317
Views
9
CrossRef citations to date
0
Altmetric
Reviews

Sphingolipid regulators of cellular dysfunction in Type 2 diabetes mellitus: a systems overview

, , &
Pages 553-569 | Published online: 18 Jan 2017

References

  • Hansen B. Insulin resistance, glucose intolerance, hypertension, obesity, and dislipidemia-searching for the underlying defects. Ann. NY Acad. Sci. 892, 1–24 (1999).
  • Modan M, Halkin H, Almag S et al. Hyperinsulnemia: a link between hypertension, obesity, and glucose intolerance. J. Clin. Invest. 75, 809–817 (1985).
  • Summers SA. Ceramides in insulin resistance and lipotoxicity. Prog. Lipid. Res. 45, 42–72 (2006).
  • Straczkowski M, Kowalska I, Baranowski M et al. Increased skeletal muscle ceramide level in men at risk of developing Type 2 diabetes. Diabetologia 50, 2366–2373 (2007).
  • Hu W, Bielawski J, Samad F, Merrill AH Jr, Cowart LA. Palmitate increases sphingosine-1-phosphate in C2C12 myotubes via upregulation of sphingosine kinase message and activity. J. Lipid. Res. 50, 1852–1862 (2009).
  • Lempiainen P, Mykkanen L, Pyoraka K, Laakso M, Kuusisto J. Insulin resistance syndrome predicts coronary heart disease events in elderly nondiabetic men. Circulation 100(2), 123–128 (1999).
  • Organization WH. Overweight and obesity (2013). www.who.int/mediacentre/factsheets/fs311/en/
  • Ervin R. Prevalence of metabolic syndrome among adults 920 years of age and over, by sex, age, race and ethnicity, and body mass index: United States, 2003–2006. Natl Health Stat. Report 13(1–7), (2009).
  • Flegal K, Carroll M, Ogden C, Curtin L. Prevalence and trends in obesity among US adults, 1999–2008. JAMA 303(3), 235–241 (2010).
  • Baskin M, Ard J, Franklin F, Allison D. Prevalence of obesity in the United States. Obes. Rev. 6, 5–7 (2005).
  • Prevention CFDCA, Division of Nutrition PA, and Obesity, Promotion NCFCDPaH. Overweight and obesity (2013). www.cdc.gov/obesity/index.html. (2013).
  • Grundy SM, H Bryan Brewer Jr, Cleeman JI, Sidney C, Smith J, Lenfant C. Definition of metabolic syndrome: report of the National Heart, Lung, and Blood Institute/ American Heart Association Conference on Scientific Issues Related to Definition. Circulation 109, 433–438 (2004).
  • Ebbesson S, Tejero M, Lopez-Alvarenga J et al. Individual saturated fatty acids are associated with different components of insulin resistance and glucose metabolism: the GOCADAN study. Int. J. Circumpolar Health 69, 344–351 (2010).
  • Lovejoy J, Champagne C, Smith S et al. Relationship of dietary fat and serum cholesterol ester and phospholipid fatty acids to markers of insulin resistance in men and women with a range of glucose tolerance. Metabolism 50, 86–92 (2001).
  • Kusunoki M, Tsutsumi K, Nakayama M et al. Relationship between serum concentration of saturated fatty acids and unsaturated fatty acids and the homeostasis model insulin resistance index in Japanese patients with Type 2 diabetes mellitus. J. Med. Invest. 54, 243–247 (2007).
  • Belfort R, Mandarino L, Kashyap S et al. Dose-response effect of elevated plasma free fatty acid on insulin signaling. Diabetes 54, 1640–1648 (2005).
  • Dyntar D, Eppenberger-Eberhardt M, Maedler K et al. Glucose and palmitic acid induce degeneration of myofibrils and modulate apoptosis in rat adult cardiomyocytes. Diabetes 50(9), 2105–2113 (2001).
  • Park TS, Hu Y, Noh HL et al. Ceramide is a cardiotoxin in lipotoxic cardiomyopathy. J. Lipid. Res. 49(10), 2101–2112 (2008).
