440
Views
31
CrossRef citations to date
0
Altmetric
Reviews

Examining the role of lipid mediators in diabetic retinopathy

, &
Pages 661-675 | Published online: 18 Jan 2017

References

  • Antonetti DA, Klein R, Gardner TW. Diabetic retinopathy. N. Eng. J. Med. 366(13), 1227–1239 (2012).
  • Antonetti DA, Barber AJ, Bronson SK et al. Diabetic retinopathy: seeing beyond glucose-induced microvascular disease. Diabetes 55(9), 2401–2411 (2006).
  • Gardner TW, Antonetti DA, Barber AJ, Lanoue KF, Levison SW. Diabetic retinopathy: more than meets the eye. Surv. Ophthalmol. 47(Suppl. 2), S253–S262 (2002).
  • Engerman RL, Kern TS. Retinopathy in animal models of diabetes. Diabetes Metab. Rev. 11(2), 109–120 (1995).
  • Hammes HP, Lin J, Wagner P et al. Angiopoietin-2 causes pericyte dropout in the normal retina: evidence for involvement in diabetic retinopathy. Diabetes 53(4), 1104–1110 (2004).
  • Kowluru RA, Odenbach S. Effect of long-term administration of alpha-lipoic acid on retinal capillary cell death and the development of retinopathy in diabetic rats. Diabetes 53(12), 3233–3238 (2004).
  • Pfister F, Feng Y, vom Hagen F et al. Pericyte migration: a novel mechanism of pericyte loss in experimental diabetic retinopathy. Diabetes 57(9), 2495–2502 (2008).
  • Willard AL, Herman IM. Vascular complications and diabetes: current therapies and future challenges. J. Ophthalmol. 2012, 209538 (2012).
  • Engerman RL, Kern TS. Hyperglycemia as a cause of diabetic retinopathy. Metabolism 35(4 Suppl. 1), 20–23 (1986).
  • Feit-Leichman RA, Kinouchi R, Takeda M et al. Vascular damage in a mouse model of diabetic retinopathy: relation to neuronal and glial changes. Invest. Ophthalmol. Vis. Sci. 46(11), 4281–4287 (2005).
  • Kern TS, Engerman RL. Capillary lesions develop in retina rather than cerebral cortex in diabetes and experimental galactosemia. Arch. Ophthalmol. 114(3), 306–310 (1996).
  • Kern TS, Tang J, Mizutani M et al. Response of capillary cell death to aminoguanidine predicts the development of retinopathy: comparison of diabetes and galactosemia. Invest. Ophthalmol. Vis. Sci. 41(12), 3972–3978 (2000).
  • Antonetti DA, Lieth E, Barber AJ, Gardner TW. Molecular mechanisms of vascular permeability in diabetic retinopathy. Semin. Ophthalmol. 14(4), 240–248 (1999).
  • Chronopoulos A, Trudeau K, Roy S, Huang H, Vinores SA. High glucose-induced altered basement membrane composition and structure increases trans-endothelial permeability: implications for diabetic retinopathy. Curr. Eye Res. 36(8), 747–753 (2011).
  • Gerhardinger C, Brown LF, Roy S, Mizutani M, Zucker CL, Lorenzi M. Expression of vascular endothelial growth factor in the human retina and in nonproliferative diabetic retinopathy. Am. J. Pathol. 152(6), 1453–1462 (1998).
  • Navaratna D, Mcguire PG, Menicucci G, Das A. Proteolytic degradation of VEcadherin alters the blood–retinal barrier in diabetes. Diabetes 56(9), 2380–2387 (2007).
  • Schroder S, Palinski W, Schmid-Schonbein GW. Activated monocytes and granulocytes, capillary nonperfusion, and neovascularization in diabetic retinopathy. Am. J. Pathol. 139(1), 81–100 (1991).
  • Joussen AM, Poulaki V, Mitsiades N et al. Nonsteroidal anti-inflammatory drugs prevent early diabetic retinopathy via TNF-alpha suppression. FASEB J. 16(3), 438–440 (2002).
  • Joussen AM, Poulaki V, Qin W et al. Retinal vascular endothelial growth factor induces intercellular adhesion molecule-1 and endothelial nitric oxide synthase expression and initiates early diabetic retinal leukocyte adhesion in vivo. Am. J. Pathol. 160(2), 501–509 (2002).
  • Joussen AM, Murata T, Tsujikawa A, Kirchhof B, Bursell SE, Adamis AP. Leukocyte-mediated endothelial cell injury and death in the diabetic retina. Am. J. Pathol. 158(1), 147–152 (2001).
  • Mcleod DS, Lefer DJ, Merges C, Lutty GA. Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid. Am. J. Pathol. 147(3), 642–653 (1995).
  • Miyamoto K, Khosrof S, Bursell SE et al. Prevention of leukostasis and vascular leakage in streptozotocin-induced diabetic retinopathy via intercellular adhesion molecule-1 inhibition. Proc. Natl Acad. Sci. USA 96(19), 10836–10841 (1999).
