507
Views
12
CrossRef citations to date
0
Altmetric
Reviews

Dysfunctional HDL: the journey from savior to slayer

, , , &
Pages 49-59 | Published online: 18 Jan 2017

References

  • Tsompanidi EM, Brinkmeier MS, Fotiadou EH, Giakoumi SM, Kypreos KE. HDL biogenesis and functions: role of HDL quality and quantity in atherosclerosis. Atherosclerosis 208(1), 3–9 (2010).
  • Havel RJ, Eder HA, Bragdon JH. The distribution and chemical composition of ultracentrifugally separated lipoproteins in human serum. J. Clin. Invest. 34(9), 1345–1353 (1955).
  • Farbstein D, Levy AP. HDL dysfunction in diabetes: causes and possible treatments. Expert Rev. Cardiovasc. Ther. 10(3), 353–361 (2012).
  • Barr DP, Russ EM, Eder HA. Protein–lipid relationships in human plasma. II. In atherosclerosis and related conditions. Am. J. Med. 11(4), 480–493 (1951).
  • Gordon T, Castelli WP, Hjortland MC, Kannel WB, Dawber TR. High density lipoprotein as a protective factor against coronary heart disease. The Framingham study. Am. J. Med. 62(5), 707–714 (1977).
  • Castelli WP, Garrison RJ, Wilson PW, Abbott RD, Kalousdian S, Kannel WB. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham study. JAMA 256(20), 2835–2838 (1986).
  • Cullen P, Schulte H, Assmann G. The Munster Heart study (PROCAM): total mortality in middle‑aged men is increased at low total and LDL cholesterol concentrations in smokers but not in nonsmokers. Circulation 96(7), 2128–2136 (1997).
  • Sharrett AR, Ballantyne CM, Coady SA et al. Coronary heart disease prediction from lipoprotein cholesterol levels, triglycerides, lipoprotein(a), apolipoproteins A‑I and B, and HDL density subfractions: the Atherosclerosis Risk in Communities (ARIC) study. Circulation 104(10), 1108–1113 (2001).
  • Emerging Risk Factors Collaboration, Di Angelantonio E, Sarwar N et al. Major lipids, apolipoproteins, and risk of vascular disease. JAMA 302(18), 1993–2000 (2009).
  • Boekholdt SM, Arsenault BJ, Hovingh GK et al. Levels and changes of HDL cholesterol and apolipoprotein A‑I in relation to risk of cardiovascular events among statin‑treated patients: a meta‑analysis. Circulation 128(14), 1504–1512 (2013).
  • Otocka‑Kmiecik A, Mikhailidis DP, Nicholls SJ, Davidson M, Rysz J, Banach M. Dysfunctional HDL: a novel important diagnostic and therapeutic target in cardiovascular disease? Prog. Lipid Res. 51(4), 314–324 (2012).
  • Eren E, Yilmaz N, Aydin O. High density lipoprotein and it’s dysfunction. Open Biochem. J. 6, 78–93 (2012).
  • Rothblat GH, Phillips MC. High‑density lipoprotein heterogeneity and function in reverse cholesterol transport. Curr. Opin. Lipidol. 21(3), 229–238 (2010).
  • Dodani S, Grice DG, Joshi S. Is HDL function as important as HDL quantity in the coronary artery disease risk assessment? J. Clin. Lipidol. 3(2), 70–77 (2009).
  • Navab M, Anantharamaiah GM, Reddy ST, Van Lenten BJ, Ansell BJ, Fogelman AM. Mechanisms of disease: proatherogenic HDL – an evolving field. Nat. Clin. Pract. Endocrinol. Metab. 2(9), 504–511 (2006).
  • Cromwell WC, Otvos JD, Keyes MJ et al. LDL particle number and risk of future cardiovascular disease in the Framingham Offspring sudy – implications for LDL management. J. Clin. Lipidol. 1(6), 583–592 (2007).
  • Otvos JD, Mora S, Shalaurova I, Greenland P, Mackey RH, Goff DC Jr. Clinical implications of discordance between low‑density lipoprotein cholesterol and particle number. J. Clin. Lipidol. 5(2), 105–113 (2011).
  • Mikhailidis DP, Elisaf M, Rizzo M et al. ‘European panel on low density lipoprotein (LDL) subclasses’: a statement on the pathophysiology, atherogenicity and clinical significance of LDL subclasses: executive summary. Curr. Vasc. Pharmacol. 9(5), 531–532 (2011).