  • Turpin SM, Ryall JG, Southgate R et al. Examination of ‘lipotoxicity’ in skeletal muscle of high-fat fed and ob/ob mice. J. Physiol. 587(7), 1598–1605 (2009).
  • Unger R, Clark G, Scherer P, Orci L. Lipid homeostasis, lipotoxicity and the metabolic syndrome. Biochim. Biophys. Acta. 1801(3), 209–214 (2010).
  • Schaffer J. Fatty acid transport: the roads taken. Am. J. Physiol. Endocrinol. Metab. 282, E239–E246 (2002).
  • Kelley D, He J, Menshikova E, Ritov V. Dysfunction of mitochondria in human skeletal muscle in Type 2 diabetes. Diabetes 51, 2944–2950 (2002).
  • Koves T, Ussher J, Noland R et al. Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance. Cell. Metab. 7, 45–56 (2008).
  • Bruce C, Hoy A, Turner N et al. Overexpression of carnitine palmitoyltransferase-1 in skeletal muscle is sufficient to enhance fatty acid oxidation and improve high-fat diet-induced insulin resistance. Diabetes 58, 550–558 (2009).
  • Noguchi Y, Young J, Aleman J, Hansen M, Kelleher J, Sephanopoulos G. Effect of anaplerotic fluxes and amino acid availability on hepatic lipoapoptosis. J. Biol. Chem. 284, 33425–33436 (2009).
  • Satapati S, Sunny N, Kucejova B et al. Elevated TCA cycle function in the pathology of diet-induced hepatic insulin resistance and fatty liver. J. Lipid. Res. 53, 1080–1092 (2012).
  • Kraegen E, Cooney G, Turner N. Muscle insulin resistance: a case of fat overconsumption, not mitochondrial dysfunction. Proc. Natl Acad. Sci. USA 105, 7627–7628 (2008).
  • Turner N, Heilbronn L. Is mitochondrial dysfunction a cause of insulin resistance? Trends Endocrinol. Metab. 19, 324–330 (2008).
  • Pospisilik J, Knauf C, Joza N et al. Targeted deletion of AIF decreases mitochondrial oxidative phosphorylation and protects from obesity and diabetes. Cell 131, 476–491 (2007).
  • Wredenberg A, Freyer C, Sandstrom M et al. Respiratory chain dysfunction in skeletal muscle does not cause insulin resistance. Biochem. Biophys. Res. Commun. 350, 202–207 (2006).
  • Finck B, Bernal-Mizrachi C, Han D et al. A potential link between muscle peroxisome proliferator-activated receptoralpha signaling and obesity-related diabetes. Cell. Metab. 1, 133–144 (2005).
  • Ussher J, Koves T, Cadete V et al. Inhibition of de novo ceramide synthesis reverses diet-induced insulin resistance and enhances whole-body oxygen consumption. Diabetes 59, 2453–2464 (2010).
  • Schmitz-Peiffer C. Targeting ceramide synthesis to reverse insulin resistance. Diabetes 59, 2351–2353 (2010).
  • Cnop M, Foufelle F, Vellosos L. Endoplasmic reticulum stress, obesity and diabetes. Trends Mol. Med. 18, 59–68 (2012).
  • Boslem E, Macintosh G, Preston A et al. A lipidomic screen of palmitate-treated MIN6 β-cells links sphingolipid metabolites with endoplasmic reticulum (ER) stress and impaired protein trafficking. Biochem. J. 435, 267–276 (2011).
  • Lei X, Zhang S, Emani B, Barbour S, Ramanadham S. A link between endoplasmic reticulum stress-induced β-cell apoptosis and the group VIA Ca2+-independent phospholipase A2 (iPLA2beta). Diabetes Obes. Metab. 12(Suppl. 2), 93–98 (2010).
  • Tidhar R, Futerman A. The complexity of sphingolipid biosynthesis in the endoplasmic reticulum. Biochim. Biophys. Acta 1833(11), 2511–2518 (2013).
  • Park J, Park W, Futerman A. Ceramide synthases as potential targets for therapeutic intervention in human diseases. Biochim. Biophys. Acta 1841(5), 671–681 (2014).
  • Gault C, Obeid L, Hannun Y. An overview of sphingolipid metabolism: from synthesis to breakdown. Adv. Exp. Med. Biol. 688, 1–23 (2010).
