2,025
Views
50
CrossRef citations to date
0
Altmetric
Reviews

Essential fatty acids enhance free radical generation and lipid peroxidation toinduce apoptosis of tumor cells

Pages 463-489 | Published online: 18 Jan 2017

Bibliography

  • Casppary WJ, Niziak C, Lanzo DA,Friedman R, Bachur NR. Bleomycin A2:a ferrous oxidase. Mol. Pharmacol. 16,256–260 (1979)
  • Young, RC, Ozols RF, Myers CE. Theanthracycline antineoplastic drugs. N. EnglJ. Med. 305, 139–153 (1981)
  • Gajewski E, Rao G, Nackerdien Z,Dizdaroglu M. Modification of DNA basesin mammalian chromatin by radiationgeneratedfree radicals. Biochemistry 29,7876–7882 (1990)
  • Das UN. Oxy radicals and their clinicalimplications. Curr. Sci. 65, 964–968 (1993)
  • Das UN. Free radicals, Biology and relevanceto disease. J. Assoc. Phy. Ind. 38, 495–498(1990)
  • Halliwell BA. Superway to kill cancer cells?Nature Med. 6, 1105–1106 (2000)
  • Cleveland JL, Kastan MB. A radicalapproach to treatment. Nature 407, 309–311(2000)
  • Sunderesan M, Yu ZX, Ferrans VJ, Irani K,Finkel T. Requirement for generation of H2O2for platelet-derived growth factor signaltransduction. Science 270, 296–299 (1995)
  • Suderesan M, Yu ZX, Ferrans VJ et al.Regulation of reactive-oxygen-speciesgeneration in fibroblasts by Rac1. Biochem.J. 318, 379–382 (1996)
  • Jayanthi S, Ordonez S, McCoy MT, CadetJL. Dual mechanism of Fas-induced celldeath in neuroglioma cells, a role for reactiveoxygen species. Brain Res. Mol. Brain Res. 72,158–165 (1999)
  • Wang S, Leonard SS, Ye J, Ding M, Shi X.The role of hydroxyl radical as a messenger inCr(VI)-induced p53 activation. Am.J. Physiol. Cell Physiol. 279, C868–C875(2000)
  • Das UN. Tuning free radical metabolism tokill tumor cells selectively with emphasis onthe interaction(s) between essential fattyacids, free radicals, lymphokines andprostaglandins. Ind. J. Pathol. Microbiol. 33,94–103 (1990)
  • Das UN. Cis-unsaturated fatty acids aspotential anti-mutagenic, tumoricidal andanti-metastatic agents. Asia Paci.J. Pharmacol. 7, 305–327 (1992)
  • Galeotti T, Borrello S, Masoti L. Oxy radicalsources, scavenger systems and membranedamage in cancer cells. In: Oxygen Radicals,Systemic Events and Disease Processes. Das DK,Essman R (Eds). S Karger, Basel, Switzerland,129–148 (1990)
  • Dianzani MU, Rossi MA. Lipid peroxidationin tumors. In: Recent Trends in ChemicalCarcinogenesis (Volume 1). Pani P, Feo F,Columbano A, Cagliari ESA (Eds). Cagliari,Italy, 243–257 (1981)
  • Bartoli GM, Galeotti T. Growth-related lipidperoxidation in tumor microsomalmembranes and mitochondria. Biochim.Biophys. Acta 574, 537–541 (1979)
  • Hostetler KY, Zenner BD, Morris HP.Phospholipid content of mitochondrial andmicrosomal membranes from Morrishepatomas of varying growth rates. CancerRes. 39, 2978–2983 (1979)
  • Hartz JW, Morton RE, Waite MM, MorrisHP. Correlation of fatty acyl composition ofmitochondrial and microsomal phospholipidwith growth rate of rat hepatomas. Lab.Invest. 46, 73–78 (1982)
  • Cheeseman KH, Emery S, Maddix SP, SlaterTF, Burton GW, Ingold K. Studies on lipidperoxidation in normal and tumour tissue.The Yoshida rat liver tumour. Biochem.J. 250, 247–252 (1988)
  • Cheeseman KH, Burton GW, Ingold KU,Slater TF. Lipid peroxidation and lipidantioxidants in normal and tumor cells.Toxicol. Pathol. 12, 235–239 (1984)
  • Borrello S, Minotti G, Galeotti T. Factorsinfluencing O2 and t?Bu OOH-dependentlipid peroxidation of tumor microsomes. In:Superoxide and Superoxide Dismutase inChemistry, Biology and Medicine. Rotilio G(Ed.). Elsevier,Amsterdam, The Netherlands,323–324 (1988)
  • Das UN, Begin ME, Ells G, Huang YS,Horrobin DF. Polyunsaturated fatty acidsaugment free radical generation in tumorcells in vitro. Biochem. Biophys. Res. Comm.145, 15–24 (1987)
  • Das UN, Huang YS, Begin ME, Ells G,Horrobin DF. Uptake and distribution ofcis-unsaturated fatty acids and their effect onfree radical generation in normal and tumorcells in vitro. Free Rad. Biol. Med. 3, 9–14(1987)
  • Bendetti A. Loss of lipid peroxidation as ahistochemical marker for preneoplastichepatocellular foci of rats. Cancer Res. 44,5712–5717 (1984)
  • Dunbar LM, Bailey JM. Enzyme deletionsand essential fatty acid metabolism incultured cells. J. Biol. Chem. 250, 1152–1153(1975)
  • Morton RE, Hartz JW, Reitz RC, Waite BM,Morris H. The acyl-CoA desaturases ofmicrosomes from rat liver and the Morris7777 hepatoma. Biochim. Biophys. Acta 573,321–331 (1979)
  • Nassar BA, Das UN, Huang YS, Ells G,Horrobin DF. The effect of chemicalhepatocarcinogenesis on liver phospholipidcomposition in rats fed n-6 and n-3 fattyacid-supplemented diets. Proc. Soc. Exp. Biol.Med. 199, 365–368 (1992)
  • Das UN. Essential fatty acids – a review.Curr. Pharma. Biotechnol. 7, 467–482 (2011)
  • Das UN. Essential fatty acids, biochemistry,physiology, and pathology. Biotechnol. J.1, 420–439 (2011)
  • Serhan CN, Arita M, Hong S, Gotlinger K.Resolvins, docosatrienes, andneuroprotectins, novel w-3-derivedmediators, and their endogenous aspirintriggeredepimers. Lipids 39, 1125–1132(2004)
  • Serhan CN, Hong S, Gronert K et al.Resolvins, a family of bioactive products ofw?3 fatty acid transformation circuitsinitiated by aspirin treatment that counterproinflammation signals. J. Exp. Med. 196,1025–1037 (2002)
  • Serhan CN, Clish CB, Brannon J, ColganSP, Chiang N, Gronert K. Novel functionalsets of lipid-derived mediators withantiinflammatory actions generated from w?3fatty acids via cyclooxygenase 2-nonsteroidalantiinflammatory drugs and transcellularprocessing. J. Exp. Med. 192, 1197–1204(2000)
  • Serhan CN, Takano T, Chiang N, GronertK, Clish CB. Formation of endogenous“antiinflammatory” lipid mediators bytranscellular biosynthesis. Lipoxins andaspirin-triggered lipoxins inhibit neutrophilrecruitment and vascular permeability. Am.J. Respir. Crit. Care Med. 161(2 Pt 2),S95–S101 (2000)
  • Cummings KB, Robertson RP.Prostaglandin, increased production by renalcell carcinoma. J. Urol. 118, 720–723(1977)