  • Kowluru RA, Odenbach S. Role of interleukin-1beta in the development of retinopathy in rats: effect of antioxidants. Invest. Ophthalmol. Vis. Sci. 45(11), 4161–4166 (2004).
  • Kowluru RA, Odenbach S. Role of interleukin-1beta in the pathogenesis of diabetic retinopathy. Br J. Ophthalmol. 88(10), 1343–1347 (2004).
  • Adamis AP. Is diabetic retinopathy an inflammatory disease? Br. J. Ophthalmol. 86(4), 363–365 (2002).
  • Joussen AM, Huang S, Poulaki V et al. In vivo retinal gene expression in early diabetes. Invest. Ophthalmol. Vis. Sci. 42(12), 3047–3057 (2001).
  • Vincent JA, Mohr S. Inhibition of caspase-1/interleukin-1beta signaling prevents degeneration of retinal capillaries in diabetes and galactosemia. Diabetes 56(1), 224–230 (2007).
  • Coppack SW, Evans RD, Fisher RM et al. Adipose tissue metabolism in obesity: lipase action in vivo before and after a mixed meal. Metabolism 41(3), 264–272 (1992).
  • Weinstock PH, Levak-Frank S, Hudgins LC et al. Lipoprotein lipase controls fatty acid entry into adipose tissue, but fat mass is preserved by endogenous synthesis in mice deficient in adipose tissue lipoprotein lipase. Proc. Natl Acad. Sci. USA 94(19), 10261–10266 (1997).
  • Goldberg RB. Lipid disorders in diabetes. Diabetes Care 4(5), 561–572 (1981).
  • Goldberg RB, Capuzzi D. Lipid disorders in Type 1 and Type 2 diabetes. Clin. Lab. Med. 21(1), 147–172, vii (2001).
  • Goldberg IJ. Clinical review 124: diabetic dyslipidemia: causes and consequences. J. Clin. Endocrinol. Metab. 86(3), 965–971 (2001).
  • Poisson JP. Essential fatty acid metabolism in diabetes. Nutrition 5(4), 263–266 (1989).
  • Vessby B. Dietary fat and insulin action in humans. Br. J. Nutr. 83(Suppl. 1), S91–S96 (2000).
  • Brown JE, Lindsay RM, Riemersma RA. Linoleic acid metabolism in the spontaneously diabetic rat: delta6-desaturase activity vs. product/precursor ratios. Lipids 35(12), 1319–1323 (2000).
  • Brenner RR, Bernasconi AM, Garda HA. Effect of experimental diabetes on the fatty acid composition, molecular species of phosphatidyl-choline and physical properties of hepatic microsomal membranes. Prostaglandins Leukot. Essent. Fatty Acids 63(3), 167–176 (2000).
  • Zechner R. The tissue-specific expression of lipoprotein lipase: implications for energy and lipoprotein metabolism. Curr. Opin Lipidol. 8(2), 77–88 (1997).
  • Brenner RR. Hormonal modulation of delta6 and delta5 desaturases: case of diabetes. Prostaglandins Leukot. Essent. Fatty Acids 68(2), 151–162 (2003).
  • Wang Y, Botolin D, Christian B, Busik J, Xu J, Jump DB. Tissue-specific, nutritional, and developmental regulation of rat fatty acid elongases. J. Lipid Res. 46(4), 706–715 (2005).
  • Wang Y, Botolin D, Xu J et al. Regulation of hepatic fatty acid elongase and desaturase expression in diabetes and obesity. J. Lipid Res. 47(9), 2028–2041 (2006).
  • Decsi T, Minda H, Hermann R et al. Polyunsaturated fatty acids in plasma and erythrocyte membrane lipids of diabetic children. Prostaglandins Leukot. Essent. Fatty Acids 67(4), 203–210 (2002).
  • Augustin AJ, Breipohl W, Boker T, Lutz J, Spitznas M. Increased lipid peroxide levels and myeloperoxidase activity in the vitreous of patients suffering from proliferative diabetic retinopathy. Graefes Arch. Clin. Exp. Ophthalmol. 231(11), 647–650 (1993).
  • Lyons TJ, Jenkins AJ, Zheng D et al. Diabetic retinopathy and serum lipoprotein subclasses in the DCCT/EDIC cohort. Invest. Ophthalmol. Vis. Sci. 45(3), 910–918 (2004).
  • Kissebah AH, Kohner EM, Lewis B, Siddiq YK, Lowy C, Fraser TR. Plasma-lipids and glucose/insulin relationship in noninsulin-requiring diabetics with and without retinopathy. Lancet 1(7916), 1104–1108 (1975).
  • Ferris FL 3rd, Chew EY, Hoogwerf BJ. Serum lipids and diabetic retinopathy. Early Treatment Diabetic Retinopathy Study Research Group. Diabetes Care 19(11), 1291–1293 (1996).
  • Chew EY, Klein ML, Ferris FL 3rd et al. Association of elevated serum lipid levels with retinal hard exudate in diabetic retinopathy. Early Treatment Diabetic Retinopathy Study (ETDRS) Report 22. Arch. Ophthalmol. 114(9), 1079–1084 (1996).
