1,088
Views
10
CrossRef citations to date
0
Altmetric
Drug Evaluation

Lomitapide: a novel drug for homozygous familial hypercholesterolemia

, &
Pages 19-32 | Published online: 18 Jan 2017

References

  • Lomitapide. Am. J. Cardiovasc. Drugs 11(5), 347–352 (2011).
  • Innerarity TL, Weisgraber KH, Arnold KS et al. Familial defective apolipoprotein B‑100: low density lipoproteins with abnormal receptor binding. Proc. Natl Acad. Sci. 84(19), 6919–6923 (1987).
  • Abifadel M, Varret M, Rabes JP et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia. Nat. Genet. 34(2), 154–156 (2003).
  • Goldstein JL, Hobbs HH, Brown MS et al. Familial Hypercholesterolemia. In: The Methabolic and Molecular Bases of Inherited Disease (8th Edition). Scriver CR (Ed.). Mc Graw‑Hill, NY, USA, 2863–2913 (2001).
  • Pisciotta L, Priore Oliva C, Pes GM et al. Autosomal recessive hypercholesterolemia (ARH) and homozygous familial hypercholesterolemia (FH): a phenotypic comparison. Atherosclerosis 188(2), 398–405 (2006).
  • Seftel HC, Baker SG, Sandler MP et al. A host of hypercholesterolaemic homozygotes in South Africa. Br. Med. J. 281(6241), 633–636 (1980).
  • Moorjani S, Roy M, Gagne C et al. Homozygous familial hypercholesterolemia among French Canadians in Quebec Province. Arteriosclerosis 9(2), 211–216 (1989).
  • Fahed AC, Safa RM, Haddad FF et al. Homozygous familial hypercholesterolemia in Lebanon: a genotype/phenotype correlation. Mol. Genet. Metab. 102(2), 181–188 (2011).
  • Mabuchi H, Nohara A, Noguchi T et al. Molecular genetic epidemiology of homozygous familial hypercholesterolemia in the Hokuriku district of Japan. Atherosclerosis 214(2), 404–407 (2011).
  • Benn M, Watts GF, Tybjaerg‑Hansen A et al. Familial hypercholesterolemia in the Danish general population: prevalence, coronary artery disease, and cholesterol‑lowering medication. J. Clin. Endocrinol. Metab. 97(11), 3956–3964 (2012).
  • Nordestgaard BG, Chapman MJ, Humphries SE et al.; for the European Atherosclerosis Society Consensus Panel. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: Consensus Statement of the European Atherosclerosis Society. Eur. Heart J. 34(45), 3478a–3490a (2013).
  • Ejarque I, Civer M, Francisco Ascaso J et al. Identification and characterization of the first Spanish familial ligand‑defective
  • Pisciotta L, Priore Oliva C, Cefalu AB et al.Additive effect of mutations in LDLR and PCSK9 genes on the phenotype of familial hypercholesterolemia. Atherosclerosis 186(2), 433‐40 (2006).
  • Sanchez AP, Cunard R, Ward DM. The selective therapeutic apheresis procedures. J. Clin. Apher. 28(1), 20–29 (2013).
  • Thompson GR, Miller JP, Breslow JL. Improved survival of patients with homozygous familial hypercholesterolaemia treated with plasma exchange. Br. Med. J. (Clin. Res. Ed.) 291(6510), 1671–1673 (1985).
  • Robinson JG. Management of familial hypercholesterolemia: a review of the recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J. Manag. Care Pharm. 19(2), 139–149 (2013).
  • Ito MK, McGowan MP, Moriarty PM. Management of familial hypercholesterolemias in adult patients: recommendations from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J. Clin. Lipidol. 5(Suppl. 3), S38–S45 (2011).
  • Winters JL. Lipid apheresis, indications, and principles. J. Clin. Apher. 26(5), 269–275 (2011).
  • Bambauer R, Bambauer C, Lehmann B et al. LDL‑apheresis: technical and clinical aspects. ScientificWorldJournal 2012, 314283 (2012).
  • Thompson GR; HEART‑UK LDL Apheresis Working Group. Recommendations for the use of LDL apheresis. Atherosclerosis 198(2), 247–255 (2008).
  • Thompson GR. LDL apheresis. Atherosclerosis 167(1), 1–13 (2003).
  • Hodgins LC, Gordon BR, Parker TS et al. LDL apheresis: an effective and safe treatment for refractory hypercholesterolemia. Cardiovasc. Drug Rev. 20(4), 271–280 (2002).
  • Thompson GR, Catapano A, Saheb S et al. Severe hypercholesterolaemia: therapeutic goals and eligibility criteria for LDL apheresis in Europe. Curr. Opin. Lipidol. 21(6), 492–498 (2010).
  • Græsdal A, Bogsrud MP, Holven KB et al. Apheresis in homozygous familial hypercholesterolemia: the results of a follow‑up of all Norwegian patients with homozygous familial hypercholesterolemia. J. Clin. Lipidol 6(4), 331–339 (2012).▪▪ Results on the weekly apheresis schedule and cardiovascular assessment in homozygous familial hypercholesterolemia (HoFH) patients.