  • Hong SL, Wheless CM, Levine L. Elevatedprostaglandins synthetase activity inmethylcholanthrene-transformed mouseBALB/3T3. Prostaglandins 13, 271–279(1977)
  • Ylikorkala O, Kauppila A, Viinikka L. Effectof cytostatics on prostaglandin F2 aprostacyclin, and thromboxane in patientswith gynecologic malignancies. Obstet.Gynecol. 58, 483–486 (1981)
  • Rolland PH, Martin PM, Jacquemier J,Rolland AM, Toga M. Prostaglandin inhuman breast cancer, evidence suggestingthat an elevated prostaglandin production isa marker of high metastatic potential forneoplastic cells. J. Natl Cancer Inst. 64,1061–1070 (1980)
  • Trevisani A, Ferretti E, Capuzzo A, TomasiV. Elevated levels of prostaglandin E2 inYoshida hepatoma and the inhibition oftumour growth by non-steroidal antiinflammatorydrugs. Br. J. Cancer 41,341–347 (1980)
  • Young MR, Newby M. Enhancement ofLewis lung carcinoma cell migration byprostaglandin E2 produced by macrophages.Cancer Res. 46, 160–164 (1986)
  • Cyran J, Lea MA, Lysz TW. Prostaglandinbiosynthetic capacity of hepatomas withdifferent growth rates. Int. J. Biochem. 21,445–451 (1989)
  • LeFever A, Funahashi A. Elevatedprostaglandin E2 levels in bronchoalveolarlavage fluid of patients with bronchogeniccarcinoma. Chest 98, 1397–1402 (1990)
  • Baxevanis CN, Reclos GJ, GritzapisAD, Dedousis GV, Missitzis I,Papamichail M. Elevated prostaglandin E2production by monocytes is responsible forthe depressed levels of natural killer andlymphokine-activated killer cell function inpatients with breast cancer. Cancer 72,491–501 (1993)
  • Qiao L, Kozoni V, Tsioulias GJ et al. Selectedeicosanoids increase the proliferation rate ofhuman colon carcinoma cell lines and mousecolonocytes in vivo. Biochim. Biophys. Acta1258, 215–223 (1995)
  • Hansen-Petrik MB, McEntee MF, Jull B, ShiH, Zemel MB, Whelan J. Prostaglandin E(2)protects intestinal tumors from nonsteroidalanti-inflammatory drug-induced regressionin Apc(Min/+) mice. Cancer Res. 62,403–408 (2002)
  • Oberley L W, Buettner G. Role of SOD incancer. A review. Cancer Res. 39, 1141–1149(1979)
  • Tisdale MJ, Mahmoud MD. Activities of freeradical metabolizing enzymes in tumours. Br.J. Cancer 47, 809–812 (1983)
  • Bize IB, Oberley LW, Morris HP. Superoxidedismutase and superoxide radical in Morrishepatomas. Cancer Res. 40, 3686–3693(1980)
  • Hendrickse CW, Kelly RW, Radley S,Donovan IA, Keighley MR, Neoptolemos JP.Lipid peroxidation and prostaglandins incolorectal cancer. Br. J. Surg. 81, 1219–1223(1994)
  • Mund RC, Pizato N, Bonatto S et al.Decreased tumor growth in Walker256 tumor-bearing rats chronicallysupplemented with fish oil involves COX?2and PGE2 reduction associated withapoptosis and increased peroxidation.Prostaglandins Leukot Essent. Fatty Acids 76,113–120 (2007)
  • Jang YC, Remmen VH. The mitochondrialtheory of aging, insight from transgenic andknockout mouse models. Exp. Gerontol. 44,256–260 (2011)
  • Gorman A, McGowan A, Cotter TG. Role ofperoxide and superoxide anion duringtumour cell apoptosis. FEBS Lett. 404, 27–33(1997)
  • Li M, Beg AA. Induction of necrotic-like celldeath by tumor necrosis factor a and caspaseinhibitors, novel mechanism for killingvirus-infected cells. J. Virol. 74, 7470–7477(2000)
  • Huang TT, Carlson EJ, Raineri I, GillespieAM, Kozy H, Epstein CJ. The use oftransgenic and mutant mice to study oxygenfree radical metabolism. Ann. NY Acad. Sci.893, 95–112 (1999)
  • Halliwell B, Gutteridge JMC. Free Radicals inBiology and Medicine (3rd Edition). OxfordUniversity Press, UK (1999)
  • Panaretakis T, Shabalina IG, Grandér D,Shoshan MC, DePierre JW. Reactive oxygenspecies and mitochondria mediate theinduction of apoptosis in human hepatomaHepG2 cells by the rodent peroxisomeproliferator and hepatocarcinogen,perfluorooctanoic acid. Toxicol. Appl.Pharmacol.173, 56–64 (2001)
  • Hampton MB, Fadeel B, Orrenius S. Redoxregulation of the caspases during apoptosis.Ann. NY Acad. Sci. 854, 328–335 (1998)
  • Jacobson MD, Raff MC. Programmed celldeath and Bcl-2 protection in very low oxygen.Nature 374, 814–816 (1995)
  • Pervaiz S, Ramalingam JK, Hirpara JL,Clément MV. Superoxide anion inhibitsdrug-induced tumor cell death. FEBS Lett. 459,343–348 (1999)
  • Wagner BA, Buettner GR, Oberley LW, BurnsCP. Sensitivity of K562 and HL-60 cells toedelfosine, an ether lipid drug, correlates withproduction of reactive oxygen species. CancerRes. 58, 2809–2816 (1998)
  • Hampton MB, Fadeel B, Orrenius S. Redoxregulation of the caspases during apoptosis.Ann. NY Acad. Sci. 854,328–335 (1998)
  • Arakaki N, Kajihara T, Arakaki R. Involvementof oxidative stress in tumor cytotoxic activity ofhepatocyte growth factor/scatter factor. J. Biol.Chem. 274, 13541–13546 (1999)
  • Tamatani M, Ogawa S, Nuñez G, Tohyama M.Growth factors prevent changes in Bcl-2 andBax expression and neuronal apoptosis inducedby nitric oxide. Cell Death Differ. 5, 911–919(1998)
  • Sattler M, Winkler T, Verma S. Hematopoieticgrowth factors signal through the formation ofreactive oxygen species. Blood 93, 2928–2935(1999)
  • Zimmerman RJ, Marafino BJ Jr, Chan A,Landre P, Winkelhake JL. The role of oxidantinjury in tumor cell sensitivity to recombinanthuman tumor necrosis factor in vivo.Implications for mechanisms of action.J. Immunol. 142, 1405–1409 (1989)
  • Godfrey RW, Johnson WJ, Hoffstein ST.Recombinant tumor necrosis factor andinterleukin-1 both stimulate human synovialcell arachidonic acid release and phospholipidmetabolism. Biochem. Biophys. Res. Commun.142, 235–241 (1987)
  • Dayer JM, Beutler B, Cerami A. Cachectin/tumor necrosis factor stimulates collagenaseand prostaglandin E2 production by humansynovial cells and dermal fibroblasts. J. Exp.Med. 162, 2163–2168 (1985)
  • Nara K, Odagiri H, Fujii M. Increasedproduction of tumor necrosis factor andprostaglandin E2 by monocytes in cancerpatients and its unique modulation by theirplasma. Cancer Immunol. Immunother. 25,126–132 (1987)