  • Van Eck WF. The effect of a low fat diet on the serum lipids in diabetes and its significance in diabetic retinopathy. Am. J. Med. 27, 196–211 (1959).
  • Duncan LJ, Cullen JF, Ireland JT, Nolan J, Clarke BF, Oliver MF. A three-year trial of atromid therapy in exudative diabetic retinopathy. Diabetes 17(7), 458–467 (1968).
  • Houtsmuller AJ, Zahn KJ, Henkes HE. Unsaturated fats and progression of diabetic retinopathy. Doc. Ophthalmol. 48(2), 363–371 (1980).
  • Brugger B, Erben G, Sandhoff R, Wieland FT, Lehmann WD. Quantitative analysis of biological membrane lipids at the low picomole level by nano-electrospray ionization tandem mass spectrometry. Proc. Natl Acad. Sci. USA 94(6), 2339–2344 (1997).
  • Ejsing CS, Duchoslav E, Sampaio J et al. Automated identification and quantification of glycerophospholipid molecular species by multiple precursor ion scanning. Anal Chem. 78(17), 6202–6214 (2006).
  • Han X, Gross RW. Shotgun lipidomics: electrospray ionization mass spectrometric analysis and quantitation of cellular lipidomes directly from crude extracts of biological samples. Mass Spectrom. Rev. 24(3), 367–412 (2005).
  • Jones JJ, Stump MJ, Fleming RC, Lay JO Jr, Wilkins CL. Strategies and data analysis techniques for lipid and phospholipid chemistry elucidation by intact cell MALDI-FTMS. J. Am. Soc. Mass Spectrom. 15(11), 1665–1674 (2004).
  • Pulfer M, Murphy RC. Electrospray mass spectrometry of phospholipids. Mass Spectrom. Rev. 22(5), 332–364 (2003).
  • Schwudke D, Oegema J, Burton L et al. Lipid profiling by multiple precursor and neutral loss scanning driven by the datadependent acquisition. Anal Chem. 78(2), 585–595 (2006).
  • Welti R, Shah J, Levine S, Esch SW, Williams TD, Wang X. High throughput lipid profiling to identify and characterize genes involved in lipid metabolism, signaling, and stress response. In: Functional Lipidomics. Feng L, Prestwich GD (Eds). Marcel Dekker, NY, USA (2005).
  • Welti R, Wang X, Williams TD. Electrospray ionization tandem mass spectrometry scan modes for plant chloroplast lipids. Anal Biochem. 314(1), 149–152 (2003).
  • Schuhmann K, Almeida R, Baumert M, Herzog R, Bornstein SR, Shevchenko A. Shotgun lipidomics on a LTQ Orbitrap mass spectrometer by successive switching between acquisition polarity modes. J. Mass Spectrom. 47(1), 96–104 (2012).
  • Schwudke D, Schuhmann K, Herzog R, Bornstein SR, Shevchenko A. Shotgun lipidomics on high resolution mass spectrometers. Cold Spring Harb. Perspect. Biol. 3(9), a004614 (2011).
  • Jones JJ, Borgmann S, Wilkins CL, O’Brien RM. Characterizing the phospholipid profiles in mammalian tissues by MALDI FTMS. Anal Chem. 78(9), 3062–3071 (2006).
  • Ekroos K, Chernushevich IV, Simons K, Shevchenko A. Quantitative profiling of phospholipids by multiple precursor ion scanning on a hybrid quadrupole time-offlight mass spectrometer. Anal Chem. 74(5), 941–949 (2002).
  • Han X, Gross RW. Shotgun lipidomics: multidimensional MS analysis of cellular lipidomes. Expert Rev. Proteomics 2(2), 253–264 (2005).
  • Kerwin JL, Tuininga AR, Ericsson LH. Identification of molecular species of glycerophospholipids and sphingomyelin using electrospray mass spectrometry. J. Lipid Res. 35(6), 1102–1114 (1994).
  • Lydic TA, Busik JV, Esselman WJ, Reid GE. Complementary precursor ion and neutral loss scan mode tandem mass spectrometry for the analysis of glycerophosphatidylethanolamine lipids from whole rat retina. Anal Bioanal Chem. 394(1), 267–275 (2009).
  • Busik JV, Reid GE, Lydic TA. Global analysis of retina lipids by complementary precursor ion and neutral loss mode tandem mass spectrometry. Methods Mol. Biol. 579, 33–70 (2009).
  • Fahy E, Subramaniam S, Brown HA et al. A comprehensive classification system for lipids. J. Lipid Res. 46(5), 839–861 (2005).
  • Sprecher H, Chen Q. Polyunsaturated fatty acid biosynthesis: a microsomal–peroxisomal process. Prostaglandins Leukot. Essent. Fatty Acids 60(5–6), 317–321 (1999). First study that highlights the association between changes in lipid profile and retinopathy in Type 1 diabetic patients.