  • Marais AD, Blom DJ, Firth JC. Statins in homozygous familial hypercholesterolemia. Curr. Atheroscler. Rep. 4(1), 19–25 (2002).
  • Raal FJ, Pilcher GJ, Illingworth DR et al. Expanded‑dose simvastatin is effective in homozygous familial hypercholesterolaemia. Atherosclerosis 135(2), 249–256 (1997).
  • Marais AD, Raal FJ, Stein EA et al. A dose‑titration and comparative study of rosuvastatin and atorvastatin in patients with homozygous familial hypercholesterolaemia. Atherosclerosis 197(1), 400–406 (2008).
  • Raal FJ, Pilcher GJ, Panz VR et al. Reduction in mortality in subjects with homozygous familial hypercholesterolemia associated with advances in lipid lowering therapy. Circulation 124(20), 2202–2207 (2011).
  • Kastelein JJ, Wedel MK, Baker BF et al. Potent reduction of apolipoprotein B and low‑density lipoprotein cholesterol by short‑term administration of an antisense inhibitor of apolipoprotein B. Circulation 114(16), 1729–1735 (2006).
  • Akdim F, Visser ME, Tribble DL et al. Effect of mipomersen, an apolipoprotein B synthesis inhibitor, on low‑density lipoprotein cholesterol in patients with familial hypercholesterolemia. Am. J. Cardiol. 105(10), 1413–1419 (2010).
  • Visser ME, Wagener G, Baker BF et al. Mipomersen, an apolipoprotein B synthesis inhibitor, lowers low‑density lipoprotein cholesterol in high‑risk statin‑intolerant patients: a randomized, double‑blind, placebo‑controlled trial. Eur. Heart J. 33(9), 1142–1149 (2012).
  • Raal FJ, Santos RD, Blom DJ et al. Mipomersen, an apolipoprotein B synthesis inhibitor, for lowering of LDL cholesterol concentrations in patients with homozygous familial hypercholesterolaemia: a randomised, double‑blind, placebo‑controlled trial. Lancet 375(9719), 998–1006 (2010).
  • Seidah NG, Benjannet S, Wickham L et al. The secretory proprotein convertase neural apoptosis‑regulated convertase 1 (NARC‑1): liver regeneration and neuronal differentiation. Proc. Natl Acad. Sci. USA 100(3), 928–933 (2003).
  • Lambert G, Sjouke B, Choque B, Kastelein JJ, Hovingh GK. The PCSK9 decade. J. Lipid Res. 53(12), 2515–2524 (2012).
  • Stein EA, Mellis S, Yancopoulos GD et al. Effect of a monoclonal antibody to PCSK9 on LDL cholesterol. N. Engl J. Med. 366(12), 1108–1118 (2012).
  • Stein EA, Gipe D, Bergeron J et al. Effect of a monoclonal antibody to PCSK9, REGN727/ SAR236553, to reduce low‑density lipoprotein cholesterol in patients with heterozygous familial hypercholesterolaemia on stable statin dose with or without ezetimibe therapy: a Phase 2 randomised controlled trial. Lancet 380(9836), 29–36 (2012).
  • McKenney JM, Koren MJ, Kereiakes DJ et al. Safety and efficacy of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease, SAR236553/REGN727, in patients with primary hypercholesterolemia receiving ongoing stable atorvastatin therapy. J. Am. Coll. Cardiol. 59(25), 2344–2353 (2012).
  • Roth EM, McKenney JM, Hanotin C et al. Atorvastatin with or without an antibody to PCSK9 in primary hypercholesterolemia. N. Engl. J. Med. 367(20), 1891–1900 (2012).
  • Dias CS, Shaywitz AJ, Wasserman SM et al. Effects of AMG 145 on low density lipoprotein cholesterol levels: results from 2 randomized, double‑blind, placebo‑controlled, ascending‑dose Phase 1 studies in healthy volunteers and hypercholesterolemic subjects on statins. J. Am. Coll. Cardiol. 60(19), 1888–1898 (2012).
  • Koren MJ, Scott R, Kim JB et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/ kexin type 9 as monotherapy in patients with hypercholesterolaemia (MENDEL): a randomised, double‑blind, placebo‑controlled, Phase 2 study. Lancet 380(9858), 1995–2006 (2012).
  • Raal F, Scott R, Somaratne R et al. Low‑density lipoprotein cholesterol lowering effects of AMG145, a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 serine protease in patients with heterozygous familial hypercholesterolemia: the Reduction of LDL‑C with PCSK9 Inhibition in Heterozygous Familial Hypercholesterolemia Disorder (RUTHERFORD) randomized trial. Circulation 126(20), 2408–2417 (2012).
