173
Views
26
CrossRef citations to date
0
Altmetric
Reviews

Caveolae and lipid trafficking in adipocytes

, , &
Pages 49-58 | Published online: 18 Jan 2017

Bibliography

  • Palade GE: Fine structure of blood capillaries. J. Appl. Physics 24, 1424 (1953)
  • Yamada E: The fine structure of the gall bladder epithelium of the mouse. J. Biophys. Biochem. Cytol. 1, 445–458 (1955)
  • Parton RG, Simons K: The multiple faces of caveolae. Nat. Rev. Mol. Cell Biol. 8, 185–194 (2007)
  • Scherer PE, Lisanti MP, Baldini G, Sargiacomo M, Mastick CC, Lodish HF: Induction of caveolin during adipogenesis and association of GLUT4 with caveolinrich vesicles. J. Cell Biol. 127, 1233–1243 (1994)
  • Kandror KV, Stephens JM, Pilch PF: Expression and compartmentalization of caveolin in adipose cells: coordinate regulation with and structural segregation from GLUT4. J. Cell Biol. 129, 999–1006 (1995)
  • Voldstedlund M, Tranum-Jensen J, Vinten J: Quantitation of Na+/K+-ATPase and glucose transporter isoforms in rat adipocyte plasma membrane by immunogold labeling. J. Memb. Biol. 136, 63–73 (1993)
  • Thorn H, Stenkula KG, Karlsson M et al.: Cell surface orifices of caveolae and localization of caveolin to the necks of caveolae in adipocytes. Mol. Biol. Cell 14, 3967–3976 (2003)
  • Tuma PL, Hubbard AL: Transcytosis: crossing cellular barriers. Physiol. Rev. 83, 871–932 (2003)
  • Thomsen P, Roepstorff K, Stahlhut M, van Deurs B: Caveolae are highly immobile plasma membrane microdomains, which are not involved in constitutive endocytic trafficking. Mol. Biol. Cell 13, 238–250 (2002)
  • Doherty GJ, McMahon HT: Mechanisms of endocytosis. Annu. Rev. Biochem. 78, 857–902 (2011)
  • Smart EJ, Graf GA, McNiven MA et al.: Caveolins, liquid-ordered domains, and signal transduction. Mol. Cell Biol. 19, 7289–7304 (1999)
  • Bastiani M, Parton RG: Caveolae at a glance. J. Cell Sci. 123, 3831–3836 (2010). n Brief overview of caveolae research
  • Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG: Caveolin, a protein component of caveolae membrane coats. Cell 68, 673–682 (1992)
  • First identification of caveolin as a major protein component of caveolae, and their striated coat was also described, representing the beginning of the molecular era of caveolae studies
  • Aoki S, Thomas A, Decaffmeyer M, Brasseur R, Epand RM: The role of proline in the membrane re-entrant helix of caveolin-1. J. Biol. Chem. 285(43), 33371–33380 (2010)
  • Schmid SL: Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu. Rev. Biochem. 66, 511–548 (1997)
  • Hansen CG, Nichols BJ: Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol. 20, 177–186 (2010)
  • Fra AM, Williamson E, Simons K, Parton RG: De novo formation of caveolae in lymphocytes by expression of VIP21-caveolin. Proc. Natl Acad. Sci. USA 92, 8655–8659 (1995)
  • Parolini I, Sargiacomo M, Galbiati F et al.: Expression of caveolin-1 is required for the transport of caveolin-2 to the plasma membrane. Retention of caveolin-2 at the level of the Golgi complex. J. Biol. Chem. 274, 25718–25725 (1999)
  • Williams TM, Lisanti MP: The caveolin proteins. Genome Biol. 5, 214 (2004)
  • Monier S, Dietzen DJ, Hastings WR, Lublin DM, Kurzchalia TV: Oligomerization of VIP21-caveolin in vitro is stabilized by long chain fatty acylation or cholesterol. FEBS Lett. 388, 143–149 (1996)
  • Das K, Lewis RY, Scherer PE, Lisanti MP: The membrane-spanning domains of caveolins-1 and -2 mediate the formation of caveolin hetero-oligomers. Implications for the assembly of caveolae membranes in vivo. J. Biol. Chem. 274, 18721–18728 (1999)
  • Fernandez I, Ying Y, Albanesi J, Anderson RG: Mechanism of caveolin filament assembly. Proc. Natl Acad. Sci. USA 99, 11193–11198 (2002)