  • Agbaga MP, Brush RS, Mandal MN, Henry K, Elliott MH, Anderson RE. Role of stargardt-3 macular dystrophy protein (ELOVL4) in the biosynthesis of very long chain fatty acids. Proc. Natl Acad. Sci. USA 105(35), 12843–12848 (2008). Important study demonstrating the role of Elovl4 in the elongation of very long-chain fatty acids with a chain length of 26–28 carbons.
  • Grayson C, Molday RS. Dominant negative mechanism underlies autosomal dominant stargardt-like macular dystrophy linked to mutations in ELOVL4. J. Biol Chem. 280(37), 32521–32530 (2005).
  • Karan G, Lillo C, Yang Z et al. Lipofuscin accumulation, abnormal electrophysiology, and photoreceptor degeneration in mutant ELOVL4 transgenic mice: a model for macular degeneration. Proc. Natl Acad. Sci. USA 102(11), 4164–4169 (2005).
  • Vasireddy V, Vijayasarathy C, Huang J et al. Stargardt-like macular dystrophy protein ELOVL4 exerts a dominant negative effect by recruiting wild-type protein into aggresomes. Mol. Vis. 11, 665–676 (2005).
  • Zhang K, Kniazeva M, Han M et al. A 5-bp deletion in ELOVL4 is associated with two related forms of autosomal dominant macular dystrophy. Nat. Genet. 27(1), 89–93 (2001).
  • Ohno Y, Suto S, Yamanaka M et al. ELOVL1 production of C24 acyl-CoAs is linked to C24 sphingolipid synthesis. Proc. Natl Acad. Sci. USA 107(43), 18439–18444 (2010). Describes the role of Elovl1 and Elovl4 in very long-chain (C24–28) sphingolipid synthesis.
  • Li W, Sandhoff R, Kono M et al. Depletion of ceramides with very long chain fatty acids causes defective skin permeability barrier function, and neonatal lethality in ELOVL4 deficient mice. Int. J. Biol Sci. 3(2), 120–128 (2007).
  • Decsi T, Szabo E, Burus I et al. Low contribution of n-3 polyunsaturated fatty acids to plasma and erythrocyte membrane lipids in diabetic young adults. Prostaglandins Leukot. Essent. Fatty Acids 76(3), 159–164 (2007).
  • Lydic TA, Renis R, Busik JV, Reid GE. Analysis of retina and erythrocyte glycerophospholipid alterations in a rat model of Type 1 diabetes. JALA 14(6), 383–399 (2009).
  • Kielczewski JL, Jarajapu YP, Mcfarland EL et al. Insulin-like growth factor binding protein-3 mediates vascular repair by enhancing nitric oxide generation. Circ. Res. 105(9), 897–905 (2009).
  • Tikhonenko M, Lydic TA, Wang Y et al. Remodeling of retinal fatty acids in an animal model of diabetes: a decrease in long-chain polyunsaturated fatty acids is associated with a decrease in fatty acid elongases Elovl2 and Elovl4. Diabetes 59(1), 219–227 (2009). First study demonstrating the effect of diabetes on retinal fatty-acid elongases and very long-chain polyunsaturated fatty acids in the retina.
  • Chen W, Esselman WJ, Jump DB, Busik JV. Anti-inflammatory effect of docosahexaenoic acid on cytokine-induced adhesion molecule expression in human retinal vascular endothelial cells. Invest. Ophthalmol. Vis. Sci. 46(11), 4342–4347 (2005).
  • Chen W, Jump DB, Esselman WJ, Busik JV. Inhibition of cytokine signaling in human retinal endothelial cells through modification of caveolae/lipid rafts by docosahexaenoic acid. Invest. Ophthalmol. Vis. Sci. 48(1), 18–26 (2007).
  • Chen W, Jump DB, Grant MB, Esselman WJ, Busik JV. Dyslipidemia, but not hyperglycemia, induces inflammatory adhesion molecules in human retinal vascular endothelial cells. Invest. Ophthalmol. Vis. Sci. 44(11), 5016–5022 (2003).
  • Goni FM, Alonso A. Sphingomyelinases: enzymology and membrane activity. FEBS Lett. 531(1), 38–46 (2002).
  • Hannun YA, Obeid LM. Principles of bioactive lipid signalling: lessons from sphingolipids. Nat. Rev. Mol. Cell Biol. 9(2), 139–150 (2008).
  • Kolesnick R. The therapeutic potential of modulating the ceramide/sphingomyelin pathway. J. Clin. Invest. 110(1), 3–8 (2002).
  • Zeidan YH, Hannun YA. Activation of acid sphingomyelinase by protein kinase Cdelta-mediated phosphorylation. J. Biol Chem. 282(15), 11549–11561 (2007).
  • Zeidan YH, Wu BX, Jenkins RW, Obeid LM, Hannun YA. A novel role for protein kinase Cdelta-mediated phosphorylation of acid sphingomyelinase in UV light-induced mitochondrial injury. FASEB J. 22(1), 183–193 (2008).
