823
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Genetic screening to improve the diagnosis of familial hypercholesterolemia

, , &
Pages 523-532 | Published online: 18 Jan 2017

References

  • Goldstein JL, Hobbs HH, Brown MS. Familial hypercholesterolemia. In: The Metabolic and Molecular Basis of Inherited Disease. Scriver CR, Beaudet AL, Sly WS et al. (Eds). McGraw-Hill, NY, USA, 2863–2913 (2001).
  • Rader DJ, Cohen J, Hobbs HH. Monogenic hypercholesterolemia: new insights in pathogenesis and treatment. J. Clin. Invest. 111(12), 1795–1804 (2003).
  • Naoumova RP, Thompson GR, Soutar AK. Current management of severe homozygous hypercholesterolaemias. Curr. Opin. Lipidol. 15(4), 413–422 (2004).
  • Macchiaiolo M, Gagliardi MG, Toscano A, Guccione P, Bartuli A. Homozygous familial hypercholesterolaemia. Lancet 379(9823), e1330 (2012).
  • Van Der Graaf A, Avis HJ, Kusters DM et al. Molecular basis of autosomal dominant hypercholesterolemia: assessment in a large cohort of hypercholesterolemic children. Circulation 123(11), 1167–1173 (2011).
  • Williams RR, Hunt SC, Schumacher MC et al. Diagnosing heterozygous familial hypercholesterolemia using new practical criteria validated by molecular genetics. Am. J. Cardiol. 72(2), 171–176 (1993).
  • WHO. Familial hypercholesterolemia – report of a second WHO Consultation. (WHO publication no. WHO/HGN/ HF/CONS/99.2) (1999).
  • Marks D, Thorogood M, Neil HA, Humphries SE. A review on the diagnosis, natural history, and treatment of familial hypercholesterolaemia. Atherosclerosis 168(1), 1–14 (2003).
  • Goldberg AC, Hopkins PN, Toth PP et al. Familial hypercholesterolemia: screening, diagnosis and management of pediatric and adult patients: clinical guidance from the National Lipid Association Expert Panel on Familial Hypercholesterolemia. J. Clin. Lipidol. 5(3), 133–140 (2011).
  • Humphries S, Whittall R, Hubbart C et al. Genetic causes of familial hypercholesterolaemia in patients in the UK: relation to plasma lipid levels and coronary heart disease risk. J. Med. Genet. 43(12), 943–949 (2006).
  • Usifo E, Leigh SE, Whittall RA et al. Low‐density lipoprotein receptor gene familial hypercholesterolemia variant database: update and pathological assessment. Ann. Hum. Genet. 76(5), 387–401 (2012). • A Comprehensive Database Of LDLR And PCSK9 Gene Variants.
  • Hobbs HH, Russell DW, Brown MS, Goldstein JL. The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein. Annu. Rev. Genet. 24, 133–170 (1990).
  • Bourbon M, Duarte MA, Alves AC, Medeiros AM, Marques L, Soutar AK. Genetic diagnosis of familial hypercholesterolaemia: the importance of functional analysis of potential splice-site mutations. J. Med. Genet. 46(5), 352–357 (2009).
  • Kulseth MA, Berge KE, Bogsrud MP, Leren TP. Analysis of LDLR mRNA in patients with familial hypercholesterolemia revealed a novel mutation in intron 14, which activates a cryptic splice site. J. Hum. Genet. 55(10), 676–680 (2010).
  • Hobbs HH, Russell DW, Brown MS, Goldstein JL. The LDL receptor locus in familial hypercholesterolemia: mutational analysis of a membrane protein. Annu. Rev. Genet. 24(1), 133–170 (1990).
  • Hobbs HH, Brown MS, Goldstein JL. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum. Mutat. 1(6), 445–466 (1992).
  • Vohl MC, Gaudet D, Moorjani S et al. Comparison of the effect of two low‐density lipoprotein receptor class mutations on coronary heart disease among French‐Canadian patients heterozygous for familial hypercholesterolaemia. Eur. J. Clin. Invest. 27(5), 366–373 (1997).
  • Lima Santos Junior PC, Morgan AC, Lepski CE et al. Presence and type of low density lipoprotein receptor (LDLR) mutation influences the lipid profile and response to lipid-lowering therapy in Brazilian patients with heterozygous familial hypercholesterolemia. Atherosclerosis 233(1), 206–210 (2014).
