosclerosis: from bench top to potentially achievable clinical goal.Curr. Opin. Lipidol. 18(4), 443–450 (2007).
  • Tabas I: Apoptosis and plaque destabilization in atherosclerosis: the role of macrophage apoptosis induced by cholesterol. Cell Death Differ. 11, S12–S16 (2004).
  • Li Y, Ge M, Ciani L et al.: Enrichment of endoplasmic reticulum with cholesterol inhibits sarcoplasmic-endoplasmic reticulum calcium ATPase-2b activity in parallel with increased order of membrane lipids. J. Biol. Chem. 279, 37030–37039 (2004).
  • Seimon T, Tabas I: Mechanisms and consequences of macrophage apoptosis in atherosclerosis. J. Lipid Res. 50(Suppl.), S382–S387 (2009).
  • Thim T, Hagensen M, Bentzon J, Falk E: From vulnerable plaque to atherothrombosis.J. Intern. Med. 263(5), 506–516 (2008).
  • Crisby M, Kallin B, Thyberg J et al.: Cell death in human atherosclerotic plaques involves both oncosis and apoptosis.Atherosclerosis 130(1–2), 17–27 (1997).
  • Debnath J, Baehrecke E, Kroemer G: Does autophagy contribute to cell death? Autophagy 1(2), 66–74 (2005).
  • Stary H, Chandler A, Dinsmore R et al.: A definition of advanced types of atherosclerotic lesions and a histological classification of atherosclerosis. A report from the Committee on Vascular Lesions of the Council on Arteriosclerosis, American Heart Association. Arterioscler. Thromb. Vasc. Biol. 15(9), 1512–1531 (1995).
  • Thorp E, Tabas I: Mechanisms and consequences of efferocytosis in advanced atherosclerosis. J. Leukoc. Biol. 86(5), 1089–1095 (2009).
  • Cui D, Thorp E, Li Y et al.: Pivotal advance: macrophages become resistant to cholesterol-induced death after phagocytosis of apoptotic cells. J. Leukoc. Biol. 82(5), 1040–1050 (2007).
  • Martinet W, De Bie M, Schrijvers D, De Meyer G, Herman A, Kockx M: 7-ketocholesterol induces protein ubiquitination, myelin figure formation, and light chain 3 processing in vascular smooth muscle cells. Arterioscler. Thromb. Vasc. Biol. 24(12), 2296–2301 (2004).
  • Kockx M, De Meyer G, Muhring J, Jacob W, Bult H, Herman A: Apoptosis and related proteins in different stages of human atherosclerotic plaques. Circulation 97(23), 2307–2315 (1998).
  • Xu K, Yang Y, Yan M, Zhan J, Fu X, Zheng X: Autophagy plays a protective role in free cholesterol overload-induced death of smooth muscle cells. J. Lipid Res. 51(9), 2581–2590 (2010).
  • Martinet W, De Meyer G: Autophagy in atherosclerosis: a cell survival and death phenomenon with therapeutic potential.Circ. Res. 104(3), 304–317 (2009).
  • Zhang Y, Cao Y, Zhang X et al.: The autophagy-lysosome pathway: a novel mechanism involved in the processing of oxidized LDL in human vascular endothelial cells. Biochem. Biophys. Res. Commun. 394(2), 377–382 (2010). Demonstrates that triglycerides can alter the cholesteryl ester physical state, making it more susceptible to hydrolysis.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.