349
Views
13
CrossRef citations to date
0
Altmetric
Reviews

Electronegative LDL: a useful biomarker of cardiovascular risk?

, , &
Pages 345-359 | Published online: 18 Jan 2017

Bibliography

  • Segrest JP, Jones MK, De Loof H, Dashti N. Structure of apolipoprotein B‑100 in low density lipoproteins. J. Lipid Res. 42(9), 1346–1367 (2001).
  • Navab M, Berliner JA, Watson AD et al. The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler. Thromb. Vasc. Biol. 16(7), 831–842 (1996).
  • Williams KJ, Tabas I. Atherosclerosis and inflammation. Science 297(5581), 521–522 (2002).
  • Williams KJ, Tabas I. Lipoprotein retention – and clues for atheroma regression. Arterioscler. Thromb. Vasc. Biol. 25(8), 1536–1540 (2005).
  • Avogaro P, Bon GB, Cazzolato G. Presence of a modified low density lipoprotein in humans. Arteriosclerosis 8(1), 79–87 (1988).
  • Ishigaki Y, Oka Y, Katagiri H. Circulating oxidized LDL: a biomarker and a pathogenic factor. Curr. Opin Lipidol. 20(5), 363–369 (2009).
  • Sjogren P, Basu S, Rosell M et al. Measures of oxidized low-density lipoprotein and oxidative stress are not related and not elevated in otherwise healthy men with the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 25(12), 2580–2586 (2005).
  • Fraley AE, Tsimikas S. Clinical applications of circulating oxidized low-density lipoprotein biomarkers in cardiovascular disease. Curr. Opin Lipidol. 17(5), 502–509 (2006).
  • Cohen MP, Lautenslager G, Shea E. Glycated LDL concentrations in non-diabetic and diabetic subjects measured with monoclonal antibodies reactive with glycated apolipoprotein B epitopes. Eur. J. Clin. Chem. Clin. Biochem. 31(11), 707–713 (1993).
  • Lopes-Virella MF, Hunt KJ, Baker NL, Lachin J, Nathan DM, Virella G. Levels of oxidized LDL and advanced glycation end products-modified LDL in circulating immune complexes are strongly associated with increased levels of carotid intima–media thickness and its progression in Type 1 Diabetes. Diabetes 60(2), 582–589 (2011).
  • Basnakian AG, Shah SV, Ok E, Altunel E, Apostolov EO. Carbamylated LDL. Adv. Clin. Chem. 51, 25–52 (2010).
  • Sánchez-Quesada JL, Villegas S. Modified forms of LDL in plasma. In: Atherogenesis. Parthasarathy S (Ed). InTech, Zagreb, Croatia, 447–472 (2011).
  • Sánchez-Quesada JL, Benítez S, Ordonez- Llanos J. Electronegative low-density lipoprotein. Curr. Opin Lipidol. 15(3), 329–335 (2004).
  • Sánchez-Quesada JL, Benítez S, Otal C, Franco M, Blanco-Vaca F, Ordonez-Llanos J. Density distribution of electronegative LDL in normolipemic and hyperlipemic subjects. J. Lipid Res. 43(5), 699–705 (2002).
  • Gaubatz JW, Gillard BK, Massey JB et al. Dynamics of dense electronegative low density lipoproteins and their preferential association with lipoprotein phospholipase A(2). J. Lipid Res. 48(2), 348–357 (2007).
  • Benítez S, Sánchez-Quesada JL, Lucero L et al. Changes in low-density lipoprotein electronegativity and oxidizability after aerobic exercise are related to the increase in associated non-esterified fatty acids. Atherosclerosis 160(1), 223–232 (2002).
  • Bittolo-Bon G, Cazzolato G. Analytical capillary isotachophoresis of total plasma lipoproteins: a new tool to identify atherogenic low density lipoproteins. J. Lipid Res. 40(1), 170–177 (1999).
  • Pentikainen MO, Oorni K, Ala-Korpela M, Kovanen PT. Modified LDL – trigger of atherosclerosis and inflammation in the arterial intima. J. Intern. Med. 247(3), 359–370 (2000).
  • Bhakdi S, Lackner KJ, Han SR, Torzewski M, Husmann M. Beyond cholesterol: the enigma of atherosclerosis revisited. Thromb. Haemost. 91(4), 639–645 (2004).