  • LDLR mutation database. www.ucl.ac.uk/ldlr/
  • Segrest JP, Jones MK, De Loof H, Dashti N. Structure of apolipoprotein B-100 in low density lipoproteins. J. Lipid Res. 42(9), 1346–1367 (2001).
  • Innerarity TL, Mahley RW, Weisgraber KH et al. Familial defective apolipoprotein B-100: a mutation of apolipoprotein B that causes hypercholesterolemia. J. Lipid Res. 31(8), 1337–1349 (1990).
  • Fouchier SW, Defesche JC, Kastelein JJ, Sijbrands EJ. Familial defective apolipoprotein B versus familial hypercholesterolemia: an assessment of risk. Semin. Vasc. Med. 4(3), 259–264 (2004).
  • Borén J, Ekström U, Ågren, B, Nilsson-Ehle P, Innerarity TL. The molecular mechanism for the genetic disorder familial defective apolipoprotein B100. J. Biol. Chem. 276(12), 9214–9218 (2001).
  • Alves AC, Etxebarria A, Soutar AK, Martin C, Bourbon M. Novel functional APOB mutations outside LDL-binding region causing familial hypercholesterolaemia. Hum. Mol. Genet. 23(7), 1817–1828 (2013).
  • Thomas ER, Atanur SS, Norsworthy PJ et al. Identification and biochemical analysis of a novel APOB mutation that causes autosomal dominant hypercholesterolemia. Mol. Genet. Genomic Med. 1(3), 155–161 (2013).
  • Seidah NG, Benjannet S, Wickham L et al. The secretory proprotein convertase neural apoptosis-regulated convertase 1 (NARC-1): liver regeneration and neuronal differentiation. Proc. Natl Acad. Sci. USA 100(3), 928–933 (2003).
  • Kwon HJ, Lagace TA, Mcnutt MC, Horton JD, Deisenhofer J. Molecular basis for LDL receptor recognition by PCSK9. Proc. Natl Acad. Sci. USA 105(6), 1820–1825 (2008).
  • Zhang DW, Lagace TA, Garuti R et al. Binding of proprotein convertase subtilisin/kexin type 9 to epidermal growth factor-like repeat A of low density lipoprotein receptor decreases receptor recycling and increases degradation. J. Biol. Chem. 282(25), 18602–18612 (2007).
  • Piper DE, Jackson S, Liu Q et al. The crystal structure of PCSK9: a regulator of plasma LDL-cholesterol. Structure 15(5), 545–552 (2007).
  • Cunningham D, Danley DE, Geoghegan KF et al. Structural and biophysical studies of PCSK9 and its mutants linked to familial hypercholesterolemia. Nat. Struct. Mol. Biol. 14(5), 413–419 (2007).
  • Chiou K-R, Charng M-J. Detection of mutations and large rearrangements of the low-density lipoprotein receptor gene in Taiwanese patients with familial hypercholesterolemia. Am. J. Cardiol. 105(12), 1752–1758 (2010).
  • Hooper AJ, Nguyen LT, Burnett JR et al. Genetic analysis of familial hypercholesterolaemia in Western Australia. Atherosclerosis 224(2), 430–434 (2012).
  • Wang J, Ban MR, Hegele RA. Multiplex ligation-dependent probe amplification of LDLR enhances molecular diagnosis of familial hypercholesterolemia. J. Lipid Res. 46(2), 366–372 (2005).
  • Chiou KR, Charng MJ, Chang HM. Arraybased resequencing for mutations causing familial hypercholesterolemia. Atherosclerosis 216(2), 383–389 (2011).
  • Holla ØL, Teie C, Berge KE, Leren TP. Identification of deletions and duplications in the low density lipoprotein receptor gene by MLPA. Clin. Chim. Acta 356(1), 164–171 (2005).
  • Romano M, Di Taranto MD, D’agostino MN et al. Identification and functional characterization of LDLR mutations in familial hypercholesterolemia patients from Southern Italy. Atherosclerosis 210(2), 493–496 (2010).
  • Alonso R, Defesche JC, Tejedor D et al. Genetic diagnosis of familial hypercholesterolemia using a DNA-array based platform. Clin. Biochem. 42(9), 899–903 (2009).
  • Palacios L, Grandoso L, Cuevas N et al. Molecular characterization of familial hypercholesterolemia in Spain. Atherosclerosis 221(1), 137–142 (2012).
  • Stef MA, Palacios L, Olano-Martín E et al. A DNA microarray for the detection of point mutations and copy number variation causing familial hypercholesterolemia in Europe. J. Mol. Diagn. 15(3), 362–372 (2013). •• Evaluation Of A Unique Platform, Lipochip®, Developed To Identify Common Familial Hypercholesterolemia-Causing Mutations In European Populations.