  • Catapano AL, Reiner Z, De Backer G et al. ESC/EAS Guidelines for the management of dyslipidaemias The Task Force for the management of dyslipidaemias of the European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS). Atherosclerosis 217(1), 3–46 (2011).
  • Rye KA, Barter PJ. Cardioprotective functions of HDL. J. Lipid Res. doi:0.1194/jlr.R039297 (2013) (Epub ahead of print).
  • Larach DB, deGoma EM, Rader DJ. Targeting high density lipoproteins in the prevention of cardiovascular disease? Curr. Cardiol. Rep. 14(6), 684–691 (2012).
  • Degoma EM, Rader DJ. Novel HDL‑directed pharmacotherapeutic strategies. Nat. Rev. Cardiol. 8(5), 266–277 (2011).
  • Shao B, Heinecke JW. HDL, lipid peroxidation, and atherosclerosis. J. Lipid Res. 50(4), 599–601 (2009).
  • Rye KA, Clay MA, Barter PJ. Remodelling of high density lipoproteins by plasma factors. Atherosclerosis 145(2), 227–238 (1999).
  • Smith JD. Dysfunctional HDL as a diagnostic and therapeutic target. Arterioscler. Thromb. Vasc. Biol. 30(2), 151–155 (2010).
  • Barylski M, Malyszko J, Rysz J, Mysliwiec M, Banach M. Lipids, blood pressure, kidney – what was new in 2011? Arch. Med. Sci. 7(6), 1055–1066 (2011).
  • Rizzo M, Banach M, Montalto G, Mikhailidis DP. Lipid‑lowering therapies and achievement of LDL‑cholesterol targets. Arch. Med. Sci. 8(4), 598–600 (2012).
  • Bowry VW, Stanley KK, Stocker R. High density lipoprotein is the major carrier of lipid hydroperoxides in human blood plasma from fasting donors. Proc. Natl Acad. Sci. USA 89(21), 10316–10320 (1992).
  • Oravec S, Dostal E, Dukat A, Gavornik P, Kucera M, Gruber K. HDL subfractions analysis: a new laboratory diagnostic assay for patients with cardiovascular diseases and dyslipoproteinemia. Neuro Endocrinol. Lett. 32(4), 502–509 (2011).
  • Mineo C, Deguchi H, Griffin JH, Shaul PW. Endothelial and antithrombotic actions of HDL. Circulation Res. 98(11), 1352–1364 (2006).
  • Undurti A, Huang Y, Lupica JA, Smith JD, DiDonato JA, Hazen SL. Modification of high density lipoprotein by myeloperoxidase generates a pro‑inflammatory particle. J. Biol. Chem. 284(45), 30825–30835 (2009).
  • Sorrentino SA, Besler C, Rohrer L et al. Endothelial‑vasoprotective effects of highdensity lipoprotein are impaired in patients with Type 2 diabetes mellitus but are improved after extended‑release niacin therapy. Circulation 121(1), 110–122 (2010).
  • Hovingh GK, Van Wijland MJ, Brownlie A et al. The role of the ABCA1 transporter and cholesterol efflux in familial hypoalphalipoproteinemia. J. Lipid Res. 44(6), 1251–1255 (2003).
  • Alexander ET, Tanaka M, Kono M, Saito H, Rader DJ, Phillips MC. Structural and functional consequences of the Milano mutation (R173C) in human apolipoprotein A‑I. J. Lipid Res. 50(7), 1409–1419 (2009).
  • Ibanez B, Giannarelli C, Cimmino G et al. Recombinant HDL (Milano) exerts greater anti‑inflammatory and plaque stabilizing properties than HDL (wild‑type). Atherosclerosis 220(1), 72–77 (2012).
  • Yamamoto S, Tanigawa H, Li X, Komaru Y, Billheimer JT, Rader DJ. Pharmacologic suppression of hepatic ATP‑binding cassette transporter 1 activity in mice reduces highdensity lipoprotein cholesterol levels but promotes reverse cholesterol transport. Circulation 124(12), 1382–1390 (2011).
  • Tall AR. Cholesterol efflux pathways and other potential mechanisms involved in the athero‑protective effect of high density lipoproteins. J. Intern. Med. 263(3), 256–273 (2008).
  • Patel PJ, Khera AV, Jafri K, Wilensky RL, Rader DJ. The anti‑oxidative capacity of high‑density lipoprotein is reduced in acute coronary syndrome but not in stable coronary artery disease. J. Am. Coll. Cardiol. 58(20), 2068–2075 (2011).