  • Neale ML, Fiera RA, Matthews N.Involvement of phospholipase A2 activation intumour cell killing by tumour necrosis factor.Immunology 64, 81–85 (1988)
  • Hepburn A, Boeynaems JM, Fiers W, DumontJE. Modulation of tumor necrosis factor- acytotoxicity in L929 cells by bacterial toxins,hydrocortisone and inhibitors of arachidonicacid metabolism. Biochem. Biophys. Res.Commun. 149, 815–822 (1987)
  • Suffys P, Beyaert R, Van Roy F, Fiers W.Reduced tumour necrosis factor-inducedcytotoxicity by inhibitors of the arachidonicacid metabolism. Biochem. Biophys. Res.Commun. 149, 735–743 (1987)
  • Matthews N, Neale ML, Jackson SK, StarkJM. Tumour cell killing by tumour necrosisfactor, inhibition by anaerobic conditions,free-radical scavengers and inhibitors ofarachidonate metabolism. Immunology 62,153–155 (1987)
  • Berkow RL, Wang D, Larrick JW,Dodson RW, Howard TH. Enhancement ofneutrophil superoxide production bypreincubation with recombinant human tumornecrosis factor. J. Immunol. 139, 3783–3791(1987)
  • Talmadge JE, Bowersox O, Tribble H, Lee SH,Shepard HM, Liggitt D. Toxicity of tumornecrosis factor is synergistic with g-interferonand can be reduced with cyclooxygenaseinhibitors. Am. J. Pathol. 128, 410–425(1987)
  • Hori T, Kashiyama S, Hayakawa M et al.Tumor necrosis factor is cytotoxic to humanfibroblasts in the presence of exogenousarachidonic acid. Exp. Cell Res. 185, 41–49(1989)
  • Hayakawa M, Oku N, Takagi T et al.Involvement of prostaglandin-producingpathway in the cytotoxic action of tumornecrosis factor. Cell Struct. Funct. 16, 333–340(1991)
  • Das UN, Padma M, Sagar PS, Ramesh G,Koratkar R. Stimulation of free radicalgeneration in human leukocytes by variousagents including tumor necrosis factor is acalmodulin dependent process. Biochem.Biophys. Res. Commun. 167, 1030–1036 (1990)
  • Palombella VJ, Vilcek J. Mitogenic andcytotoxic actions of tumor necrosis factor inBALB/c 3T3 cells. Role of phospholipaseactivation. J. Biol.Chem. 264, 18128–18136(1989)
  • Reid T, Ramesha CS, Ringold GM.Resistance to killing by tumor necrosis factorin an adipocyte cell line caused by a defect inarachidonic acid biosynthesis. J. Biol. Chem.266, 16580–16586 (1991)
  • Chang DJ, Ringold GM, Heller RA. Cellkilling and induction of manganoussuperoxide dismutase by tumor necrosisfactor- a is mediated by lipoxygenasemetabolites of arachidonic acid. Biochem.Biophys. Res. Commun. 188, 538–546 (1992)
  • Fletcher JR, Collins JN, Graves ED 3rd et al.Tumor necrosis factor-induced mortality isreversed with cyclooxygenase inhibition. Ann.Surg. 217, 668–674 (1993)
  • Hayakawa M, Ishida N, Takeuchi K et al.Arachidonic acid-selective cytosolicphospholipase A2 is crucial in the cytotoxicaction of tumor necrosis factor. J. Biol. Chem.268, 11290–11295 (1993)
  • West M, Mhatre M, Ceballos A et al. Thearachidonic acid 5?lipoxygenase inhibitornordihydroguaiaretic acid inhibits tumornecrosis factor a activation of microglia andextends survival of G93A-SOD1 transgenicmice. J. Neurochem. 91, 133–143 (2004)
  • Kovaríková M, Hofmanová J, Soucek K,Kozubík A. The effects of TNF? a andinhibitors of arachidonic acid metabolism onhuman colon HT-29 cells depend ondifferentiation status. Differentiation 72,23–31 (2004)
  • Vento R, D’Alessandro N, Giuliano M,Lauricella M, Carabillo M, Tesoriere G.Induction of apoptosis by arachidonic acid inhuman retinoblastoma Y79 cells, involvementof oxidative stress. Exp. Eye Res. 70, 503–517(2000)
  • Sagar PS, Das UN. Cytotoxic action ofcis-unsaturated fatty acids on human cervicalcarcinoma (HeLa) cells in vitro. ProstaglandinsLeukot Essent. Fatty Acids 53, 287–299 (1995)
  • Das UN. Tumoricidal action ofcis?unsaturated fatty acids and theirrelationship to free radicals and lipidperoxidation. Cancer Lett. 56, 235–243(1991)
  • Lin PS, Kwock L, Goodchild NT. Copperchelator enhancement of bleomycincytotoxicity. Cancer 46, 2360–2364 (1980)
  • Werts ED, Gould MN. Relationships betweencellular superoxide dismutase andsusceptibility to chemically induced cancer inthe rat mammary gland. Carcinogenesis 7,1197–1201 (1986)
  • Cameron DJ. Suppression or enhancement bysuperoxide dismutase of tumor cell killing bymacrophages of normal donors and breastcancer patients. Jpn. J. Exp. Med. 56, 135–140(1986)
  • Kawaguchi T, Takeyasu A, Matsunobu K et al.Stimulation of Mn-superoxide dismutaseexpression by tumor necrosis factor- a,quantitative determination of Mn?SODprotein levels in TNF?resistant and sensitivecells by ELISA. Biochem. Biophys. Res.Commun. 171, 1378–1386 (1990)
  • Cervantes A, Pinedo HM, Lankelma J,Schuurhuis GJ. The role of oxygen-derived freeradicals in the cytotoxicity of doxorubicin inmultidrug resistant and sensitive humanovarian cancer cells. Cancer Lett. 41, 169–177(1988)
  • Mimnaugh EG, Dusre L, Atwell J, Myers CE.Differential oxygen radical susceptibility ofadriamycin-sensitive and -resistant MCF-7human breast tumor cells. Cancer Res. 49, 8–15(1989)
  • Huang C, Wu M. Superoxide dismutaseactivity in tissues from 19 cases ofhepatocellular carcinoma. Zhonghua Yi Xue ZaZhi 70, 138–139 (1990)
  • Han YH, Kim SH, Kim SZ, Park WH.Antimycin A as a mitochondrial electrontransport inhibitor prevents the growth ofhuman lung cancer A549 cells. Oncol. Rep. 20,689–693 (2008)
  • Malafa M, Margenthaler J, Webb B, Neitzel L,Christophersen M. Mn?SOD expression isincreased in metastatic gastric cancer. J. Surg.Res. 88, 130–134 (2000)
  • Westman NG, Marklund SL. Copper-andzinc-containing superoxide dismutase andmanganese-containing superoxide dismutasein human tissues and human malignanttumors. Cancer Res. 41, 2962–2966 (1981)
  • Zhong W, Oberley LW, Oberley TD, St ClairDK. Suppression of the malignant phenotypeof human glioma cells by overexpression ofmanganese superoxide dismutase. Oncogene 14,481–490 (1997)