  • Benítez S, Camacho M, Arcelus R et al. Increased lysophosphatidylcholine and non-esterified fatty acid content in LDL induces chemokine release in endothelial cells. Relationship with electronegative LDL. Atherosclerosis 177(2), 299–305 (2004).
  • Benítez S, Villegas V, Bancells C et al. Impaired binding affinity of electronegative low-density lipoprotein (LDL) to the LDL receptor is related to nonesterified fatty acids and lysophosphatidylcholine content. Biochemistry 43(50), 15863–15872 (2004).
  • Asatryan L, Hamilton RT, Isas JM, Hwang J, Kayed R, Sevanian A. LDL phospholipid hydrolysis produces modified electronegative particles with an unfolded apoB‑100 protein. J. Lipid Res. 46(1), 115–122 (2005).
  • Avogaro P, Cazzolato G, Bittolo-Bon G. Some questions concerning a small, more electronegative LDL circulating in human plasma. Atherosclerosis 91(1–2), 163–171 (1991).
  • Blanco FJ, Villegas S, Benítez S et al. 2D‑NMR reveals different populations of exposed lysine residues in the apoB‑100 protein of electronegative and electropositive fractions of LDL particles. J. Lipid Res. 51(6), 1560–1565 (2010).
  • Greco G, Balogh G, Brunelli R et al. Generation in human plasma of misfolded, aggregation-prone electronegative low density lipoprotein. Biophys. J. 97(2), 628–635 (2009).
  • Sanchez-Quesada JL, Benítez S, Perez A et al. The inflammatory properties of electronegative low-density lipoprotein from Type 1 diabetic patients are related to increased platelet-activating factor acetylhydrolase activity. Diabetologia 48(10), 2162–2169 (2005).
  • Ziouzenkova O, Asatryan L, Sahady D et al. Dual roles for lipolysis and oxidation in peroxisome proliferation-activator receptor responses to electronegative low density lipoprotein. J. Biol. Chem. 278(41), 39874–39881 (2003).
  • Tai MH, Kuo SM, Liang HT et al. Modulation of angiogenic processes in cultured endothelial cells by low density lipoproteins subfractions from patients with familial hypercholesterolemia. Atherosclerosis 186(2), 448–457 (2006).
  • Benitez S, Camacho M, Bancells C, Vila L, Sanchez-Quesada JL, Ordonez-Llanos J. Wide proinflammatory effect of electronegative low-density lipoprotein on human endothelial cells assayed by a protein array. Biochim. Biophys. Acta 1761(9), 1014–1021 (2006).
  • Benitez S, Ordonez-Llanos J, Franco M et al. Effect of simvastatin in familial hypercholesterolemia on the affinity of electronegative low-density lipoprotein subfractions to the low-density lipoprotein receptor. Am. J. Cardiol. 93(4), 414–420 (2004).
  • de Castellarnau C, Bancells C, Benitez S, Reina M, Ordonez-Llanos J, Sanchez- Quesada JL. Atherogenic and inflammatory profile of human arterial endothelial cells (HUAEC) in response to LDL subfractions. Clin. Chim. Acta 376(1–2), 233–236 (2007).
  • Abe Y, Fornage M, Yang CY et al. L5, the most electronegative subfraction of plasma LDL, induces endothelial vascular cell adhesion molecule 1 and CXC chemokines, which mediate mononuclear leukocyte adhesion. Atherosclerosis 192(1), 56–66 (2007).
  • de Castellarnau C, Sanchez-Quesada JL, Benitez S et al. Electronegative LDL from normolipemic subjects induces IL-8 and monocyte chemotactic protein secretion by human endothelial cells. Arterioscler. Thromb. Vasc. Biol. 20(10), 2281–2287 (2000).
  • Bancells C, Sanchez-Quesada JL, Birkelund R, Ordonez-Llanos J, Benitez S. HDL and electronegative LDL exchange anti- and pro-inflammatory properties. J. Lipid Res. 51(10), 2947–2956 (2010).
  • Duncan RF, Peterson H, Hagedorn CH, Sevanian A. Oxidative stress increases eukaryotic initiation factor 4E phosphorylation in vascular cells. Biochem. J. 369(Pt 2), 213–225 (2003).
  • Estruch M, Sanchez-Quesada JL, Bancells C, Beloki L, Ordonez-Llanos J, Benitez S. Involvement of CD14 and TLR4 in the binding of LDL(-) and consequent cytokine release in monocytes. Cross-competition between LDL(-) and LPS. Presented at: 80th European Atherosclerosis Society Congress. Milan, Italy 2012.