  • G HB, Rao VS, Kakkar VV. Friend turns foe: transformation of anti‑inflammatory HDL to proinflammatory HDL during acute‑phase response. Cholesterol 2011, 274629 (2011).
  • Navab M, Reddy ST, Van Lenten BJ, Fogelman AM. HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. Nat. Rev. Cardiol. 8(4), 222–232 (2011).
  • Tsujita M, Wu CA, Abe‑Dohmae S, Usui S, Okazaki M, Yokoyama S. On the hepatic mechanism of HDL assembly by the ABCA1/apoA‑I pathway. J. Lipid Res. 46(1), 154–162 (2005).
  • DiDonato JA, Huang Y, Aulak KS et al. Function and distribution of apolipoprotein A1 in the artery wall are markedly distinct from those in plasma. Circulation 128(15), 1644–1655 (2013).
  • Zheng L, Nukuna B, Brennan ML et al. Apolipoprotein A‑I is a selective target for myeloperoxidase‑catalyzed oxidation and functional impairment in subjects with cardiovascular disease. J. Clin. Invest. 114(4), 529–541 (2004).
  • Pennathur S, Bergt C, Shao B et al. Human atherosclerotic intima and blood of patients with established coronary artery disease contain high density lipoprotein damaged by reactive nitrogen species. J. Biol. Chem. 279(41), 42977–42983 (2004).
  • Bergt C, Pennathur S, Fu X et al. The myeloperoxidase product hypochlorous acid oxidizes HDL in the human artery wall and impairs ABCA1‑dependent cholesterol transport. Proc. Natl Acad. Sci. USA 101(35), 13032–13037 (2004).
  • Navab M, Berliner JA, Watson AD et al. The yin and yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture. Arterioscler. Thromb. Vasc. Biol. 16(7), 831–842 (1996).
  • Murphy AJ, Woollard KJ, Hoang A et al. High‑density lipoprotein reduces the human monocyte inflammatory response. Arterioscler. Thromb. Vasc. Biol. 28(11), 2071–2077 (2008).
  • Van Lenten BJ, Hama SY, de Beer FC et al. Anti‑inflammatory HDL becomes pro‑ inflammatory during the acute phase response. Loss of protective effect of HDL against LDL oxidation in aortic wall cell cocultures. J. Clin. Invest. 96(6), 2758–2767 (1995).
  • McGillicuddy FC, de la Llera Moya M, Hinkle CC et al. Inflammation impairs reverse cholesterol transport in vivo. Circulation 119(8), 1135–1145 (2009).
  • McEneny J, Wade L, Young IS et al. Lycopene intervention reduces inflammation and improves HDL functionality in moderately overweight middle‑aged individuals. J. Clin. Invest. 24(1), 163–168 (2013).
  • Khovidhunkit W, Moser AH, Shigenaga JK, Grunfeld C, Feingold KR. Endotoxin downregulates ABCG5 and ABCG8 in mouse liver and ABCA1 and ABCG1 in J774 murine macrophages: differential role of LXR. J. Lipid Res. 44(9), 1728–1736 (2003).
  • Nicholls SJ, Zheng L, Hazen SL. Formation of dysfunctional high‑density lipoprotein by myeloperoxidase. Trends Cardiovasc. Med. 15(6), 212–219 (2005).
  • Daugherty A, Dunn JL, Rateri DL, Heinecke JW. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J. Clin. Invest. 94(1), 437–444 (1994).
  • Heinecke JW. The HDL proteome: a marker – and perhaps mediator – of coronary artery disease. J. Lipid Res. 50(Suppl.), S167–S171 (2009).
  • Durrington PN, Mackness B, Mackness MI. Paraoxonase and atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 21(4), 473–480 (2001).
  • Tsimihodimos V, Karabina SA, Tambaki AP et al. Atorvastatin preferentially reduces LDLassociated platelet‑activating factor acetylhydrolase activity in dyslipidemias of type IIA and type IIB. Arterioscler. Thromb. Vasc. Biol. 22(2), 306–311 (2002).
  • Goyal J, Wang K, Liu M, Subbaiah PV. Novel function of lecithin‑cholesterol acyltransferase. Hydrolysis of oxidized polar phospholipids generated during lipoprotein oxidation. J. Biol. Chem. 272(26), 16231–16239 (1997).