  • Toh Y, Kuninaka S, Oshiro T et al.Overexpression of manganese superoxidedismutase mRNA may correlate withaggressiveness in gastric and colorectaladenocarcinomas. Int. J. Oncol. 17, 107–112(2000)
  • Izutani R, Asano S, Imano M, Kuroda D, KatoM, Ohyanagi H. Expression of manganesesuperoxide dismutase in esophageal and gastriccancers. J. Gastroenterol. 33, 816–822 (1998)
  • Zhong W, Yan T, Lim R, Oberley LW.Expression of superoxide dismutases, catalase,and glutathione peroxidase in glioma cells. FreeRad. Biol. Med. 27, 1334–1345 (1999)
  • Huang Y, He T, Domann FE. Decreasedexpression of manganese superoxidedismutase in transformed cells is associatedwith increased cytosine methylation of theSOD2 gene. DNA Cell Biol. 18, 643–652(1999)
  • Clement MV, Pervaiz S. Reactive oxygenintermediates regulate cellular apoptosisresponse to apoptotic stimuli, an hypothesis.Free Rad. Biol. Med. 30, 247–252 (1999)
  • Saunders JA, Rogers LC, Klomsiri C,Poole LB, Daniel LW. Reactive oxygenspecies mediate lysophosphatidic acidinduced signaling in ovarian cancer cells.Free Radic. Biol. Med. 49, 2058–2067(2010)
  • Li M, Zhao L, Liu J et al. Multi-mechanismsare involved in reactive oxygen speciesregulation of mTORC1 signaling. CellSignal. 22, 1469–1476 (2010)
  • Morisaki N, Lindsey JA, Stitts JM, ZhangH, Cornwell DG. Fatty acid metabolism andcell proliferation. V. Evaluation of pathwaysfor the generation of lipid peroxides. Lipids19, 381–394 (1984)
  • Morisaki N, Sprecher H, Milo GE,Cornwell DG. Fatty acid specificity in theinhibition of cell proliferation and itsrelationship to lipid peroxidation andprostaglandin biosynthesis. Lipids 17,893–899 (1982)
  • Liepkalns VA, Icard-Liepkalns C,Cornwell DG. Regulation of cell division ina human glioma cell clone by arachidonicacid and a-tocopherol quinone. Cancer Lett.15, 173–178 (1982)
  • Cheeseman KH, Collins M, Maddix S et al.Lipid peroxidation in regenerating rat liver.FEBS Lett. 209, 191–196 (1986)
  • Slater TF, Cheeseman KH, Benedetto Cet al. Studies on the hyperplasia(‘regeneration’) of the rat liver followingpartial hepatectomy. Changes in lipidperoxidation and general biochemicalaspects. Biochem. J. 265, 51–59 (1990)
  • Kastan MB, Canman CE, Leonard CJ. P53,cell cycle control and apoptosis, implicationsfor cancer. Cancer Metastasis Rev. 14, 3–15(1995)
  • Martinez JD, Pennington ME, Craven MT,Warters RL, Cress AE. Free radicalsgenerated by ionizing radiation signalnuclear translocation of p53. Cell GrowthDiffer. 8, 941–949 (1997)
  • Uberti D, Yavin E, Gil S, Ayasola KR,Goldfinger N, Rotter V. Hydrogen peroxideinduces nuclear translocation of p53 andapoptosis in cells of oligodendroglia origin.Brain Res. Mol. Brain Res. 65, 167–175(1999)
  • Kitamura Y, Ota T, Matsuoka Y et al.Hydrogen peroxide-induced apoptosismediated by p53 protein in glial cells. Glia.25, 154–164 (1999)
  • Pani G, Bedogni B, Anzevino R et al.Deregulated manganese superoxidedismutase expression and resistance tooxidative injury in p53-deficient cells. CancerRes. 60, 4654–4660 (2000)
  • Hilf R, Murant RS, Narayana U,Gibson SL. Relationship of mitochondrialfunction and cellular adensine triphosphatelevels to hematoporphyrin derivative-inducedphotosensitization in R 3230 AC mammarytumors. Cancer Res. 46, 211–217 (1986)
  • Lee Y, Shacter E. Hydrogen peroxide inhibitsactivation, not activity, of cellular caspase-3in vivo. Free Radic. Biol. Med. 29, 684–692(2000)
  • Saretzki G, von Zglinicki T. Replicativesenescence as a model of aging, the role ofoxidative stress and telomere shortening-anoverview. Z. Gerontol. Geriatr. 32, 69–75(1999)
  • Oikawa S, Kawanishi S. Site-specific DNAdamage at GGG sequence by oxidative stressmay accelerate telomere shortening. FEBSLett. 453, 365–368 (1999)
  • von Zglinicki T, Pilger R, Sitte N.Accumulation of single-strand breaks is themajor cause of telomere shortening in humanfibroblasts. Free Radic. Biol. Med. 28, 64–74(2000)
  • Tyurina YY, Tyurina VA, Certa G,Quinn PJ, Schor NF, Kagan VE. Directevidence for antioxidant effect of BCL-2 inPC 12 rat pheochromocytoma cells. Arch.Biochem. Biophys. 344, 413–423 (1997)
  • Haldar S, Negrini M, Monne M, Sabbioni S,Croce CM. Down regulation of bcl-2 by p53in breast cancer cells. Cancer Res. 54,2095–2097 (1994)
  • Haldar S, Jena N, Croce CM. Inactivation ofBcl-2 by phosphorylation. Proc. Natl Acad.Sci. USA 92, 4507–4511 (1995)
  • Hockenbery DM, Oltvai ZN, Yin XM,Milliman CL, Korsmeyer SJ. Bcl-2 functionsin an antioxidant pathway to preventapoptosis. Cell 75, 241–251 (1993)
  • Das UN. Essential fatty acids, lipidperoxidation and apoptosis. ProstaglandinsLeukotrienes Essen. Fatty Acids 61, 157–163(1999)
  • Padma M, Das UN. Effect of cis-unsaturatedfatty acids on the activity of protein kinasesand protein phosphorylation in macrophagetumor (AK?5) cells in vitro. ProstaglandinsLeukotrienes Essen. Fatty Acids 60, 55–63(1999)
  • Esposti MD, Hatzinisiriou I, McLennan H,Ralph S. Bcl-2 and mitochondrial oxygenradicals. New approaches with reactive oxygenspecies-sensitive probes. J. Biol. Chem. 274,29831–29837 (1999)
  • Lin HL, Liu TY, Chau GY, Lui WY, Chi CW.Comparison of 2-methoxyestradiol-induced,docetaxel-induced, and paclitaxel-inducedapoptosis in hepatoma cells and its correlationwith reactive oxygen species. Cancer 89,983–994 (2000)
  • Huang P, Feng L, Oldham E A, Keating MJ,Plunkett W. Superoxide dismutase as a targetfor the selective killing of cancer cells. Nature407, 390–395 (2000)
  • Das UN. A radical approach to cancer. Med.Sci. Monit. 8, RA79–RA92 (2002)
  • Ge Y, Byun JS, De Luca P et al. Combinatorialantileukemic disruption of oxidativehomeostasis and mitochondrial stability by theredox reactive thalidomide 2-(2,4-difluorophenyl)-4,5,6,7-tetrafluoro-1H-isoindole-1,3(2H)-dione (CPS49) and flavopiridol. Mol.Pharmacol. 74, 872–883 (2008)
  • Colquhoun A. Mechanisms of action ofeicosapentaenoic acid in bladder cancer cellsin vitro, alterations in mitochondrialmetabolism, reactive oxygen species generationand apoptosis induction. J. Urol. 181,1885–1893 (2011)