  • Lu J, Yang JH, Burns AR et al. Mediation of electronegative low-density lipoprotein signaling by LOX‑1. a possible mechanism of endothelial apoptosis. Circ. Res. 104(5), 619–627 (2009).
  • Tang D, Lu J, Walterscheid JP et al. Electronegative LDL circulating in smokers impairs endothelial progenitor cell differentiation by inhibiting Akt phosphorylation via LOX‑1. J. Lipid Res. 49(1), 33–47 (2008).
  • Lu J, Jiang W, Yang JH et al. Electronegative LDL impairs vascular endothelial cell integrity in diabetes by disrupting fibroblast growth factor 2 (FGF2) autoregulation. Diabetes 57(1), 158–166 (2008).
  • Chen HH, Hosken BD, Huang M et al. Electronegative LDLs from familial hypercholesterolemic patients are physicochemically heterogeneous but uniformly proapoptotic. J. Lipid Res. 48(1), 177–184 (2007).
  • Pedrosa AM, Faine LA, Grosso DM, de Las Heras B, Bosca L, Abdalla DS. Electronegative LDL induction of apoptosis in macrophages: involvement of Nrf2. Biochim. Biophys. Acta 1801(4), 430–437 (2010).
  • Bancells C, Benitez S, Jauhiainen M et al. High binding affinity of electronegative LDL to human aortic proteoglycans depends on its aggregation level. J. Lipid Res. 50(3), 446–455 (2009).
  • Bancells C, Benitez S, Ordonez-Llanos J et al. Immunochemical analysis of the electronegative LDL subfraction shows that abnormal N‑terminal apolipoprotein B conformation is involved in increased binding to proteoglycans. J. Biol. Chem. 286(2), 1125–1133 (2011).
  • Bancells C, Villegas S, Blanco FJ et al. Aggregated electronegative low density lipoprotein in human plasma shows a high tendency toward phospholipolysis and particle fusion. J. Biol. Chem. 285(42), 32425–32435 (2010). activity present in aggregated LDL(-).
  • Parasassi T, De Spirito M, Mei G et al. Low density lipoprotein misfolding and amyloidogenesis. FASEB J. 22(7), 2350–2356 (2008).
  • Kinnunen PK, Holopainen JM. Sphingomyelinase activity of LDL: a link between atherosclerosis, ceramide, and apoptosis? Trends Cardiovasc. Med. 12(1), 37–42 (2002).
  • Hodis HN, Kramsch DM, Avogaro P et al. Biochemical and cytotoxic characteristics of an in vivo circulating oxidized low density lipoprotein (LDL‑). J. Lipid Res. 35(4), 669–677 (1994).
  • Demuth K, Myara I, Chappey B et al. A cytotoxic electronegative LDL subfraction is present in human plasma. Arterioscler. Thromb. Vasc. Biol. 16(6), 773–783 (1996).
  • Bancells C, Canals F, Benitez S et al. Proteomic analysis of electronegative low-density lipoprotein. J. Lipid Res. 51(12), 3508–3515 (2010).
  • Yang CY, Chen HH, Huang MT et al. Pro-apoptotic low-density lipoprotein subfractions in Type II diabetes. Atherosclerosis 193(2), 283–291 (2007).
  • Morton RE, Gnizak HM, Greene DJ, Cho KH, Paromov VM. Lipid transfer inhibitor protein (apolipoprotein F) concentration in normolipidemic and hyperlipidemic subjects. J. Lipid Res. 49(1), 127–135 (2008).
  • Poon S, Treweek TM, Wilson MR, Easterbrook-Smith SB, Carver JA. Clusterin is an extracellular chaperone that specifically interacts with slowly aggregating proteins on their off-folding pathway. FEBS Lett. 513(2–3), 259–266 (2002).
  • Wilson MR, Easterbrook-Smith SB. Clusterin is a secreted mammalian chaperone. Trends Biochem. Sci. 25(3), 95–98 (2000).
  • Schwarz M, Spath L, Lux CA et al. Potential protective role of apoprotein J (clusterin) in atherogenesis: binding to enzymatically modified low-density lipoprotein reduces fatty acid-mediated cytotoxicity. Thromb. Haemost. 100(1), 110–118 (2008).