  • Hammes HP, Weiss A, Fuhrer D, Kramer HJ, Papavassilis C, Grimminger F. Acceleration of experimental diabetic retinopathy in the rat by omega-3 fatty acids. Diabetologia 39(3), 251–255 (1996). Demonstrated detrimental effects of very high-dose fish oil in an animal model of diabetic retinopathy.
  • Simopoulos AP. Importance of the ratio of omega-6/omega-3 essential fatty acids: evolutionary aspects. World Rev. Nutr. Diet 92, 1–22 (2003).
  • de Lorgeril M, Salen P. Dietary prevention of coronary heart disease: focus on omega-6/ omega-3 essential fatty acid balance. World Rev. Nutr. Diet 92, 57–73 (2003).
  • Cleland LG, James MJ, Proudman SM. Omega-6/omega-3 fatty acids and arthritis. World Rev. Nutr. Diet 92, 152–168 (2003).
  • Futterman S, Kupfer C. The fatty acid composition of the retinal vasculature of normal and diabetic human eyes. Invest. Ophthalmol. 7(1), 105–108 (1968).
  • Connor KM, Sangiovanni JP, Lofqvist C et al. Increased dietary intake of omega-3-polyunsaturated fatty acids reduces pathological retinal angiogenesis. Nat. Med. 13(7), 868–873 (2007). The first to demonstrate protective effects of docosahexenoic acid against retinal pathological neovascularization.
  • Hwang D. Fatty acids and immune responses – a new perspective in searching for clues to mechanism. Annu. Rev. Nutr. 20, 431–456 (2000).
  • Funk CD. Prostaglandins and leukotrienes: advances in eicosanoid biology. Science 294(5548), 1871–1875 (2001).
  • Dubois RN, Abramson SB, Crofford L et al. Cyclooxygenase in biology and disease. FASEB J. 12(12), 1063–1073 (1998).
  • Dubois RN. Leukotriene A4 signaling, inflammation, and cancer. J. Natl Cancer Inst. 95(14), 1028–1029 (2003).
  • Capdevila JH, Falck JR, Harris RC. Cytochrome P450 and arachidonic acid bioactivation. Molecular and functional properties of the arachidonate monooxygenase. J. Lipid Res. 41(2), 163–181 (2000).
  • Sellmayer A, Koletzko B. Long-chain polyunsaturated fatty acids and eicosanoids in infants – physiological and pathophysiological aspects and open questions. Lipids 34(2), 199–205 (1999).
  • Zeldin DC. Epoxygenase pathways of arachidonic acid metabolism. J. Biol Chem. 276(39), 36059–36062 (2001).
  • Smith WL, Garavito RM, Dewitt DL. Prostaglandin endoperoxide H synthases (cyclooxygenases)-1 and -2. J. Biol Chem. 271(52), 33157–33160 (1996).
  • Delerive P, Gervois P, Fruchart J-C, Staels B. Induction of Ikappa Balpha expression as a mechanism contributing to the anti-inflammatory activities of peroxisome proliferator-activated receptor-alpha activators. J. Biol. Chem. 275(47), 36703–36707 (2000).
  • Brash AR. Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J. Biol Chem. 274(34), 23679–23682 (1999).
  • Patricia MK, Kim JA, Harper CM et al. Lipoxygenase products increase monocyte adhesion to human aortic endothelial cells. Arterioscler. Thromb. Vasc. Biol. 19(11), 2615–2622 (1999).
  • Natarajan R, Gerrity RG, Gu JL, Lanting L, Thomas L, Nadler JL. Role of 12-lipoxygenase and oxidant stress in hyperglycaemia-induced acceleration of atherosclerosis in a diabetic pig model. Diabetologia 45(1), 125–133 (2002).
  • Marcheselli VL, Hong S, Lukiw WJ et al. Novel docosanoids inhibit brain ischemiareperfusion-mediated leukocyte infiltration and pro-inflammatory gene expression. J. Biol Chem. 278(44), 43807–43817 (2003).
  • Schwab JM, Chiang N, Arita M, Serhan CN. Resolvin E1 and protectin D1 activate inflammation-resolution programmes. Nature 447(7146), 869–874 (2007).
  • Serhan CN, Hong S, Gronert K et al. Resolvins: a family of bioactive products of omega-3 fatty acid transformation circuits initiated by aspirin treatment that counter proinflammation signals. J. Exp. Med. 196(8), 1025–1037 (2002).
  • Musiek ES, Brooks JD, Joo M et al. Electrophilic cyclopentenone neuroprostanes are anti-inflammatory mediators formed from the peroxidation of the omega-3 polyunsaturated fatty acid docosahexaenoic acid. J. Biol Chem. 283(29), 19927–19935 (2008).
  • Gubitosi-Klug RA, Talahalli R, Du Y, Nadler JL, Kern TS. 5-lipoxygenase, but not 12/15-lipoxygenase, contributes to degeneration of retinal capillaries in a mouse model of diabetic retinopathy. Diabetes 57(5), 1387–1393 (2008). First study demonstrating the importance of 5-lipoxygenase in the animal model of the vasodegenerative stage of diabetic retinopathy.