  • Naidu MR, Das UN, Kishan A. Intratumoralg?linoleic acid therapy of human gliomas.Prostaglandins Leukot. Essent. Fatty Acids 45,181–184 (1992)
  • Das UN, Prasad VV, Reddy DR. Localapplication of g-linolenic acid in the treatmentof human gliomas. Cancer Lett. 94, 147–155(1995)
  • Bakshi A, Mukherjee D, Bakshi A,Banerji AK, Das UN. g-linolenic acid therapyof human gliomas. Nutrition 19, 305–309(2003)
  • Das UN. g-linolenic acid therapy of humanglioma-a review of in vitro, in vivo, and clinicalstudies. Med. Sci. Monit. 13, RA119–RA31(2007)
  • Reddy DR, Prasad VS, Das UN.Intratumoural injection of g linolenic acid inmalignant gliomas. J. Clin. Neurosci. 5, 36–39(1998)
  • Smith DL, Willis AL, Mahmud I. Eicosanoideffects on cell proliferation in vitro, relevanceto atherosclerosis. Prostaglandins LeukotrienesMed. 16, 1–10 (1984)
  • Sakai T, Yamaguchi N, Shiroko Y,Sekiguchi M, Fujii G, Nishino H.Prostaglandin D2 inhibits the proliferation ofhuman malignant tumor cells. Prostaglandins27, 17–26 (1984)
  • Booyens J, Englebrecht P, Le Roux S,Louwrens CC, Van der Merwe CF,Katzeff IE. Some effects of the essential fattyacids linoleic acid, a-linolenic acid, and oftheir metabolites g-linolenic acid,arachidonic acid, eicosapentaenoic acid, anddocosahexaenoic acid and of prostaglandinsA and E on the proliferation of humanosteogenic sarcoma cells in culture.Prostaglandins Leukotrienes Med. 15, 15–33(1984)
  • Begin ME, Das UN, Ells G, Horrobin DF.Selective killing of human cancer cells bypolyunsaturated fatty acids. ProstaglandinsLeukotrienes Med. 19, 177–186 (1985)
  • Begin ME, Ells G, Das UN, Horrobin DF.Differential killing of human carcinoma cellssupplemented with n-3 and n-6polyunsaturated fatty acids. J. Natl CancerInst. 77, 1053–1062 (1986)
  • Das UN. Tumoricidal action ofcis?unsaturated fatty acids and theirrelationship to free radicals and lipidperoxidation. Cancer Lett. 56, 235–243(1991)
  • Sagar PS, Das UN, Koratkar R, Ramesh G,Padma M, Kumar GS. Cytotoxic action ofcis-unsaturated fatty acids on human cervicalcarcinoma (HeLa) cells, relationship to freeradicals and lipid peroxidation and itsmodulation by calmodulin antagonists.Cancer Lett. 63, 189–198 (1992)
  • Kumar GS, Das UN. Free radical-dependentsuppression of growth of mouse myelomacells by a-linolenic and eicosapentaenoicacids in vitro. Cancer Lett. 92, 27–38 (1995)
  • Padma M, Das UN. Effect of cis-unsaturatedfatty acids on cellular oxidant stress inmacrophage tumor (AK-5) cells in vitro.Cancer Lett. 109, 63–75 (1996)
  • Seigel I, Liu TL, Yaghoubzadeh E,Kaskey TS, Gleicher N. Cytotoxic effects offree fatty acids on ascites tumor cells. J. NatlCancer Inst. 78, 271–277 (1987)
  • Tolnai S, Morgan JF. Studies on the in vitroanti-tumor activity of fatty acids. V.Unsaturated fatty acids. Can. J. Biochem.Physiol. 40, 869–875 (1962)
  • Rossi MA, Cecchini G. Lipid peroxidation inhepatomas of different degrees of deviation.Cell Biochem. Function 1, 49–54 (1983)
  • Burlakova EB, Palmina NP. On the possiblerole of free radical mechanism on theregulation of cell replication. Biofizika 12,82–88 (1967)
  • Gonzalez M, Schemmel R, Dugan L, Gray J,Welsch C. Dietary fish oil inhibits humanbreast carcinoma growth, A function ofincreased lipid peroxidation. Lipids 28,827–832 (1993)
  • Cao Y, Pearman AT, Zimmerman GA,McIntyre TM, Prescott SM. Intracellularunesterified arachidonic acid signalsapoptosis. Proc. Natl Acad. Sci. USA 97,11280–11285 (2000)
  • Brekke OL, Sagen E, Bjerve KS. Specificityof endogenous fatty acid release duringtumor necrosis factor-induced apoptosis inWEHI 164 fibrosarcoma cells. J. Lipid Res.40, 2223–2233 (1999)
  • Ramesh G, Das UN. Effect of free fatty acidson two stage skin carcinogenesis in mice.Cancer Lett. 100, 199–209 (1996)
  • Calviello G, Palozza O, Piccioni E et al.Supplementation with eicosapentaenoic anddocosahexaenoic acid inhibits growth ofMorris hepatocarcinoma 3924A in rats,Effects on proliferation and apoptosis. Int.J. Cancer 75, 699–705 (1998)
  • Chapkin RS, Jiang YH, Davidson LA,Lupton JR. Modulation of intracellularsecond messengers by dietary fat duringcolonic tumor development. Adv. Exp. Med.Biol. 422, 85–96 (1997)
  • Collett ED, Davidson LA, Fan Y-Y, LuptonJR, Chapkin RS. n-6 and n-3polyunsaturated fatty acids differentiallymodulate oncogenic Ras activation incolonocytes. Am. J. Physiol. Cell Physiol. 280,C1066–C1075 (2001)
  • Roynette CE, Calder PC, Dupertuis YM,Pichar C. n-3 Polyunsaturated fatty acids andcolon cancer prevention. Clin. Nutr. 23,139–151 (2004)
  • Calviello G, Di Nicuolo F, Gragnoli S et al.n-3 PUFAs reduce VEGF expression inhuman colon cancer cells modulating theCOX?2/PGE2induced ERK-1 and -2 andHIF-1a induction pathway.Carcinogenesis 25, 2303–2310 (2004)
  • Cai J, Jiang WG, Mansel RE. Inhibition ofangiogenic factor- and tumor-inducedangiogenesis by g -linolenic acid.Prostaglandins Leukotrienes Essen. Fatty Acids60, 21–29 (1999)
  • Rose DP, Connolly JM. Antiangiogenicity ofdocosahexaenoic acid and its role in thesuppression of breast cancer cell growth innude mice. Int. J. Oncol. 15, 1011–1015(1999)
  • Jin Y, Arita M, Zhang Q et al. AntiangiogenesisEffect of the novel antiinflammatoryand pro-resolving lipidmediators. Invest. Ophthalmol. Vis.Sci.50, 4743–4752 (2011)
  • Schlager SI, Ohanian SH. Correlationbetween lipid synthesis in tumor cells andtheir sensitivity to humoral immune attack.Science 197, 773–776 (1977)
  • Schlager SI, Ohanian SH, Borsos T.Correlation between the ability of tumor cellsto incorporate specific fatty acids and theirsensitivity to killing by a specific antibodyplus guinea pig complement. J. Natl CancerInst. 61, 931–934 (1978)
  • Schlager SI, Ohanian SH. Modulation oftumor cell susceptibility to humoral immunekilling through chemical and physicalmanipulation of cellular lipid and fatty acidcomposition. J. Immunol. 125, 1196–1200(1980)