  • Benitez S, Sanchez-Quesada JL, Ribas V et al. Platelet-activating factor acetylhydrolase is mainly associated with electronegative low-density lipoprotein subfraction. Circulation 108(1), 92–96 (2003).
  • Ursini F, Zamburlini A, Cazzolato G, Maiorino M, Bon GB, Sevanian A. Postprandial plasma lipid hydroperoxides: a possible link between diet and atherosclerosis. Free Radic. Biol. Med. 25(2), 250–252 (1998).
  • Benitez S, Bancells C, Ordonez-Llanos J, Sanchez-Quesada JL. Pro-inflammatory action of LDL(-) on mononuclear cells is counteracted by increased IL10 production. Biochim. Biophys. Acta 1771(5), 613–622 (2007).
  • Asatryan L, Ziouzenkova O, Duncan R, Sevanian A. Heme and lipid peroxides in hemoglobin-modified low-density lipoprotein mediate cell survival and adaptation to oxidative stress. Blood 102(5), 1732–1739 (2003).
  • Bancells C, Benitez S, Villegas S, Jorba O, Ordonez-Llanos J, Sanchez-Quesada JL. Novel phospholipolytic activities associated with electronegative low-density lipoprotein are involved in increased self-aggregation. Biochemistry 47(31), 8186–8194 (2008).
  • Vedie B, Myara I, Pech MA et al. Fractionation of charge-modified low density lipoproteins by fast protein liquid chromatography. J. Lipid Res. 32(8), 1359–1369 (1991).
  • Noda K, Zhang B, Uehara Y, Miura S, Matsunaga A, Saku K. Potent capillary isotachophoresis (cITP) for analyzing a marker of coronary heart disease risk and electronegative low-density lipoprotein (LDL) in small dense LDL fraction. Circ. J. 69(12), 1568–1570 (2005).
  • Zhang B, Kaneshi T, Ohta T, Saku K. Relation between insulin resistance and fast-migrating LDL subfraction as characterized by capillary isotachophoresis. J. Lipid Res. 46(10), 2265–2277 (2005).
  • Zhang B, Maeda N, Okada K et al. Association between fast-migrating low-density lipoprotein subfraction as characterized by capillary isotachophoresis and intima–media thickness of carotid artery. Atherosclerosis 187(1), 205–212 (2006).
  • Zhang B, Matsunaga A, Rainwater DL et al. Effects of rosuvastatin on electronegative LDL as characterized by capillary isotachophoresis: the ROSARY Study. J. Lipid Res. 50(9), 1832–1841 (2009).
  • Zhang B, Miura S, Yanagi D et al. Reduction of charge-modified LDL by statin therapy in patients with CHD or CHD risk factors and elevated LDL‑C levels: the SPECIAL study. Atherosclerosis 201(2), 353–359 (2008).
  • Kitano S, Higashimoto Y, Harada S et al. An improved anion-exchange highperformance liquid chromatography method for measuring oxidized form of LDLs in human plasma. Ann. Clin. Biochem. 47(Pt 5), 460–466 (2010).
  • Hirowatari Y, Tsunoda Y, Ogura Y, Homma Y. Analyzing of high-density lipoprotein subfractions and low-density lipoprotein subfractions in human serum with anionexchange chromatography. Atherosclerosis 204(2), e52–e57 (2009).
  • Ohmori R, Momiyama Y, Tanaka N et al. LDL‑3 fraction levels in patients with unstable angina: assessment by anionexchange high-performance liquid chromatography. Atherosclerosis 203(1), 45–46 (2009).
  • Damasceno NR, Sevanian A, Apolinario E, Oliveira JM, Fernandes I, Abdalla DS. Detection of electronegative low density lipoprotein (LDL‑) in plasma and atherosclerotic lesions by monoclonal antibody-based immunoassays. Clin. Biochem. 39(1), 28–38 (2006). n Demonstrates the development of immunoassays for the detection of LDL(-).
  • Santo Faulin Tdo E, de Sena KC, Rodrigues Telles AE, de Mattos Grosso D, Bernardi Faulin EJ, Abdalla DS. Validation of a novel ELISA for measurement of electronegative low-density lipoprotein. Clin. Chem. Lab. Med. 46(12), 1769–1775 (2008). n Demonstrates the development of immunoassays for the detection of LDL(-).