  • Liu L, Pilch PF: A critical role of cavin (polymerase I and transcript release factor) in caveolae formation and organization. J. Biol. Chem. 283, 4314–4322 (2008)
  • Hill MM, Bastiani M, Luetterforst R et al.: PTRF-cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132, 113–124 (2008)
  • Liu L, Brown D, McKee M et al.: Deletion of cavin/PTRF causes global loss of caveolae, dyslipidemia, and glucose intolerance. Cell Metab. 8, 310–317 (2008)
  • Describes the obligatory role for caveolae formation in all tissues, along with the lipodystrophic phenotype of mice lacking cavin-1, which was later confirmed for humans with inactivating mutations in this protein
  • McMahon KA, Zajicek H, Li WP et al.: SRBC/cavin-3 is a caveolin adapter protein that regulates caveolae function. EMBO J. 28, 1001–1015 (2011)
  • Hansen CG, Bright NA, Howard G, Nichols BJ: SDPR induces membrane curvature and functions in the formation of caveolae. Nat. Cell Biol. 11, 807–814 (2011)
  • Bastiani M, Liu L, Hill MM et al.: MURC/cavin-4 and cavin family members form tissue-specific caveolar complexes. J. Cell Biol. 185, 1259–1273 (2011)
  • Ogata T, Ueyama T, Isodono K et al.: MURC, a muscle-restricted coiled-coil protein that modulates the Rho/ROCK pathway, induces cardiac dysfunction and conduction disturbance. Mol. Cell Biol. 28, 3424–3436 (2008)
  • Ikezu T, Ueda H, Trapp BD et al.: Affinitypurification and characterization of caveolins from the brain: differential expression of caveolin-1, -2, and -3 in brain endothelial and astroglial cell types. Brain Res. 804, 177–192 (1998)
  • Mineo C, Ying YS, Chapline C, Jaken S, Anderson RG: Targeting of protein kinase Ca to caveolae. J. Cell Biol. 141, 601–610 (1998)
  • Vinten J, Voldstedlund M, Clausen H, Christiansen K, Carlsen J, Tranum-Jensen J: A 60-kDa protein abundant in adipocyte caveolae. Cell Tissue Res. 305, 99–106 (2001). n Describes the first identification of a major caveolar protein component, which they called cavin, now known to be cavin-1
  • Vinten J, Johnsen AH, Roepstorff P, Harpoth J, Tranum-Jensen J: Identification of a major protein on the cytosolic face of caveolae. Biochim. Biophys. Acta 1717, 34–40 (2005)
  • Aboulaich N, Vainonen JP, Stralfors P, Vener AV: Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes. Biochem. J. 383, 237–248 (2004). n Mass spectrometry was used to identify all three cavins (by their original names) as constituents of purified caveolae from human adipocytes
  • Jansa P, Mason SW, Hoffmann-Rohrer U, Grummt I: Cloning and functional characterization of PTRF, a novel protein which induces dissociation of paused ternary transcription complexes. EMBO J. 17, 2855–2864 (1998)
  • Gustincich S, Schneider C: Serum deprivation response gene is induced by serum starvation but not by contact inhibition. Cell Growth Differ. 4, 753–760 (1993)
  • Izumi Y, Hirai S, Tamai Y, Fujise-Matsuoka A, Nishimura Y, Ohno S: A protein kinase Cd-binding protein SRBC whose expression is induced by serum starvation. J. Biol. Chem. 272, 7381–7389 (1997)
  • Hayer A, Stoeber M, Bissig C, Helenius A: Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Traffic 11, 361–382 (2010)
  • Cushman SW: Structure–function relationships in the adipose cell. I. Ultrastructure of the isolated adipose cell. J. Cell Biol. 46, 326–341 (1970)
  • Carpentier JL, Perrelet A, Orci L: Effects of insulin, glucagon, and epinephrine on the plasma membrane of the white adipose cell: a freeze-fracture study. J. Lipid Res. 17, 335–342 (1976)
  • Guilherme A, Virbasius JV, Puri V, Czech MP: Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat. Rev. Mol. Cell Biol. 9, 367–377 (2008)
  • Pilch PF, Souto RP, Liu L et al.: Cellular spelunking: exploring adipocyte caveolae. J. Lipid Res. 48, 2103–2111 (2007)
  • Murata M, Peranen J, Schreiner R, Wieland F, Kurzchalia TV, Simons K: VIP21/caveolin is a cholesterol-binding protein. Proc. Natl Acad. Sci. USA 92, 10339–10343 (1995)