  • Schlager SI, Madden LD, Meltzer MS, BaraS, Mamula MJ. Role of macrophage lipids inregulating tumoricidal activity. Cell Immunol.77, 52–68 (1983)
  • Schlager SI, Meltzer MS, Madden LD. Roleof membrane lipids in the immunologicalkilling of tumor cells, II. Effector cell lipids.Lipids 18, 483–488 (1983)
  • Schlager SI, Ohanian SH. Role of membranelipids in the immunological killing of tumorcells, I. Target cell lipids. Lipids 18, 475–482(1983)
  • Schlager SI, Meltzer MS. Role of macrophagelipids in regulating tumoricidal activity. II.Internal genetic and external physiologicregulatory factors controlling macrophagetumor cytotoxicity also control characteristiclipid changes associated with tumoricidalcells. Cell Immunol. 80, 10–19 (1983)
  • Bell HS, Wharton SB, Leaver HA,Whittle IR. Effects of N-6 essential fattyacids on glioma invasion and growth,experimental studies with glioma spheroids incollagen gels. J. Neurosurg. 91, 989–996(1999)
  • Leaver HA, Wharton SB, Bell HS, Leaver-YapIM, Whittle IR. Highly unsaturated fattyacid induced tumour regression in gliomapharmacodynamics and bioavailability of glinolenic acid in an implantation gliomamodel, effects on tumour biomass, apoptosisand neuronal tissue histology. ProstaglandinsLeukot. Essent. Fatty Acids 67, 283–292(2002)
  • Benadiba M, Miyake JA, Colquhoun A.g-linolenic acid alters Ku80, E2F1, and baxexpression and induces micronucleusformation in C6 glioma cells in vitro. IUBMBLife 61, 244–251 (2011)
  • Rohrbach S. Effects of dietarypolyunsaturated fatty acids on mitochondria.Curr. Pharm. Des. 15, 4103–4116 (2011)
  • Tuo Y, Wang D, Li S, Chen C. Long-termexposure of INS-1 rat insulinoma cells tolinoleic acid and glucose in vitro affects cellviability and function through mitochondrialmediatedpathways. Endocrine 39, 128–138(2011)
  • Zeghichi-Hamri S, de Lorgeril M, Salen Pet al. Protective effect of dietary n-3polyunsaturated fatty acids on myocardialresistance to ischemia-reperfusion injury inrats. Nutr. Res. 30, 849–857 (2010)
  • Hagopian K, Weber KL, Hwee DT et al.Complex I-associated hydrogen peroxideproduction is decreased and electrontransport chain enzyme activities are alteredin n-3 enriched fat-1 mice. PLoS One 5,e12696 (2010)
  • Kansal S, Negi AK, Kaur R et al. Evaluationof the role of oxidative stress inchemopreventive action of fish oil andcelecoxib in the initiation phase of7,12-dimethyl benz(a)anthracene-inducedmammary carcinogenesis. Tumour. Biol. 32,167–177 (2011)
  • Dymkowska D, Wojtczak L. Arachidonicacid-induced apoptosis in rat hepatomaAS-30D cells is mediated by reactive oxygenspecies. Acta Biochim. Pol. 56, 711–715(2011)
  • Ribeiro G, Benadiba M, de Oliveira Silva D,Colquhoun A. The novel ruthenium-glinoleniccomplex [Ru(2) (aGLA(4)Cl]inhibits C6 rat glioma cell proliferation andinduces changes in mitochondrial membranepotential, increased reactive oxygen speciesgeneration and apoptosis in vitro. CellBiochem. Funct. 8, 15–23 (2010)
  • Giros A, Grzybowski M, Sohn VR et al.Regulation of colorectal cancer cell apoptosisby the n-3 polyunsaturated fatty acidsdocosahexaenoic and eicosapentaenoic.Cancer Prev. Re. (Phila) 2, 732–742 (2011)
  • Ponnala S, Rao KP, Chaudhury JR et al.Effect of polyunsaturated fatty acids ondiphenyl hydantoin-induced genetic damagein vitro and in vivo. Prostaglandins Leukot.Essent. Fatty Acids 80, 43–50 (2011)
  • Das UN, Rao KP. Effect of g-linolenic acidand prostaglandins E1 on g-radiation andchemical-induced genetic damage to thebone marrow cells of mice. ProstaglandinsLeukot. Essent. Fatty Acids 74, 165–173(2011)
  • Das UN, Ramadevi G, Rao KP, Rao MS.Prostaglandins and their precursors canmodify genetic damage-induced byg-radiation and benzo(a)pyrene.Prostaglandins 29, 911–920 (1985)
  • Das UN. Tumoricidal and anti-angiogenicactions of g-linolenic acid and its derivatives.Curr. Pharm. Biotechnol. 7, 457–466 (2011)
  • Dhayal S, Morgan NG. Pharmacologicalcharacterization of the cytoprotective effectsof polyunsaturated fatty acids in insulinsecretingBRIN-BD11 cells. Br. J. Pharmacol.162, 1340–1350 (2011)
  • Bazan NG. w-3 fatty acids, pro-inflammatorysignaling and neuroprotection. Curr. Opin.Clin. Nutr. Metab. Care 10, 136–141 (2007)
  • Suresh Y, Das UN. Long-chainpolyunsaturated fatty acids and chemicallyinduced diabetes mellitus, effect of w-6 fattyacids. Nutrition 19, 93–114 (2003)
  • Suresh Y, Das UN. Long-chainpolyunsaturated fatty acids and chemicallyinduced diabetes mellitus. Effect of w-3 fattyacids. Nutrition 19, 213–228 (2003)
  • Sangeetha PS, Das UN. g-linolenic acid andeicosapentaenoic acid potentiate thecytotoxicity of anti-cancer drugs on humancervical carcinoma (HeLa) cells in vitro. Med.Sci. Res. 21, 457–459 (1993)
  • Madhavi N, Das UN. Reversal of KB-3–1and KB-Ch-8–5 tumor cell drug-resistance bycis-unsaturated fatty acids in vitro. Med. Sci.Res. 22, 689–692 (1994)
  • Madhavi N, Das UN. Effect of n-6 and n-3fatty acids on the survival of vincristinesensitive and resistant human cervicalcarcinoma cells in vitro. Cancer Lett. 84,31–41 (1994)
  • Das UN, Madhavi N, Sravan Kumar G,Padma M, Sangeetha P. Can tumour cell drugresistance be reversed by essential fatty acidsand their metabolites? Prostaglandins Leukot.Essent. Fatty Acids 58, 39–54 (1998)
  • Germain E, Chajès V, Cognault S, LhuilleryC, Bougnoux P. Enhancement of doxorubicincytotoxicity by polyunsaturated fatty acids inthe human breast tumor cell line MDAMB-231, relationship to lipid peroxidation.Int. J. Cancer 75, 578–583 (1998)
  • Mahéo K, Vibet S, Steghens JP et al.Differential sensitization of cancer cells todoxorubicin by DHA, a role forlipoperoxidation. Free Radic. Biol. Med. 39,742–751 (2005)
  • Ilc K, Ferrero JM, Fischel JL et al. Cytotoxiceffects of two g-linoleic salts (lithiumg-linolenate or meglumine g-linolenate) aloneor associated with a nitrosourea, anexperimental study on human glioblastomacell lines. Anticancer Drugs 10, 413–417(1999)