  • Giugliano RP, Desai NR, Kohli P et al. Efficacy, safety, and tolerability of a monoclonal antibody to proprotein convertase subtilisin/kexin type 9 in combination with a statin in patients with hypercholesterolaemia (LAPLACE‑TIMI 57): a randomised, placebo‑controlled, dose‑ranging, Phase 2 study. Lancet 380(9858), 2007–2017 (2012).
  • Stein EA, Honarpour N, Wasserman SM, Xu F, Scott R, Raal F. Trial evaluating AMG145, a PCSK9 antibody, in patients with homozygous FH: results of an initial dose scheduling study. Presented at: Abstract Book of the 81th European Atherosclerosis Society Congress. Lyon, France, 2‑5 June, 2013 (Abstract: 1625).
  • Guerin M. Reverse cholesterol transport in familial hypercholesterolemia. Curr. Opin. Lipidol. 23(4), 377–385 (2012).
  • Cannon CP, Shah S, Dansky HM et al. Safety of anacetrapib in patients with or at high risk for coronary heart disease. N. Engl. J. Med. 363(25), 2406–2415 (2010).
  • Raabe M, Véniant MM, Sullivan MA et al. Analysis of the role of microsomal triglyceride transfer protein in the liver of tissue‑specific knockout mice. J. Clin. Invest. 103(9), 1287–1298 (1999).
  • Kane JP, Havel RJ, Scriver CR, Beaudet AL. The Metabolic Basis of Inherited Disease (6th Edition). Scriver CR (Ed.), McGraw‑Hill, NY, USA (1989).
  • Wetterau JR, Lin MC, Jamil H. Microsomal triglyceride transfer protein. Biochim. Biophys. Acta 1435(2), 136–150 (1997).
  • Hussain MM, Rava P, Walsh M et al. Multiple functions of microsomal triglyceride transfer protein. Nutr. Metab. (Lond.). 9, 14 (2012).▪▪ Complete review on microsomal triglyceride transfer protein function.
  • Haghpassand M, Wilder D, Moberly JB. Inhibition of apolipoprotein B and triglyceride secretion in human hepatoma cells (HepG2). J. Lipid Res. 37(7), 1468–1480 (1996).
  • Golberg CA. Emerging low‐density lipoprotein therapies: microsomal triglyceride transfer protein inhibitors. J. Clin. Lipidol. 7(Suppl. 3), S16‐S20 (2013).
  • Gordon DA, Jamil H. Progress towards understanding the role of microsomal triglyceride transfer protein in apolipoprotein‑B lipoprotein assembly. Biochim. Biophys. Acta 1486(1), 72–83 (2000).
  • Sulsky R, Robl JA, Biller SA et al. Carboxamido‑1,3,2‑dioxaphosphorinanes, potent inhibitors of MTP. Bioorg. Med. Chem. Lett. 14(20), 5067–5070 (2004).
  • Robl JA, Sulsky R, Sun CQ et al. A novel series of highly potent benzimidazole‑based microsomal triglyceride transfer protein inhibitors. J. Med. Chem. 44(6), 851–856 (2001).
  • Samaha FF, McKenney J, Bloedon LT et al. Inhibition of microsomal triglyceride transfer protein alone or with ezetimibe in patients with moderate hypercholesterolemia. Nat. Clin. Pract. Cardiovasc. Med. 5(8), 497–505 (2008).
  • Wetterau JR, Gregg RE, Harrity TW et al. An MTP inhibitor that normalizes atherogenic lipoprotein levels in WHHL rabbits. Science 282 (5389), 751–754 (1998).
  • Shiomi M, Ito T. MTP inhibitor decreases plasma cholesterol levels in LDL receptordeficient WHHL rabbits by lowering the VLDL secretion. Eur. J. Pharmacol. 431(1), 127–131 (2001).
  • Liao W, Hui TY, Young SG et al. Blocking microsomal triglyceride transfer protein interferes with ApoB secretion without causing retention or stress in the ER. J. Lipid Res. 44(5), 978–985 (2003).
  • Cuchel M, Bloedon LT, Szapary PO et al. Inhibition of microsomal triglyceride transfer protein in familial hypercholesterolemia. N. Engl. J. Med. 356(2), 148–156 (2007).▪▪ Proof-of-concept study on the efficacy of lomitapide in HoFH patients.
  • Cuchel M, Meagher EA, du Toit Theron H et al. Efficacy and safety of a microsomal triglyceride transfer protein inhibitor in patients with homozygous familial hypercholesterolaemia: a single‑arm, open‑label, Phase 3 study. Lancet 381(9860), 40–46 (2013).▪▪ This Phase III study in HoFH patients confirms the efficacy of lomitapide in reducing LDL cholesterol levels with acceptable safety and tolerability.
  • Cuchel M, Meagher EA, du Toit Theron H et al. Apheresis treatment does not affect the lipid‑lowering efficacy of lomitapide, a microsomal triglyceride transfer protein inhibitor, in patients with homozygous familial hypercholesterolemia. Circulation 126, Abstract 17396 (2012).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.