  • Fielding CJ, Bist A, Fielding PE: Caveolin mRNA levels are up-regulated by free cholesterol and down-regulated by oxysterols in fibroblast monolayers. Proc. Natl Acad. Sci. USA 94, 3753–3758 (1997)
  • Ortegren U, Karlsson M, Blazic N et al.: Lipids and glycosphingolipids in caveolae and surrounding plasma membrane of primary rat adipocytes. Eur. J. Biochem. 271, 2028–2036 (2004)
  • Ridgway ND: Interactions between metabolism and intracellular distribution of cholesterol and sphingomyelin. Biochim. Biophys. Acta 1484, 129–141 (2000)
  • Ikonen E, Heino S, Lusa S: Caveolins and membrane cholesterol. Biochem. Soc. Trans. 32, 121–123 (2004)
  • Cheng ZJ, Singh RD, Marks DL, Pagano RE: Membrane microdomains, caveolae, and caveolar endocytosis of sphingolipids. Mol. Membr. Biol. 23, 101–110 (2011)
  • Gustincich S, Vatta P, Goruppi S et al.: The human serum deprivation response gene (SDPR) maps to 2q32–q33 and codes for a phosphatidylserine-binding protein. Genomics 57, 120–129 (1999)
  • Garner AE, Smith DA, Hooper NM: Visualization of detergent solubilization of membranes: implications for the isolation of rafts. Biophys. J. 94, 1326–1340 (2008)
  • Lingwood D, Kaiser HJ, Levental I, Simons K: Lipid rafts as functional heterogeneity in cell membranes. Biochem. Soc. Trans. 37, 955–960 (2011)
  • Brown DA: Lipid rafts, detergent-resistant membranes, and raft targeting signals. Physiology (Bethesda) 21, 430–439 (2011)
  • Bauer M, Pelkmans L: A new paradigm for membrane-organizing and -shaping scaffolds. FEBS Lett. 580, 5559–5564 (2011)
  • Souto RP, Vallega G, Wharton J, Vinten J, Tranum-Jensen J, Pilch PF: Immunopurification and characterization of rat adipocyte caveolae suggest their dissociation from insulin signaling. J. Biol. Chem. 278, 18321–18329 (2003)
  • Frick M, Bright NA, Riento K, Bray A, Merrified C, Nichols BJ: Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr. Biol. 17, 1151–1156 (2007)
  • Ikonen E: Cellular cholesterol trafficking and compartmentalization. Nat. Rev. Mol. Cell Biol. 9, 125–138 (2008)
  • Brown MS, Goldstein JL: Cholesterol feedback: from Schoenheimer’s bottle to Scap’s MELADL. J. Lipid Res. 50(Suppl.), S15–S27 (2011)
  • Mesmin B, Maxfield FR: Intracellular sterol dynamics. Biochim. Biophys. Acta 1791, 636–645 (2011)
  • Martin S, Parton RG: Caveolin, cholesterol, and lipid bodies. Semin. Cell Dev. Biol. 16, 163–174 (2005)
  • Hailstones D, Sleer LS, Parton RG, Stanley KK: Regulation of caveolin and caveolae by cholesterol in MDCK cells. J. Lipid Res. 39, 369–379 (1998). n First description of the switch-like relationship of cholesterol levels with caveolae formation
  • Radhakrishnan A, Goldstein JL, McDonald JG, Brown MS: Switch-like control of SREBP-2 transport triggered by small changes in ER cholesterol: a delicate balance. Cell Metab. 8, 512–521 (2008)
  • Meshulam T, Simard JR, Wharton J, Hamilton JA, Pilch PF: Role of caveolin-1 and cholesterol in transmembrane fatty acid movement. Biochemistry 45, 2882–2893 (2011)
  • Krause BR, Hartman AD: Adipose tissue and cholesterol metabolism. J. Lipid Res. 25, 97–110 (1984)
  • Kraemer FB, Laane C, Park B, Sztalryd C: Low-density lipoprotein receptors in rat adipocytes: regulation with fasting. Am. J. Physiol. 266, E26–E32 (1994)
  • Le Lay S, Ferre P, Dugail I: Adipocyte cholesterol balance in obesity. Biochem. Soc. Trans. 32, 103–106 (2004)
  • Le Lay S, Hajduch E, Lindsay MR et al.: Cholesterol-induced caveolin targeting to lipid droplets in adipocytes: a role for caveolar endocytosis. Traffic 7, 549–561 (2011)
  • Schreibman PH, Dell RB: Human adipocyte cholesterol. Concentration, localization, synthesis, and turnover. J. Clin. Invest. 55, 986–993 (1975)