  • Al-Shabrawey M, Rojas M, Sanders T et al. Role of NADPH oxidase in retinal vascular inflammation. Invest. Ophthalmol. Vis. Sci. 49(7), 3239–3244 (2008). First study demonstrating the importance of 12-lipoxygenase in the animal model of the proliferative stage of diabetic retinopathy and the increased activity of 12-lipoxigenase in the patients with proliferative diabetic retinopathy.
  • Augustin AJ, Grus FH, Koch F, Spitznas M. Detection of eicosanoids in epiretinal membranes of patients suffering from proliferative vitreoretinal diseases. Br. J. Ophthalmol. 81(1), 58–60 (1997).
  • Al-Shabrawey M, Mussell R, Kahook K et al. Increased expression and activity of 12-lipoxygenase in oxygen-induced ischemic retinopathy and proliferative diabetic retinopathy: implications in retinal neovascularization. Diabetes 60(2), 614–624 (2011).
  • Sapieha P, Stahl A, Chen J et al. 5-lipoxygenase metabolite 4-HDHA is a mediator of the antiangiogenic effect of omega-3 polyunsaturated fatty acids. Sci. Transl Med. 3(69), 69RA12 (2011).
  • Ahmed N. Advanced glycation endproducts – role in pathology of diabetic complications. Diabetes Res. Clin. Pract. 67(1), 3–21 (2005).
  • Brownlee M. Lilly Lecture 1993. Glycation and diabetic complications. Diabetes 43(6), 836–841 (1994).
  • Baynes JW, Thorpe SR. Glycoxidation and lipoxidation in atherogenesis. Free Radic. Biol. Med. 28(12), 1708–1716 (2000).
  • Jakus V, Rietbrock N. Advanced glycation end-products and the progress of diabetic vascular complications. Physiol Res. 53(2), 131–142 (2004).
  • Gardiner TA, Anderson HR, Stitt AW. Inhibition of advanced glycation end-products protects against retinal capillary basement membrane expansion during long-term diabetes. J. Pathol. 201(2), 328–333 (2003).
  • Kern TS, Engerman RL. Pharmacological inhibition of diabetic retinopathy: aminoguanidine and aspirin. Diabetes 50(7), 1636–1642 (2001).
  • Ravandi A, Kuksis A, Marai L et al. Isolation and identification of glycated aminophospholipids from red cells and plasma of diabetic blood. FEBS Lett. 381(1–2), 77–81 (1996).
  • Nakagawa K, Oak JH, Miyazawa T. Angiogenic potency of amadori-glycated phosphatidylethanolamine. Ann. NY Acad. Sci. 1043, 413–416 (2005).
  • Oak JH, Nakagawa K, Oikawa S, Miyazawa T. Amadori-glycated phosphatidylethanolamine induces angiogenic differentiations in cultured human umbilical vein endothelial cells. FEBS Lett. 555(2), 419–423 (2003).
  • Chew EY, Ambrosius WT. Update of the ACCORD Eye Study. N. Eng. J. Med. 364(2), 188–189 (2011).
  • Tserentsoodol N, Sztein J, Campos M et al. Uptake of cholesterol by the retina occurs primarily via a low density lipoprotein receptor-mediated process. Mol. Vis. 12, 1306–1318 (2006).
  • Tserentsoodol N, Gordiyenko NV, Pascual I, Lee JW, Fliesler SJ, Rodriguez IR. Intraretinal lipid transport is dependent on high density lipoprotein-like particles and class B scavenger receptors. Mol. Vis. 12, 1319–1333 (2006).
  • Li CM, Chung BH, Presley JB et al. Lipoprotein-like particles and cholesteryl esters in human Bruch’s membrane: initial characterization. Invest. Ophthalmol. Vis. Sci. 46(7), 2576–2586 (2005).
  • Hayes KC, Lindsey S, Stephan ZF, Brecker D. Retinal pigment epithelium possesses both LDL and scavenger receptor activity. Invest. Ophthalmol. Vis. Sci. 30(2), 225–232 (1989).
  • Duncan KG, Bailey KR, Kane JP, Schwartz DM. Human retinal pigment epithelial cells express scavenger receptors BI and BII. Biochem. Biophys. Res. Commun. 292(4), 1017–1022 (2002).
  • Amaratunga A, Abraham CR, Edwards RB, Sandell JH, Schreiber BM, Fine RE. Apolipoprotein E is synthesized in the retina by Muller glial cells, secreted into the vitreous, and rapidly transported into the optic nerve by retinal ganglion cells. J. Biol Chem. 271(10), 5628–5632 (1996).
  • Mast N, Reem R, Bederman I et al. Cholestenoic acid is an important elimination product of cholesterol in the retina: comparison of retinal cholesterol metabolism with that in the brain. Invest. Ophthalmol. Vis. Sci. 52(1), 594–603 (2011).