  • Milburn JL Jr, Hirose H, Lee YH et al. Pancreatic β-cells in obesity. Evidence for induction of functional, morphologic, and metabolic abnormalities by increased long chain fatty acids. J. Biol. Chem. 270(3), 1295–1299 (1995).
  • Lee Y, Hirose H, Ohneda M, Johnson JH, Mcgarry JD, Unger RH. β-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-β-cell relationships. Proc. Natl Acad. Sci. USA 91(23), 10878–10882 (1994).
  • Shimabukuro M, Zhou YT, Levi M, Unger RH. Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc. Natl Acad. Sci. USA 95(5), 2498–2502 (1998).
  • Obeid LM, Linardic CM, Karolak LA, Hannun YA. Programmed cell death induced by ceramide. Science 259(5102), 1769–1771 (1993).
  • Shimabukuro M, Zhou Y-T, Levi M, Unger R. Fatty acid-induced beta cell apoptosis: a link between obesity and diabetes. Proc. Natl Acad. Sci. USA 95, 2498–2502 (1998).
  • Shimabukuro M, Higa M, Zhou YT, Wang MY, Newgard CB, Unger RH. Lipoapoptosis in β-cells of obese prediabetic fa/fa rats. Role of serine palmitoyltransferase overexpression. J. Biol. Chem. 273(49), 32487–32490 (1998).
  • Maedler K, Oberholzer J, Bucher P, Spinas GA, Donath MY. Monounsaturated fatty acids prevent the deleterious effects of palmitate and high glucose on human pancreatic β-cell turnover and function. Diabetes 52(3), 726–733 (2003).
  • Maedler K, Spinas GA, Dyntar D, Moritz W, Kaiser N, Donath MY. Distinct effects of saturated and monounsaturated fatty acids on β-cell turnover and function. Diabetes 50(1), 69–76 (2001).
  • El-Assaad W, Joly E, Barbeau A et al. Glucolipotoxicity alters lipid partitioning and causes mitochondrial dysfunction, cholesterol, and ceramide deposition and reactive oxygen species production in INS832/13 ss-cells. Endocrinology 151(7), 3061–3073 (2010).
  • Veret J, Coant N, Berdyshev EV et al. Ceramide synthase 4 and de novo production of ceramides with specific N-acyl chain lengths are involved in glucolipotoxicity-induced apoptosis of INS-1 β-cells. Biochem. J. 438(1), 177–189 (2011).
  • Kelpe CL, Moore PC, Parazzoli SD, Wicksteed B, Rhodes CJ, Poitout V. Palmitate inhibition of insulin gene expression is mediated at the transcriptional level via ceramide synthesis. J. Biol. Chem. 278(32), 30015–30021 (2003).
  • Guo J, Qian Y, Xi X, Hu X, Zhu J, Han X. Blockage of ceramide metabolism exacerbates palmitate inhibition of pro-insulin gene expression in pancreatic β-cells. Mol. Cell. Biochem. 338(1–2), 283–290 (2010).
  • Guo J, Zhu JX, Deng XH et al. Palmitate-induced inhibition of insulin gene expression in rat islet β-cells involves the ceramide transport protein. Cell. Physiol. Biochem. 26(4–5), 717–728 (2010).
  • Guo J, Qian Y, Xi X, Hu X, Zhu J, Han X. Blockage of ceramide metabolism exacerbates palmitate inhibition of pro-insulin gene expression in pancreatic β-cells. Mol. Cell. Biochem. 338(1–2), 283–290 (2010).
  • Yano M, Watanabe K, Yamamoto T et al. Mitochondrial dysfunction and increased reactive oxygen species impair insulin secretion in sphingomyelin synthase 1-null mice. J. Biol. Chem. 286(5), 3992–4002 (2011).
  • Subathra M, Qureshi A, Luberto C. Sphingomyelin synthases regulate protein trafficking and secretion. PLoS ONE 6(9), e23644 (2011).
  • Boslem E, Macintosh G, Preston AM et al. A lipidomic screen of palmitate-treated MIN6 β-cells links sphingolipid metabolites with endoplasmic reticulum (ER) stress and impaired protein trafficking. Biochem. J. 435(1), 267 (2011).