  • Besler C, Heinrich K, Rohrer L et al. Mechanisms underlying adverse effects of HDL on eNOS‑activating pathways in patients with coronary artery disease. J. Clin. Invest. 121(7), 2693–2708 (2011).
  • Stremler KE, Stafforini DM, Prescott SM, McIntyre TM. Human plasma plateletactivating factor acetylhydrolase. Oxidatively fragmented phospholipids as substrates. J. Biol. Chem. 266(17), 11095–11103 (1991).
  • Camont L, Chapman MJ, Kontush A. Biological activities of HDL subpopulations and their relevance to cardiovascular disease. Trends Mol. Med. 17(10), 594–603 (2011).
  • Camont L, Lhomme M, Rached F et al. Small, dense high‑density lipoprotein‑3 particles are enriched in negatively charged phospholipids: relevance to cellular cholesterol efflux, antioxidative, antithrombotic, anti‑inflammatory, and antiapoptotic functionalities. Arterioscler. Thromb. Vasc. Biol. 33(12), 2715–2723 (2013).
  • Li D, Weng S, Yang B, Zander DS, Saldeen T, Nichols WW et al. Inhibition of arterial thrombus formation by ApoA1 Milano. Arterioscler. Thromb. Vasc. Biol. 19(2), 378–383 (1999).
  • McGraw AP, Bagley J, Chen WS et al. Aldosterone increases early atherosclerosis and promotes plaque inflammation through a placental growth factor‑dependent mechanism. J. Am. Heart Assoc. 2(1), e000018 (2013).
  • Navab M, Reddy ST, Van Lenten BJ, Anantharamaiah GM, Fogelman AM. The role of dysfunctional HDL in atherosclerosis. J. Lipid Res. 50(Suppl), S145–S149 (2009).
  • Riwanto M, Rohrer L, Roschitzki B et al. Altered activation of endothelial anti‑ and proapoptotic pathways by high‑density lipoprotein from patients with coronary artery disease: role of high‑density lipoproteinproteome remodeling. Circulation 127(8), 891–904 (2013).
  • Blache D, Gautier T, Tietge UJ, Lagrost L. Activated platelets contribute to oxidized low‑density lipoproteins and dysfunctional high‑density lipoproteins through a phospholipase A2‑dependent mechanism. FASEB J. 26(2), 927–937 (2012).
  • Riwanto M, Landmesser U. High‑density lipoproteins and endothelial functions: mechanistic insights and alterations in cardiovascular disease. J. Lipid Res. 54(12), 3227–3243 (2013).
  • Speidel MT, Booyse FM, Abrams A, Moore MA, Chung BH. Lipolyzed hypertriglyceridemic serum and triglyceriderich lipoprotein cause lipid accumulation in and are cytotoxic to cultured human endothelial cells. High density lipoproteins inhibit this cytotoxicity. Thromb. Res. 58(3), 251–264 (1990).
  • Nofer JR, Levkau B, Wolinska I et al. Suppression of endothelial cell apoptosis by high density lipoproteins (HDL) and HDLassociated lysosphingolipids. J. Biol. Chem. 276(37), 34480–34485 (2001).
  • de Souza JA, Vindis C, Negre‑Salvayre A, Rye KA, Couturier M, Therond P et al. Small,dense HDL 3 particles attenuate apoptosis in endothelial cells: pivotal role of apolipoprotein A‑I. J. Cell. Mol. Med. 14(3), 608–620 (2010).
  • Mineo C, Shaul PW. Novel biological functions of high‑density lipoprotein cholesterol. Circ. Res. 111(8), 1079–1090 (2012).
  • McNeal CJ, Chatterjee S, Hou J et al. Human HDL containing a novel apoC‑I isoform induces smooth muscle cell apoptosis. Cardiovasc. Res. 98(1), 83–93 (2013).
  • Gomaraschi M, Ossoli A, Favari E et al. Inflammation impairs eNOS activation by HDL in patients with acute coronary syndrome. Cardiovasc. Res. 100(1), 36–43 (2013).
  • Besler C, Luscher TF, Landmesser U. Molecular mechanisms of vascular effects of High‑density lipoprotein: alterations in cardiovascular disease. EMBO Mol. Med. 4(4), 251–268 (2012).
  • He BM, Zhao SP, Peng ZY. Effects of cigarette smoking on HDL quantity and function: Implications for atherosclerosis. J. Cell. Biochem. 114(11), 2431–2436 (2013).