  • Mello AP, da Silva IT, Abdalla DS, Damasceno NR. Electronegative low-density lipoprotein: origin and impact on health and disease. Atherosclerosis 215(2), 257–265 (2011).
  • Grosso DM, Ferderbar S, Wanschel AC, Krieger MH, Higushi ML, Abdalla DS. Antibodies against electronegative LDL inhibit atherosclerosis in LDLr-/- mice. Braz. J. Med. Biol. Res. 41(12), 1086–1092 (2008).
  • Faulin Tdo E, de Sena-Evangelista KC, Pacheco DB, Augusto EM, Abdalla DS. Development of immunoassays for antielectronegative LDL autoantibodies and immune complexes. Clin. Chim. Acta 413(1–2), 291–297 (2011).
  • Andrade CAS, Oliveira MDL, Faulin TES, Hering VR, Abdalla DS. Biosensors for detection of low-density lipoprotein and its modified forms. In: Biosensors for Health, Environment and Biosecurity, Serra PA (Ed.). InTech, Zagreb, Croatia, 215–240 (2011).
  • Gambino R, Pisu E, Pagano G, Cassader M. Low-density lipoproteins are more electronegatively charged in Type 1 than in Type 2 diabetes mellitus. Lipids 41(6), 529–533 (2006).
  • Yano M, Inoue M, Maehata E et al. Increased electronegative charge of serum low-density lipoprotein in patients with diabetes mellitus. Clin. Chim. Acta 340(1–2), 93–98 (2004).
  • Sanchez-Quesada JL, Otal-Entraigas C, Franco M et al. Effect of simvastatin treatment on the electronegative low-density lipoprotein present in patients with heterozygous familial hypercholesterolemia. Am. J. Cardiol. 84(6), 655–659 (1999).
  • Zhang B, Bottcher A, Imaizumi S, Noda K, Schmitz G, Saku K. Relation between charge-based apolipoprotein B-containing lipoprotein subfractions and remnant-like particle cholesterol levels. Atherosclerosis 191(1), 153–161 (2007).
  • Krauss RM. Atherogenic lipoprotein phenotype and diet-gene interactions. J. Nutr. 131(2), S340–S343 (2001).
  • Moro E, Alessandrini P, Zambon C et al. Is glycation of low density lipoproteins in patients with Type 2 diabetes mellitus a LDL pre-oxidative condition? Diabet. Med. 16(8), 663–669 (1999).
  • Moro E, Zambon C, Pianetti S, Cazzolato G, Pais M, Bittolo Bon G. Electronegative low density lipoprotein subform (LDL‑) is increased in Type 2 (non-insulin-dependent) microalbuminuric diabetic patients and is closely associated with LDL susceptibility to oxidation. Acta Diabetol. 35(3), 161–164 (1998).
  • Sanchez-Quesada JL, Perez A, Caixas A et al. Electronegative low density lipoprotein subform is increased in patients with short-duration IDDM and is closely related to glycaemic control. Diabetologia 39(12), 1469–1476 (1996).
  • Sanchez-Quesada JL, Perez A, Caixas A et al. Effect of glycemic optimization on electronegative low-density lipoprotein in diabetes: relation to nonenzymatic glycosylation and oxidative modification. J. Clin. Endocrinol. Metab. 86(7), 3243–3249 (2001).
  • Hasegawa G, Kajiyama S, Tanaka T et al. The alpha-glucosidase inhibitor acarbose reduces the net electronegative charge of low-density lipoprotein in patients with newly diagnosed Type 2 diabetes. Clin. Chim. Acta 390(1–2), 110–114 (2008).
  • Benitez S, Perez A, Sanchez-Quesada JL et al. Electronegative low-density lipoprotein subfraction from Type 2 diabetic subjects is proatherogenic and unrelated to glycemic control. Diabetes Metab. Res. Rev. 23(1), 26–34 (2007).
  • Apolinario E, Ferderbar S, Pereira EC et al. Minimally modified (electronegative) LDL- and anti-LDL- autoantibodies in diabetes mellitus and impaired glucose tolerance. Int. J. Atheroscler. 1(1), 42–47 (2006).
  • Nakano K, Hasegawa G, Fukui M et al. Effect of pioglitazone on various parameters of insulin resistance including lipoprotein subclass according to particle size by a gel-permeation high-performance liquid chromatography in newly diagnosed patients with Type 2 diabetes. Endocr. J. 57(5), 423–430 (2010).