  • Tejedor D, Castillo S, Mozas P et al. Reliable low-density DNA array based on allele-specific probes for detection of 118 mutations causing familial hypercholesterolemia. Clin. Chem. 51(7), 1137–1144 (2005).
  • Dušková L, Kopečková L, Jansová E et al. An APEX-based genotyping microarray for the screening of 168 mutations associated with familial hypercholesterolemia. Atherosclerosis 216(1), 139–145 (2011).
  • Wright WT, Heggarty SV, Young IS et al. Multiplex MassARRAY spectrometry (iPLEX) produces a fast and economical test for 56 familial hypercholesterolaemiacausing mutations. Clin. Genet. 74(5), 463–468 (2008).
  • Faiz F, Allcock RJ, Hooper AJ, Van Bockxmeer FM. Detection of variations and identifying genomic breakpoints for large deletions in the LDLR by Ion Torrent semiconductor sequencing. Atherosclerosis 230(2), 249–255 (2013).
  • Futema M, Plagnol V, Whittall RA, Neil HaW, Humphries SE. Use of targeted exome sequencing as a diagnostic tool for familial hypercholesterolaemia. J. Med. Genet. 49(10), 644–649 (2012).
  • Hollants S, Redeker EJ, Matthijs G. Microfluidic amplification as a tool for massive parallel sequencing of the familial hypercholesterolemia genes. Clin. Chem. 58(4), 717–724 (2012).
  • Metzker ML. Sequencing technologies — the next generation. Nat. Rev. Genet. 11(1), 31–46 (2009).
  • Vandrovcova J, Thomas ERA, Atanur SS et al. The use of next-generation sequencing in clinical diagnosis of familial hypercholesterolemia. Genet. Med. 15(12), 948–957 (2013). •• Demonstrates The Successful Use Of Two Different Massively Parallel Sequencing Platforms To Identify Mutations In A Familial Hypercholesterolemia Cohort.
  • Hinchcliffe M, Le H, Fimmel A et al. Diagnostic validation of a familial hypercholesterolaemia cohort provides a model for using targeted next generation DNA sequencing in the clinical setting. Pathology 46(1), 60–68 (2014).
  • Maglio C, Mancina RM, Motta BM et al. Genetic diagnosis of familial hypercholesterolaemia by targeted next‐generation sequencing. J. Intern. Med. 276(4), 396–403 (2014).
  • Bodi K, Perera A, Adams P et al. Comparison of commercially available target enrichment methods for next-generation sequencing. J. Biomol. Tech. 24(2), 73–86 (2013).
  • Loman NJ, Misra RV, Dallman TJ et al. Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol. 30(5), 434–439 (2012).
  • Bourbon M, Sun X, Soutar A. A rare polymorphism in the low density lipoprotein (LDL) gene that affects mRNA splicing. Atherosclerosis 195(1), e17–e20 (2007).
  • Liguori R, Argiriou A, Simone VD. A rapid method for detecting mutations of the human LDL receptor gene by complete cDNA sequencing. Mol. Cell. Probes 17(1), 15–20 (2003).
  • Cameron J, Holla L, Kulseth MA, Leren TP, Berge KE. Splice-site mutation c. 313+ 1, G> A in intron 3 of the LDL receptor gene results in transcripts with skipping of exon 3 and inclusion of intron 3. Clin. Chim. Acta 403(1–2), 131–135 (2009).
  • Newton C, Graham A, Heptinstall L et al. Analysis of any point mutation in DNA. The amplification refractory mutation system (ARMS). Nucleic Acids Res. 17(7), 2503–2516 (1989).
  • Taylor A, Wang D, Patel K et al. Mutation detection rate and spectrum in familial hypercholesterolaemia patients in the UK pilot cascade project. Clin. Genet. 77(6), 572–580 (2010).
  • Bodamer OA, Bercovich D, Schlabach M, Ballantyne C, Zoch D, Beaudet AL. Use of denaturing HPLC to provide efficient detection of mutations causing familial hypercholesterolemia. Clin. Chem. 48(11), 1913–1918 (2002).
  • Whittall RA, Scartezini M, Li K et al. Development of a high-resolution melting method for mutation detection in familial hypercholesterolaemia patients. Ann. Clin. Biochem. 47(Pt 1), 44–55 (2010).