  • Zhou MS, Chadipiralla K, Mendez AJ et al. Nicotine potentiates proatherogenic effects of oxLDL by stimulating and upregulating macrophage CD36 signaling. Am. J. Physiol. Heart Circ. Physiol. 305(4), H563–H574 (2013).
  • Naem E, Alcalde R, Gladysz M et al. Inhibition of apolipoprotein A‑I gene by the aryl hydrocarbon receptor: a potential mechanism for smoking‑associated hypoalphalipoproteinemia. Life Sci. 91(1–2), 64–69 (2012).
  • Wang H, Peng DQ. New insights into the mechanism of low high‑density lipoprotein cholesterol in obesity. Lipids Health Dis. 10, 176 (2011).
  • Goossens GH. The role of adipose tissue dysfunction in the pathogenesis of obesityrelated insulin resistance. Physiol. Behav. 294(2), 206–218 (2008).
  • McEneny J, Blair S, Woodside JV, Murray L, Boreham C, Young IS. High‑density lipoprotein subfractions display proatherogenic properties in overweight and obese children. Pediatr. Res.74(3), 279–283 (2013).
  • Liu D, Ji L, Zhang D et al. Nonenzymatic glycation of high‑density lipoprotein impairs its anti‑inflammatory effects in innate immunity. Diabetes Metab. Res. Rev. 28(2), 186–195 (2012).
  • Pan B, Ma Y, Ren H et al. Diabetic HDL is dysfunctional in stimulating endothelial cell migration and proliferation due to down regulation of SR‑BI expression. PLoS ONE 7(11), e48530 (2012).
  • White J, Guerin T, Swanson H et al. Diabetic HDL‑associated myristic acid inhibits acetylcholine‑induced nitric oxide generation by preventing the association of endothelial nitric oxide synthase with calmodulin. Am. J. Physiol. Cell Physiol. 294(1), C295–C305 (2008).
  • Patel S, Drew BG, Nakhla S et al. Reconstituted high‑density lipoprotein increases plasma high‑density lipoprotein anti‑inflammatory properties and cholesterol efflux capacity in patients with Type 2 diabetes. J. Am. Coll. Cardiol. 53(11), 962–971 (2009).
  • Calkin AC, Drew BG, Ono A et al. Reconstituted high‑density lipoprotein attenuates platelet function in individuals with Type 2 diabetes mellitus by promoting cholesterol efflux. Circulation 120(21), 2095–2104 (2009).
  • Rader DJ. Effect of insulin resistance, dyslipidemia, and intra‑abdominal adiposity on the development of cardiovascular disease and diabetes mellitus. Am. J. Med. 120(3 Suppl. 1), S12–S18 (2007).
  • Connelly PW, Zinman B, Maguire GF et al. Association of the novel cardiovascular risk factors paraoxonase 1 and cystatin C in Type 2 diabetes. J. Lipid Res. 50(6), 1216–1222 (2009).
  • Eckel RH, Grundy SM, Zimmet PZ. The metabolic syndrome. Lancet 365(9468), 1415–1428 (2005).
  • Suzuki YJ, Jain V, Park AM, Day RM. Oxidative stress and oxidant signaling in obstructive sleep apnea and associated cardiovascular diseases. Free Radic. Biol. Med. 40(10), 1683–1692 (2006).
  • Dyugovskaya L, Lavie P, Lavie L. Increased adhesion molecules expression and production of reactive oxygen species in leukocytes of sleep apnea patients. Am. J. Respir. Crit. Care Med. 165(7), 934–939 (2002).
  • Speer T, Zewinger S, Fliser D. Uraemic dyslipidaemia revisited: role of high‑density lipoprotein. Nephrol. Dial. Transplant. 28(10), 2456–2463 (2013).
  • Speer T, Rohrer L, Blyszczuk P et al. Abnormal high‑density lipoprotein induces endothelial dysfunction via activation of Toll‑like receptor‑2. Immunity 38(4), 754–768 (2013).
  • Gluba A, Banach M, Hannam S, Mikhailidis DP, Sakowicz A, Rysz J. The role of Toll‑like receptors in renal diseases. Nat. Rev. Nephrol. 6(4), 224–235 (2010).
  • Xu S, Liu Z, Liu P. HDL cholesterol in cardiovascular diseases: the good, the bad, and the ugly? Int. J. Cardiol. 168(4), 3157–3159 (2013).
  • Navab M, Berliner JA, Subbanagounder G et al. HDL and the inflammatory response induced by LDL‑derived oxidized phospholipids. Arterioscler. Thromb. Vasc. Biol. 21(4), 481–488 (2001).