  • Murphy S, Martin S, Parton RG: Lipid droplet–organelle interactions; sharing the fats. Biochim. Biophys. Acta 1791, 441–447 (2011)
  • Gomez-Ruiz A, Milagro FI, Campion J, Martinez JA, de Miguel C: Caveolin expression and activation in retroperitoneal and subcutaneous adipocytes: influence of a high-fat diet. J. Cell Physiol. 225, 206–213 (2010)
  • Kozak LP, Newman S, Chao PM, Mendoza T, Koza RA: The early nutritional environment of mice determines the capacity for adipose tissue expansion by modulating genes of caveolae structure. PLoS One 5, E11015 (2010)
  • Le Lay S, Robichon C, Le Liepvre X, Dagher G, Ferre P, Dugail I: Regulation of ABCA1 expression and cholesterol efflux during adipose differentiation of 3T3-L1 cells. J. Lipid Res. 44, 1499–1507 (2003)
  • Attie AD: ABCA1: at the nexus of cholesterol, HDL and atherosclerosis. Trends Biochem. Sci. 32, 172–179 (2007)
  • Fielding PE, Russel JS, Spencer TA, Hakamata H, Nagao K, Fielding CJ: Sterol efflux to apolipoprotein A-I originates from caveolin-rich microdomains and potentiates PDGF-dependent protein kinase activity. Biochemistry 41, 4929–4937 (2002)
  • Lin YC, Ma C, Hsu WC, Lo HF, Yang VC: Molecular interaction between caveolin-1 and ABCA1 on high-density lipoprotein-mediated cholesterol efflux in aortic endothelial cells. Cardiovasc. Res. 75, 575–583 (2007)
  • McMahon KA, Zhu M, Kwon SW, Liu P, Zhao Y, Anderson RG: Detergent-free caveolae proteome suggests an interaction with ER and mitochondria. Proteomics 6, 143–152 (2011)
  • Davalos A, Fernandez-Hernando C, Sowa G et al.: Quantitative proteomics of caveolin-1 regulated proteins: characterization of PTRF/ cavin-1 in endothelial cells. Mol. Cell Proteomics 9(10), 2109–2124 (2010)
  • Plutzky J: Expansion and contraction: the mighty, mighty fatty acid. Nat. Med. 15, 618–619 (2011)
  • Fielding BA, Frayn KN: Lipoprotein lipase and the disposition of dietary fatty acids. Br. J. Nutr. 80, 495–502 (1998)
  • Simard JR, Zunszain PA, Ha CE et al.: Locating high-affinity fatty acid-binding sites on albumin by x-ray crystallography and NMR spectroscopy. Proc. Natl Acad. Sci. USA 102, 17958–17963 (2005)
  • Su X, Abumrad NA: Cellular fatty acid uptake: a pathway under construction. Trends Endocrinol. Metab. 20, 72–77 (2011)
  • Hamilton JA: Fast flip–flop of cholesterol and fatty acids in membranes: implications for membrane transport proteins. Curr. Opin. Lipidol. 14, 263–271 (2003)
  • Kampf JP, Parmley D, Kleinfeld AM: Free fatty acid transport across adipocytes is mediated by an unknown membrane protein pump. Am. J. Physiol. Endocrinol. Metab. 293, E1207–E1214 (2007)
  • Mashek DG, Coleman RA: Cellular fatty acid uptake: the contribution of metabolism. Curr. Opin. Lipidol. 17, 274–278 (2011)
  • Pohl J, Ring A, Hermann T, Stremmel W: Role of FATP in parenchymal cell fatty acid uptake. Biochim. Biophys. Acta 1686, 1–6 (2004)
  • Kandror KV, Pilch PF: gp160, a tissue-specific marker for insulin-activated glucose transport. Proc. Natl Acad. Sci. USA 91, 8017–8021 (1994)
  • Trigatti BL, Anderson RG, Gerber GE: Identification of caveolin-1 as a fatty acid binding protein. Biochem. Biophys. Res. Commun. 255, 34–39 (1999)
  • Kamp F, Hamilton JA: pH gradients across phospholipid membranes caused by fast flip–flop of un-ionized fatty acids. Proc. Natl Acad. Sci. USA 89, 11367–11370 (1992)
  • Simard JR, Meshulam T, Pillai BK et al.: Caveolins sequester FA on the cytoplasmic leaflet of the plasma membrane, augment triglyceride formation, and protect cells from lipotoxicity. J. Lipid Res. 51, 914–922 (2010). n Describes the ability of caveolins to protect cells from fatty acid-mediated cytotoxicity
  • Stralfors P: Autolysis of isolated adipocytes by endogenously produced fatty acids. FEBS Lett. 263, 153–154 (1990)