  • Bunn CF, Lintott CJ, Scott RS, George PM. Comparison of SSCP and DHPLC for the detection of LDLR mutations in a New Zealand cohort. Hum. Mutat. 19(3), 311–311 (2002).
  • Kindt I, Huijgen R, Boekel M et al. Quality assessment of the genetic test for familial hypercholesterolemia in the Netherlands. Cholesterol 2013, 531658 (2013).
  • Nordestgaard BG, Chapman MJ, Humphries SE et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: guidance for clinicians to prevent coronary heart disease: Consensus Statement of the European Atherosclerosis Society. Eur. Heart J. 4, 3478–3490 (2013). • Recent Recommendations For Fh Diagnosis, Treatment And Screening.
  • Nherera L, Marks D, Minhas R, Thorogood M, Humphries SE. Probabilistic cost-effectiveness analysis of cascade screening for familial hypercholesterolaemia using alternative diagnostic and identification strategies. Heart 97(14), 1175–1181 (2011).
  • O’Brien EC, Roe MT, Fraulo ES et al. Rationale and design of the familial hypercholesterolemia foundation CAscade SCreening for Awareness and DEtection of Familial Hypercholesterolemia registry. Am. Heart J. 167(3), 342–349 e317 (2014).
  • Hollands GJ, Armstrong D, Macfarlane A, Crook MA, Marteau TM. Patient accounts of diagnostic testing for familial hypercholesterolaemia: comparing responses to genetic and non-genetic testing methods. BMC Med. Genet. 13, 87 (2012).
  • Van Maarle MC, Stouthard ME, Marang-Van De Mheen PJ, Klazinga NS, Bonsel GJ. How disturbing is it to be approached for a genetic cascade screening programme for familial hypercholesterolaemia? Psychological impact and screenees’ views. Community Genet. 4(4), 244–252 (2001).
  • Hardcastle SJ, Legge E, Laundy CS et al. Patients’ perceptions and experiences of familial hypercholesterolemia, cascade genetic screening and treatment. Int. J. Behav. Med. (2014) (In Press).
  • Solanas-Barca M, De Castro-Orós I, Mateo-Gallego R et al. Apolipoprotein E gene mutations in subjects with mixed hyperlipidemia and a clinical diagnosis of familial combined hyperlipidemia. Atherosclerosis 222(2), 449–455 (2012).
  • Marduel M, Ouguerram K, Serre V et al. Description of a large family with autosomal dominant hypercholesterolemia associated with the APOE p. Leu167del mutation. Hum. Mutat. 34(1), 83–87 (2013). • An APOE Mutation Is Associated With Fh.
  • Awan Z, Choi HY, Stitziel N et al. APOE p. Leu167del mutation in familial hypercholesterolemia. Atherosclerosis 231(2), 218–222 (2013).
  • Teslovich TM, Musunuru K, Smith AV et al. Biological, clinical and population relevance of 95 loci for blood lipids. Nature 466, 707–713 (2010).
  • Leren TP, Manshaus T, Skovholt U et al. Application of molecular genetics for diagnosing familial hypercholesterolemia in Norway: results from a family-based screening program. Semin. Vasc. Med. 4(01), 75–85 (2004).
  • Starr B, Hadfield SG, Hutten BA et al. Development of sensitive and specific age-and gender-specific low-density lipoprotein cholesterol cutoffs for diagnosis of first-degree relatives with familial hypercholesterolaemia in cascade testing. Clin. Chem. Lab. Med. 46(6), 791–803 (2008).
  • Talmud PJ, Shah S, Whittall R et al. Use of low-density lipoprotein cholesterol gene score to distinguish patients with polygenic and monogenic familial hypercholesterolaemia: a case–control study. Lancet 381, 1293–1301 (2013). •• Demonstrates The Use Of Gene Scores To Distinguish Between Monogenic And Polygenic Causes Of Fh.
  • Johansen CT, Dube JB, Loyzer MN et al. LipidSeq: a next-generation clinical resequencing panel for monogenic dyslipidemias. J. Lipid Res. 55(4), 765–772 (2014). •• Design Of A Targeted Resequencing Gene Panel To Identify Mutations In Dyslipidemia Patients.
  • Standards for clinical use of genetic variants. Nat. Genet. 46(2), 93 (2014).
  • Gray VE, Kukurba KR, Kumar S. Performance of computational tools in evaluating the functional impact of laboratory-induced amino acid mutations. Bioinformatics 28(16), 2093–2096 (2012).
  • Green RC, Berg JS, Grody WW et al. ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genet. Med. 15(7), 565–574 (2013).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.