  • Phillips C, Owens D, Collins P, Tomkin GH. Low density lipoprotein non-esterified fatty acids and lipoprotein lipase in diabetes. Atherosclerosis 181(1), 109–114 (2005).
  • Ziouzenkova O, Sevanian A. Oxidative modification of low-density lipoprotein (LDL) in HD patients: role in electronegative LDL formation. Blood Purif. 18(3), 169–176 (2000).
  • Lobo J, Santos F, Grosso D et al. Electronegative LDL and lipid abnormalities in patients undergoing hemodialysis and peritoneal dialysis. Nephron. Clin. Pract. 108(4), c298–c304 (2008).
  • Lobo JC, Mafra D, Farage NE et al. Increased electronegative LDL and decreased antibodies against electronegative LDL levels correlate with inflammatory markers and adhesion molecules in hemodialysed patients. Clin. Chim. Acta 412(19–20), 1788–1792 (2011).
  • Ziouzenkova O, Asatryan L, Akmal M et al. Oxidative cross-linking of ApoB100 and hemoglobin results in low density lipoprotein modification in blood. Relevance to atherogenesis caused by hemodialysis. J. Biol. Chem. 274(27), 18916–18924 (1999).
  • Ziouzenkova O, Asatryan L, Tetta C, Wratten ML, Hwang J, Sevanian A. Oxidative stress during ex vivo hemodialysis of blood is decreased by a novel hemolipodialysis procedure utilizing antioxidants. Free Radic. Biol. Med. 33(2), 248–258 (2002).
  • Holvoet P, Perez G, Zhao Z, Brouwers E, Bernar H, Collen D. Malondialdehydemodified low density lipoproteins in patients with atherosclerotic disease. J. Clin. Invest. 95(6), 2611–2619 (1995).
  • Cho KH, Shin DG, Baek SH, Kim JR. Myocardial infarction patients show altered lipoprotein properties and functions when compared with stable angina pectoris patients. Exp. Mol. Med. 41(2), 67–76 (2009).
  • Tomasik A, Jachec W, Skrzep-Poloczek B, Widera-Romuk E, Wodniecki J, Wojciechowska C. Circulating electronegatively charged low-density lipoprotein in patients with angiographically documented coronary artery disease. Scand. J. Clin. Lab. Invest. 63(4), 259–265 (2003).
  • Oliveira JA, Sevanian A, Rodrigues RJ, Apolinario E, Abdalla DS. Minimally modified electronegative LDL and its autoantibodies in acute and chronic coronary syndromes. Clin. Biochem. 39(7), 708–714 (2006).
  • Sposito AC, Santos SN, de Faria EC et al. Timing and dose of statin therapy define its impact on inflammatory and endothelial responses during myocardial infarction. Arterioscler. Thromb. Vasc. Biol. 31(5), 1240–1246 (2011).
  • Ohmori R, Momiyama Y, Tanaka N et al. LDL fractions assessed by anion-exchange high-performance liquid chromatography in patients with coronary artery disease. Atherosclerosis 187(1), 213–214 (2006).
  • Park H, Ishigami A, Shima T et al. Hepatic senescence marker protein‑30 is involved in the progression of nonalcoholic fatty liver disease. J. Gastroenterol. 45(4), 426–434 (2010).
  • Park H, Shima T, Yamaguchi K et al. Efficacy of long-term ezetimibe therapy in patients with nonalcoholic fatty liver disease. J. Gastroenterol. 46(1), 101–107 (2011).
  • Natella F, Fidale M, Tubaro F, Ursini F, Scaccini C. Selenium supplementation prevents the increase in atherogenic electronegative LDL (LDL minus) in the postprandial phase. Nutr. Metab. Cardiovasc. Dis. 17(9), 649–656 (2007).
  • Sanchez-Quesada JL, Homs-Serradesanferm R, Serrat-Serrat J, Serra-Grima JR, Gonzalez- Sastre F, Ordonez-Llanos J. Increase of LDL susceptibility to oxidation occurring after intense, long duration aerobic exercise. Atherosclerosis 118(2), 297–305 (1995).
  • Sanchez-Quesada JL, Ortega H, Payes- Romero A et al. LDL from aerobically-trained subjects shows higher resistance to oxidative modification than LDL from sedentary subjects. Atherosclerosis 132(2), 207–213 (1997).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.