  • Ost A, Ortegren U, Gustavsson J, Nystrom FH, Stralfors P: Triacylglycerol is synthesized in a specific subclass of caveolae in primary adipocytes. J. Biol. Chem. 280, 5–8 (2005)
  • Razani B, Combs TP, Wang XB et al.: Caveolin-1-deficient mice are lean, resistant to diet-induced obesity, and show hypertriglyceridemia with adipocyte abnormalities. J. Biol. Chem. 277, 8635–8647 (2002)
  • Describes the physiological contribution of adipocyte caveolae to the lipodystrophic phenotype of caveolin-1 null mice
  • Cao H, Alston L, Ruschman J, Hegele RA: Heterozygous Cav1 frameshift mutations (MIM 601047) in patients with atypical partial lipodystrophy and hypertriglyceridemia. Lipids Health Dis. 7, 3 (2008)
  • Kim CA, Delepine M, Boutet E et al.: Association of a homozygous nonsense caveolin-1 mutation with Berardinelli–Seip congenital lipodystrophy. J. Clin. Endocrinol. Metab. 93, 1129–1134 (2008)
  • Hayashi YK, Matsuda C, Ogawa M et al.: Human PTRF mutations cause secondary deficiency of caveolins resulting in muscular dystrophy with generalized lipodystrophy. J. Clin. Invest. 119, 2623–2633 (2011)
  • Rajab A, Straub V, McCann LJ et al.: Fatal cardiac arrhythmia and long-QT syndrome in a new form of congenital generalized lipodystrophy with muscle rippling (CGL4) due to PTRF-cavin mutations. PLoS Genet. 6, E1000874 (2010)
  • Dwianingsih EK, Takeshima Y, Itoh K et al.: A Japanese child with asymptomatic elevation of serum creatine kinase shows PTRF-cavin mutation matching with congenital generalized lipodystrophy type 4. Mol. Genet. Metab. 101, 233–237 (2010)
  • Shastry S, Delgado MR, Dirik E, Turkmen M, Agarwal AK, Garg A: Congenital generalized lipodystrophy, type 4 (CGL4) associated with myopathy due to novel PTRF mutations. Am. J. Med. Genet. A 152A, 2245–2253 (2010)
  • Le Lay S, Briand N, Blouin CM et al.: The lipoatrophic caveolin-1 deficient mouse model reveals autophagy in mature adipocytes. Autophagy 6, 754–763 (2010)
  • Kamp F, Guo W, Souto R, Pilch PF, Corkey BE, Hamilton JA: Rapid flip–flop of oleic acid across the plasma membrane of adipocytes. J. Biol. Chem. 278, 7988–7995 (2003)
  • Brasaemle DL, Dolios G, Shapiro L, Wang R: Proteomic analysis of proteins associated with lipid droplets of basal and lipolytically stimulated 3T3-L1 adipocytes. J. Biol. Chem. 279, 46835–46842 (2004)
  • Cohen AW, Razani B, Schubert W et al.: Role of caveolin-1 in the modulation of lipolysis and lipid droplet formation. Diabetes 53, 1261–1270 (2004)
  • Liu P, Ying Y, Zhao Y, Mundy DI, Zhu M, Anderson RG: Chinese hamster ovary K2 cell lipid droplets appear to be metabolic organelles involved in membrane traffic. J. Biol. Chem. 279, 3787–3792 (2004)
  • Robenek MJ, Severs NJ, Schlattmann K et al.: Lipids partition caveolin-1 from ER membranes into lipid droplets: updating the model of lipid droplet biogenesis. FASEB J. 18, 866–868 (2004)
  • Jedrychowski MP, Gartner CA, Gygi SP et al.: Proteomic analysis of GLUT4 storage vesicles reveals LRP1 to be an important vesicle component and target of insulin signaling. J. Biol. Chem. 285, 104–114 (2010)
  • Ostermeyer AG, Paci JM, Zeng Y, Lublin DM, Munro S, Brown DA: Accumulation of caveolin in the endoplasmic reticulum redirects the protein to lipid storage droplets. J. Cell Biol. 152, 1071–1078 (2001)
  • Pol A, Martin S, Fernandez MA, Ingelmo-Torres M et al.: Cholesterol and fatty acids regulate dynamic caveolin trafficking through the Golgi complex and between the cell surface and lipid bodies. Mol. Biol. Cell 16, 2091–2105 (2005)
  • Ortegren U, Yin L, Ost A, Karlsson H, Nystrom FH, Stralfors P: Separation and characterization of caveolae subclasses in the plasma membrane of primary adipocytes: segregation of specific proteins and functions. FEBS J. 273, 3381–3392 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.