  • Liao WL, Heo GY, Dodder NG et al. Quantification of cholesterol-metabolizing P450s CYP27A1 and CYP46A1 in neural tissues reveals a lack of enzyme-product correlations in human retina but not human brain. J. Proteome Res. 10(1), 241–248 (2011).
  • Ferderbar S, Pereira EC, Apolinario E et al. Cholesterol oxides as biomarkers of oxidative stress in Type 1 and Type 2 diabetes mellitus. Diabetes Metab. Res. Rev. 23(1), 35–42 (2007).
  • Matsui H, Okumura K, Mukawa H, Hibino M, Toki Y, Ito T. Increased oxysterol contents in diabetic rat hearts: their involvement in diabetic cardiomyopathy. Can. J. Cardiol. 13(4), 373–379 (1997).
  • Yoshioka N, Adachi J, Ueno Y, Yoshida K. Oxysterols increase in diabetic rats. Free Radic. Res. 39(3), 299–304 (2005). Data from the ACCORD Eye Study in Type 2 diabetic patients demonstrating that intensive dyslipidemia therapy significantly slows the progression of retinopathy.
  • Wang J, Megha, London E. Relationship between sterol/steroid structure and participation in ordered lipid domains (lipid rafts): implications for lipid raft structure and function. Biochemistry 43(4), 1010–1018 (2004).
  • Luthra S, Dong J, Gramajo AL et al. 7-ketocholesterol activates caspases-3/7, -8, and -12 in human microvascular endothelial cells in vitro. Microvasc. Res. 75(3), 343–350 (2008).
  • Rodriguez IR, Fliesler SJ. Photodamage generates 7-keto- and 7-hydroxycholesterol in the rat retina via a free radical-mediated mechanism. Photochem. Photobiol. 85(5), 1116–1125 (2009).
  • Wu M, Chen Y, Abdel-samie SA et al. Ox-LDL immunocomplexes are implicated in diabetic retinopathy. Presented at: The American Federation for Medical Research 2009 Southern Regional Meeting. New Orelans, LA, USA, 12–14 February 2009.
  • Wu M, Chen Y, Wilson K et al. Highly oxidized and glycated LDL induced human retinal capillary pericyte loss: oxidative stress, proteasome inhibition and mitochondrial-mediated apoptosis. Presented at: The American Federation for Medical Research 2009 Southern Regional Meeting. New Orelans, LA, USA, 12–14 February 2009.
  • Obeid LM, Linardic CM, Karolak LA, Hannun YA. Programmed cell death induced by ceramide. Science 259(5102), 1769–1771 (1993).
  • Hla T. Physiological and pathological actions of sphingosine 1-phosphate. Semin. Cell Dev. Biol. 15(5), 513–520 (2004).
  • Fox TE, Han X, Kelly S et al. Diabetes alters sphingolipid metabolism in the retina: a potential mechanism of cell death in diabetic retinopathy. Diabetes 55(12), 3573–3580 (2006).
  • Maines LW, French KJ, Wolpert EB, Antonetti DA, Smith CD. Pharmacologic manipulation of sphingosine kinase in retinal endothelial cells: implications for angiogenic ocular diseases. Invest. Ophthalmol. Vis. Sci. 47(11), 5022–5031 (2006).
  • Masson E, Troncy L, Ruggiero D, Wiernsperger N, Lagarde M, El Bawab S. a-Series gangliosides mediate the effects of advanced glycation end products on pericyte and mesangial cell proliferation: a common mediator for retinal and renal microangiopathy? Diabetes 54(1), 220–227 (2005).
  • Skoura A, Sanchez T, Claffey K, Mandala SM, Proia RL, Hla T. Essential role of sphingosine 1-phosphate receptor 2 in pathological angiogenesis of the mouse retina. J. Clin. Invest. 117(9), 2506–2516 (2007).
  • Nilsson A, Duan RD. Alkaline sphingomyelinases and ceramidases of the gastrointestinal tract. Chem. Phys Lipids 102(1–2), 97–105 (1999).
  • Tani M, Hannun YA. Neutral sphingomyelinase 2 is palmitoylated on multiple cysteine residues. Role of palmitoylation in subcellular localization. J. Biol Chem. 282(13), 10047–10056 (2007).
  • Tani M, Ito M, Igarashi Y. Ceramide/ sphingosine/sphingosine 1-phosphate metabolism on the cell surface and in the extracellular space. Cell. Signal. 19(2), 229–237 (2007).
  • Dumitru CA, Zhang Y, Li X, Gulbins E. Ceramide: a novel player in reactive oxygen species-induced signaling? Antioxid. Redox Signal. 9(9), 1535–1540 (2007).
  • Montes LR, Ruiz-Arguello MB, Goni FM, Alonso A. Membrane restructuring via ceramide results in enhanced solute efflux. J. Biol Chem. 277(14), 11788–11794 (2002).
  • Grassme H, Jekle A, Riehle A et al. CD95 signaling via ceramide-rich membrane rafts. J. Biol Chem. 276(23), 20589–20596 (2001).