  • Menendez JA, Ropero S, Lupu R, Colomer R.w-6 polyunsaturated fatty acid g-linolenicacid (18,3n-6) enhances docetaxel (Taxotere)cytotoxicity in human breast carcinoma cells,Relationship to lipid peroxidation andHER-2/neu expression. Oncol. Rep. 11,1241–1252 (2004)
  • Menéndez JA, Ropero S, del Barbacid MMet al. Synergistic interaction betweenvinorelbine and g-linolenic acid in breastcancer cells. Breast Cancer Res. Treat. 72,203–219 (2002)
  • Menendez JA, Ropero S, Mehmi I, Atlas E,Colomer R, Lupu R. Overexpression andhyperactivity of breast cancer-associated fattyacid synthase (oncogenic antigen-519) isinsensitive to normal arachidonic fattyacid-induced suppression in lipogenic tissuesbut it is selectively inhibited by tumoricidal a-linolenic and g-linolenic fatty acids, a novelmechanism by which dietary fat can altermammary tumorigenesis. Int. J. Oncol. 24,1369–1383 (2004)
  • Kong X, Ge H, Chen L et al. g-linolenic acidmodulates the response of multidrug-resistantK562 leukemic cells to anticancer drugs.Toxicol. In vitro 23, 634–639 (2011)
  • Ghosh J, Myers CE. Inhibition ofarachidonate 5?lipoxygenase triggers massiveapoptosis in human prostate cancer cells.Proc. Natl Acad. Sci. USA 95, 13182–13187(1998)
  • Rizzo MT, Regazzi E, Garau D et al.Induction of apoptosis by arachidonic acid inchronic myeloid leukemia cells. Cancer Res.59, 5047–5053 (1999)
  • Wolf LA, Laster SM. Characterization ofarachidonic acid-induced apoptosis. Cell.Biochem. Biophys. 30, 353–368 (1999)
  • Cao Y, Pearman AT, Zimmerman GA,McIntyre TM, Prescott SM. Intracellularunesterified arachidonic acid signalsapoptosis. Proc. Natl Acad. Sci. USA 97,11280–11285 (2000)
  • Cao Y, Dave KB, Doan TP, Prescott SM.Fatty acid CoA ligase 4 is upregulated incolon adenocarcinoma. Cancer Res. 61,8429–8434 (2001)
  • Sun Y, Tang XM, Half E, Kuo MT,Sinicrope FA. Cyclooxygenase?2overexpression reduces apoptotic susceptibilityby inhibiting the cytochrome c-dependentapoptotic pathway in human colon cancercells. Cancer Res. 62, 6323–6328 (2002)
  • Tang X, Sun YJ, Half E, Kuo MT,Sinicrope F. Cyclooxygenase-2 overexpressioninhibits death receptor 5 expression andconfers resistance to tumor necrosisfactor-related apoptosis-inducing ligandinducedapoptosis in human colon cancercells. Cancer Res. 62, 4903–4908 (2002)
  • Shureiqi I, Chen D, Lotan R et al.15?lipoxygenase-1 mediates nonsteroidalanti-inflammatory drug-induced apoptosisindependently of cyclooxygenase-2 in coloncancer cells. Cancer Res. 60, 6846–6850(2000)
  • Shureiqi I, Chen D, Lee JJ et al. 15?LOX-1,a novel molecular target of nonsteroidalanti-inflammatory drug-induced apoptosis incolorectal cancer cells. J. Natl Cancer Inst. 92,1136–1142 (2000)
  • Shureiqi I, Xu X, Chen D et al. Nonsteroidalanti-inflammatory drugs induce apoptosis inesophageal cancer cells by restoring15?lipoxygenase-1 expression. Cancer Res. 61,4879–4884 (2001)
  • Maccarrone M, Ranalli M, Bellincampi Let al. Activation of different lipoxygenaseisozymes induces apoptosis in humanerythroleukemia and neuroblastoma cells.Biochem. Biophys. Res. Commun. 272, 345–350(2000)
  • Avis I, Hong SH, Martinez A et al. Fivelipoxygenaseinhibitors can mediate apoptosisin human breast cancer cell lines throughcomplex eicosanoid interactions. FASEB J. 15,2007–2011 (2001)
  • Hong SH, Avis I, Vos MD, Martínez A,Treston AM, Mulshine JL. Relationship ofarachidonic acid metabolizing enzymeexpression in epithelial cancer cell lines to thegrowth effect of selective biochemicalinhibitors. Cancer Res. 59, 2223–2228 (1999)
  • Leaver HA, Bell HS, Rizzo MT et al.Antitumour and pro-apoptotic actions ofhighly unsaturated fatty acids in glioma.Prostaglandins Leukot. Essent. Fatty Acids 66,19–29 (2002)
  • Menendez JA, Ropero S, Mehmi I, Atlas E,Colomer R, Lupu R. Overexpression andhyperactivity of breast cancer-associated fattyacid synthase (oncogenic antigen-519) isinsensitive to normal arachidonic fattyacid-induced suppression in lipogenic tissuesbut it is selectively inhibited by tumoricidala-linolenic and g-linolenic fatty acids, a novelmechanism by which dietary fat can altermammary tumorigenesis. Int. J. Oncol. 24,1369–1383 (2004)
  • Menendez JA, Mehmi I, Atlas E, Colomer R,Lupu R. Novel signaling molecules implicatedin tumor-associated fatty acid synthasedependentbreast cancer cell proliferation andsurvival, Role of exogenous dietary fatty acids,p53-p21WAF1/CIP1, ERK1/2 MAPK,p27KIP1, BRCA1, and NF-k B. Int. J. Oncol.24, 591–608 (2004)
  • Menendez JA, Colomer R, Lupu R. Inhibitionof fatty acid synthase-dependent neoplasticlipogenesis as the mechanism of g-linolenicacid-induced toxicity to tumor cells, anextension to Nwankwo’s hypothesis. Med.Hypotheses 64, 337–341 (2005)
  • Menendez JA, Colomer R, Lupu R. Why doestumor-associated fatty acid synthase(oncogenic antigen-519) ignore dietary fattyacids? Med. Hypotheses 64, 342–349 (2005)
  • Nomura DK, Long JZ, Niessen S, Hoover HS,Ng S-W, Cravatt BF. Monoacylglycerol lipaseregulates a fatty acid network that promotescancer pathogenesis. Cell 140, 49–61 (2010)
  • Levine L. Proteasome inhibitors, their effectson arachidonic acid release from cells inculture and arachidonic acid metabolism inrat liver cells. BMC Pharmacol. 4, 15. (2004)
  • Eitsuka T, Nakagawa K, Suzuki T,Miyazawa T. Polyunsaturated fatty acidsinhibit telomerase activity in DLD-1 humancolorectal adenocarcinoma cells, a dualmechanism approach. Biochim. Biophys. Acta1737, 1–10 (2005)
  • Eitsuka T, Nakagawa K, Miyazawa T. Dualmechanisms for telomerase inhibition inDLD-1 human colorectal adenocarcinomacells by polyunsaturated fatty acids.Biofactors 21, 19–21 (2004)
  • Jiang WG, Bryce RP, Mansel RE.g linolenic acid regulates gap junctioncommunication in endothelial cells and theirinteraction with tumour cells. ProstaglandinsLeukot. Essen. Fatty Acids 56, 307–316(1997)
  • Sethi S, Eastman AY, Eaton JW. Inhibitionof phagocyte-endothelium interactions byoxidized fatty acids, a natural antiinflammatorymechanism? J. Lab. Clin. Med.128, 27–38 (1996)