  • Navab M, Hama SY, Hough GP, Subbanagounder G, Reddy ST, Fogelman AM. A cell‑free assay for detecting HDL that is dysfunctional in preventing the formation of or inactivating oxidized phospholipids. J. Lipid Res. 42(8), 1308–1317 (2001).
  • Ansell BJ, Navab M, Hama S et al. Inflammatory/antiinflammatory properties of high‑density lipoprotein distinguish patients from control subjects better than high‑density lipoprotein cholesterol levels and are favorably affected by simvastatin treatment. Circulation 108(22), 2751–2756 (2003).
  • McMahon M, Grossman J, FitzGerald J et al. Proinflammatory high‑density lipoprotein as a biomarker for atherosclerosis in patients with systemic lupus erythematosus and rheumatoid arthritis. Arthritis Rheum. 54(8), 2541–2549 (2006).
  • Weihrauch D, Xu H, Shi Y et al. Effects of D‑4F on vasodilation, oxidative stress, angiostatin, myocardial inflammation, and angiogenic potential in tight‑skin mice. Am. J. Physiol. Heart Circ. Physiol. 293(3), H1432–H1441 (2007).
  • Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high‑density lipoproteins. Nat. Cell. Biol. 13(4), 423–433 (2011).
  • Yamakuchi M. MicroRNAs in vascular biology. Int. J. Vasc. Med. 2012, 794898 (2012).
  • Schober A, Thum T, Zernecke A. MicroRNAs in vascular biology–metabolism and atherosclerosis. Thromb. Haemost. 107(4), 603–604 (2012).
  • Rayner KJ, Fernandez‑Hernando C, Moore KJ. MicroRNAs regulating lipid metabolism in atherogenesis. Thromb. Haemost. 107(4), 642–647 (2012).
  • Vickers KC, Remaley AT. Lipid‑based carriers of microRNAs and intercellular communication. Curr. Opin. Lipidol. 23(2), 91–97 (2012).
  • Wagner J, Riwanto M, Besler C et al. Characterization of levels and cellular transfer of circulating lipoprotein‑bound microRNAs. Arterioscler. Thromb. Vasc. Biol. 33(6), 1392–1400 (2013).
  • Burchardt P, Zurawski J, Zuchowski B et al. Low‑density lipoprotein, its susceptibility to oxidation and the role of lipoprotein‑associated phospholipase A2 and carboxyl ester lipase lipases in atherosclerotic plaque formation. Arch. Med. Sci. 9(1), 151–158 (2013).
  • Katsiki N, Nikolic D, Montalto G, Banach M, Mikhailidis DP, Rizzo M. The role of fibrate treatment in dyslipidemia: an overview. Curr. Pharm. Des. 19(17), 3124–3131 (2013).
  • Mackness B, Turkie W, Mackness M. Paraoxonase‑1 (PON1) promoter region polymorphisms, serum PON1 status and coronary heart disease. Arch. Med. Sci. 9(1), 8–13 (2013).
  • Barylski M, Toth PP, Nikolic D, Banach M, Rizzo M, Montalto G. Emerging therapies for raising high‑density lipoprotein cholesterol (HDL‑C) and augmenting HDL particle functionality. Best Pract. Res. Clin. Endocrinol. Metab. doi:10.1016/j.beem.2013.11.001 (2014) (Epub ahead of print).
  • Kucera M, Oravec S, Hirnerova E et al. Effect of atorvastatin on low‑density lipoprotein subpopulations and comparison between indicators of plasma atherogenicity: a pilot study. Angiology doi:10.1177/0003319713507476 (2014) (Epub ahead of print).
  • Gluba A, Pietrucha T, Banach M, Piotrowski G, Rysz J. The role of polymorphisms within paraoxonases (192 Gln/Arg in PON1 and 311Ser/Cys in PON2) in the modulation of cardiovascular risk: a pilot study. Angiology 61(2), 157–65 (2010).
  • Yilmaz N. Relationship between paraoxonase and homocysteine: crossroads of oxidative diseases. Arch. Med. Sci. ;8(1), 138–153 (2012).
  • Toth PP, Barylski M, Nikolic D, Rizzo M, Montalto G, Banach M. Should low high‑density lipoprotein cholesterol (HDL‑C) be treated? Best. Pract Res. Clin. Endocrinol. Metab. doi:10.1016/j.beem.2013.11.002 (2014) (Epub ahead of print).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.