  • Zhou H, Summers SA, Birnbaum MJ, Pittman RN. Inhibition of Akt kinase by cell-permeable ceramide and its implications for ceramide-induced apoptosis. J. Biol Chem. 273(26), 16568–16575 (1998).
  • Bourbon NA, Sandirasegarane L, Kester M. Ceramide-induced inhibition of Akt is mediated through protein kinase Czeta: implications for growth arrest. J. Biol Chem. 277(5), 3286–3292 (2002).
  • Muller G, Ayoub M, Storz P, Rennecke J, Fabbro D, Pfizenmaier K. PKC zeta is a molecular switch in signal transduction of TNF-alpha, bifunctionally regulated by ceramide and arachidonic acid. EMBO J. 14(9), 1961–1969 (1995).
  • Wang G, Silva J, Krishnamurthy K, Tran E, Condie BG, Bieberich E. Direct binding to ceramide activates protein kinase Czeta before the formation of a pro-apoptotic complex with PAR-4 in differentiating stem cells. J. Biol Chem. 280(28), 26415–26424 (2005).
  • Marathe S, Schissel SL, Yellin MJ et al. Human vascular endothelial cells are a rich and regulatable source of secretory sphingomyelinase. Implications for early atherogenesis and ceramide-mediated cell signaling. J. Biol Chem. 273(7), 4081–4088 (1998).
  • Schissel SL, Jiang X, Tweedie-Hardman J et al. Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH. Implications for atherosclerotic lesion development. J. Biol Chem. 273(5), 2738–2746 (1998).
  • Opreanu M, Lydic TA, Reid GE, Mcsorley KM, Esselman WJ, Busik JV. Inhibition of cytokine signaling in human retinal endothelial cells through downregulation of sphingomyelinases by docosahexaenoic acid. Invest. Ophthalmol. Vis. Sci. 51(6), 3253–3263 (2010).
  • Opreanu M, Tikhonenko M, Bozack S et al. The unconventional role of acid sphingomyelinase in regulation of retinal microangiopathy in diabetic human and animal models. Diabetes 60(9), 2370–2378 (2011). Demonstrated a critical role for acid sphingomyelinase in the development of diabetic retinopathy.
  • Rosen H, Goetzl EJ. Sphingosine 1-phosphate and its receptors: an autocrine and paracrine network. Nat. Rev. 5(7), 560–570 (2005).
  • Spiegel S, English D, Milstien S. Sphingosine 1-phosphate signaling: providing cells with a sense of direction. Trends Cell Biol. 12(5), 236–242 (2002).
  • Spiegel S, Kolesnick R. Sphingosine 1-phosphate as a therapeutic agent. Leukemia 16(9), 1596–1602 (2002).
  • Spiegel S, Milstien S. Sphingosine 1-phosphate, a key cell signaling molecule. J. Biol Chem. 277(29), 25851–25854 (2002).
  • Spiegel S, Milstien S. Sphingosine-1-phosphate: an enigmatic signalling lipid. Nat. Rev. Mol. Cell Biol. 4(5), 397–407 (2003).
  • Brinkmann V. Sphingosine 1-phosphate receptors in health and disease: mechanistic insights from gene deletion studies and reverse pharmacology. Pharmacol. Ther. 115(1), 84–105 (2007).
  • Sanchez T, Hla T. Structural and functional characteristics of S1P receptors. J. Cell. Biochem. 92(5), 913–922 (2004).
  • Windh RT, Lee MJ, Hla T, An S, Barr AJ, Manning DR. Differential coupling of the sphingosine 1-phosphate receptors Edg-1, Edg-3, and H218/Edg-5 to the G(i), G(q), and G(12) families of heterotrimeric G proteins. J. Biol Chem. 274(39), 27351–27358 (1999).
  • Mandala S, Hajdu R, Bergstrom J et al. Alteration of lymphocyte trafficking by sphingosine-1-phosphate receptor agonists. Science 296(5566), 346–349 (2002).
  • Matloubian M, Lo CG, Cinamon G et al. Lymphocyte egress from thymus and peripheral lymphoid organs is dependent on S1P receptor 1. Nature 427(6972), 355–360 (2004).
  • Caballero S, Swaney J, Moreno K et al. Antisphingosine-1-phosphate monoclonal antibodies inhibit angiogenesis and subretinal fibrosis in a murine model of laser-induced choroidal neovascularization. Exp. Eye Res. 88(3), 367–377 (2009). Demonstrated the role of sphingosine-1-phosphate in pathological retinal neovascularization.
  • Sabbadini RA. Sphingosine-1-phosphate antibodies as potential agents in the treatment of cancer and age-related macular degeneration. Br. J. Pharmacol. 162(6), 1225–1238 (2011).
  • Stoller GL, Lapierre-Holme F, Peterkin J, Garland W, Sabbadini R. iSONEP, an antisphingosine-1-phosphate (anti-S1P) monoclonal antibody for investigation in exudative AMD: results from a Phase 1 prospective open-label dose-escalating multi-center study. Invest. Ophthalmol. Vis. Sci. 51, 1253 (2010).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.