  • Germain E, Chajes V, Cognault S, LhuilleryC, Bougnoux P. Enhancement ofdoxorubicin cytotoxicity by polyunsaturatedfatty acids in the human breast tumor cellline MDA-MB-231; relationship to lipidperoxidation. Int. J. Cancer 75, 578–583(1998)
  • Shao Y, Pardini L, Pardini RS. Dietarymenhaden oil enhances mitomycin Cantitumor activity toward human mammarycarcinoma MX-1. Lipids 30, 1035–1045(1995)
  • Chow SC, Jondal M. Ca2+ entry in T cells isactivated by emptying the inositol1,4,5-triphosphate sensitive Ca2+ pool. CellCalcium 11, 641–646 (1990)
  • Nakagawa T, Zhu H, Morishima N et al.Caspase-12 mediates endoplasmic reticulumspecificapoptosis and cytotoxicity byamyloid-b. Nature 403, 98–103 (2000)
  • Huang ZH, Hii CS, Rathjen DA, Poulos A,Murray AW, Ferrante A. N-6 and N-3polyunsaturated fatty acids stimulatetranslocation of protein kinase Ca, bI,bIIand –e and enhance agonist-inducedNADPH oxidase in macrophages. Biochem.J. 325 (pt 2), 553–557 (1997)
  • Peterson DA, Mehta N, Butterfield J et al.Polyunsaturated fatty acids stimulatesuperoxide formation in tumor cells, amechanism for specific cytotoxicity and amodel for tumor necrosis factor? Biochem.Biophys. Res. Commun. 155, 1033–1037(1988)
  • Chiu LC, Wan JM. Induction of apoptosisin HL-60 cells by eicosapentaenoic acid(EPA) is associated with downregulation ofbcl-2 expression. Cancer Lett. 145, 17–27(1999)
  • Albino AP, Juan G, Traganos F et al. Cellcycle arrest and apoptosis of melanoma cellsby docosahexaenoic acid, association withdecreased pRb phosphorylation. Cancer Res.60, 4139–4145 (2000)
  • Chen ZY, Istfan NW. Docosahexaenoicacid, a major constituent of fish oil diets,prevents activation of cyclin-dependentkinases and S-phase entry by serumstimulation in HT-29 cells. ProstaglandinsLeukot. Essent. Fatty Acids 64, 67–73 (2001)
  • Palakurthi SS, Fluckiger R, Aktas H et al.Inhibition of translation initiation mediatesthe anticancer effect of the n-3polyunsaturated fatty acid eicosapentaenoicacid. Cancer Res. 60, 2919–2925 (2000)
  • Nishida M, Maruyama Y, Tanaka R,Kontani K, Nagao T, Kurose H. G ai andG ao are target proteins of reactive oxygenspecies. Nature 408, 492–495 (2000)
  • Das UN. Abrupt and complete occlusion oftumor-feeding vessels by g-linolenic acid.Nutrition 18, 662–664 (2002)
  • Das UN. Occlusion of infusion vessels ong-linolenic acid infusion. ProstaglandinsLeukot. Essent. Fatty Acids 70; 23–32 (2004)
  • Calon F, Lim GP, Yang F et al.Docosahexaenoic acid protects fromdendritic pathology in an Alzheimer’sdisease mouse model. Neuron 43, 633–645(2004)
  • Lukiw WJ, Cui J-G, Marcheselli VL et al. Arole for docosahexaenoic acid-derivedneuroprotectin D1 in neural cell survivaland Alzheimer disease. J. Clin. Invest. 115,2774–2783 (2005)
  • Comba A, Maestri DM, Berra MA et al. Effectof w-3 and w-9 fatty acid rich oils onlipoxygenases and cyclooxygenases enzymesand on the growth of a mammaryadenocarcinoma model. Lipids Health Dis. 9,112 (2010)
  • Liu B, Maher RJ, Hannun YA, Porter AT,Honn KV. 12(S)-HETE enhancement ofprostate tumor cell invasion, selective role ofPKC a. J. Natl Cancer Inst. 86, 1145–1151(1994)
  • Ding XZ, Tong WG, Adrian TE.12-lipoxygenase metabolite 12(S)-HETEstimulates human pancreatic cancer cellproliferation via protein tyrosinephosphorylation and ERK activation. Int.J. Cancer 94, 630–636 (2001)
  • Chen GG, Xu H, Lee JF et al. 15-hydroxyeicosatetraenoicacid arrests growth ofcolorectal cancer cells via a peroxisomeproliferator-activated receptor g-dependentpathway. Int. J. Cancer 107, 837–843 (2003)
  • Najid A, Beneytout JL, Tixier M. Cytotoxicityof arachidonic acid and of its lipoxygenasemetabolite 15-hydroperoxyeicosatetraenoic acidon human breast cancer MCF-7 cells inculture. Cancer Lett. 46, 137–141 (1989)
  • Shureiqi I, Jiang W, Zuo X et al. The15?lipoxygenase-1 product13-S-hydroxyoctadecadienoic acid downregulatesPPAR-d to induce apoptosis incolorectal cancer cells. Proc. Natl Acad. Sci.USA 100, 9968–9973 (2003)
  • Nixon JB, Kim KS, Lamb PW, Bottone FG,Eling TE. 15?lipoxygenase-1 has antitumorigeniceffects in colorectal cancer.Prostaglandins Leukot. Essent. Fatty Acids 70,7–15 (2004)
  • Kim SJ. Lipoxins formation by rat basophilicleukemia (RBL-1) cells. Res. Commun. Chem.Pathol. Pharmacol. 68, 159–174 (1990)
  • Stenke L, Edenius C, Samuelsson J,Lindgren JA. Deficient lipoxin synthesis, anovel platelet dysfunction inmyeloproliferative disorders with specialreference to blastic crisis of chronicmyelogenous leukemia. Blood 78, 2989–2995(1991)
  • Chen Y, Hao H, He S et al. Lipoxin A4 and itsanalogue suppress the tumor growth oftransplanted H22 in mice, the role ofantiangiogenesis. Mol. Cancer Ther. 9,2164–2174 (2010)
  • Gleissman H, Yang R, Martinod K et al.Docosahexaenoic acid metabolome in neuraltumors, identification of cytotoxicintermediates. FASEB J. 24, 906–915 (2010)
  • Wolrum C, Shi S, Jayaprakash KN et al.Mechanisms and optimization of in vivodelivery of lipophilic siRNAs. Nat. Biotechnol.25, 1149–1157 (2007)
  • Ichim TE, Popov IA, Riordan NH et al.A novel method of modifying immuneresponses by vaccination with lipiodol-siRNAmixtures. J. Translat. Med. 4, 2 (2011)
  • Resina S, Prevot P, Thierry AR. Physicochemicalcharacteristics of lipoplexes influencecell uptake mechanisms and transfectionefficacy. PLoS ONE 4(6), e6058 (2011)
  • Love KT, Mahon KP, Levins CG et al.Lipid-like materials for low-dose, in vivo genesilencing. Proc. Natl. Acad. Sci. USA 107,1864–1869 (2010)
  • Davis ME, Zuckerman JE, Choi CHJ et al.Evidence of RNAi in humans fromsystemically administered siRNA via targetednanoparticles. Nature 464, 1067–1071 (2010)
  • DeNicola GM, Karreth FA, Humpton TJet al. Oncogene-induced Nrf2 transcriptionpromotes ROS detoxification andtumorigenesis. Nature 475, 106–109(2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.