  • Boslem E, Meikle PJ, Biden TJ. Roles of ceramide and sphingolipids in pancreatic β-cell function and dysfunction. Islets 4(3), 177–187 (2012).
  • Boslem E, Weir JM, Macintosh G et al. Alteration of endoplasmic reticulum lipid rafts contributes to lipotoxicity in pancreatic β-cells. J. Biol. Chem. 288(37), 26569–26582 (2013).
  • Boslem E, Macintosh G, Preston AM et al. A lipidomic screen of palmitate-treated MIN6 β-cells links sphingolipid metabolites with endoplasmic reticulum (ER) stress and impaired protein trafficking. Biochem. J. 435(1), 267–276 (2011).
  • Veluthakal R, Palanivel R, Zhao Y, McDonald P, Gruber S, Kowluru A. Ceramide induces mitochondrial abnormalities in insulin-secreting INS-1 cells: potential mechanisms underlying ceramide-mediated metabolic dysfunction of the beta cell. Apoptosis 10(4), 841-850 (2005).
  • Lupi R, Dotta F, Marselli L et al. Prolonged exposure to free fatty acids has cytostatic and proapoptotic effects on human pancreatic islets: evidence that β-cell death is caspase mediated, partially dependent on ceramide pathway, and Bcl-2 regulated. Diabetes 51(5), 1437-1442 (2002).
  • Veret J, Coant N, Berdyshev E et al. Ceramide synthase 4 and de novo production of ceramides with specific N-acyl chain lengths are involved in gluco-lipotoxicity-induced apoptosis of INS-1 β-cells. Biochem. J. 438(1), 177–189 (2011).
  • Hartmann D, Wegner MS, Wanger RA et al. The equilibrium between long and very long chain ceramides is important for the fate of the cell and can be influenced by co-expression of CerS. Int. J. Biochem. Cell Biol. 45(7), 1195–1203 (2013).
  • Hartmann D, Lucks J, Fuchs S et al. Long chain ceramides and very long chain ceramides have opposite effects on human breast and colon cancer cell growth. Int. J. Biochem. Cell Biol. 44(4), 620–628 (2012).
  • Tagami S, Inokuchi Ji J, Kabayama K et al. Ganglioside GM3 participates in the pathological conditions of insulin resistance. J. Biol. Chem. 277(5), 3085–3092 (2002).
  • Aerts JM, Ottenhoff R, Powlson AS et al. Pharmacological inhibition of glucosylceramide synthase enhances insulin sensitivity. Diabetes 56(5), 1341–1349 (2007).
  • Zhao H, Przybylska M, Wu I et al. Inhibiting glycosphingolipid synthesis improves glycemic control and insulin sensitivity in animal models of Type 2 diabetes. Diabetes 56(5), 1210–1218 (2007).
  • Preston AM, Gurisik E, Bartley C, Laybutt DR, Biden TJ. Reduced endoplasmic reticulum (ER)-to-Golgi protein trafficking contributes to ER stress in lipotoxic mouse beta cells by promoting protein overload. Diabetologia 52(11), 2369–2373 (2009).
  • Russo SB, Ross JS, Cowart LA. Sphingolipids in obesity, Type 2 diabetes, and metabolic disease. Handb. Exp. Pharmacol. 216, 373–401 (2013).
  • Jessup CF, Bonder CS, Pitson SM, Coates PT. The sphingolipid rheostat: a potential target for improving pancreatic islet survival and function. Endocr. Metab. Immune Disord. Drug Targets 11(4), 262–272 (2011).
  • Cantrell Stanford J, Morris AJ, Sunkara M, Popa GJ, Larson KL, Ozcan S. Sphingosine 1-phosphate (S1P) regulates glucose-stimulated insulin secretion in pancreatic beta cells. J. Biol. Chem. 287(16), 13457–13464 (2012).
  • Mastrandrea LD, Sessanna SM, Laychock SG. Sphingosine kinase activity and sphingosine-1 phosphate production in rat pancreatic islets and INS-1 cells: response to cytokines. Diabetes 54(5), 1429–1436 (2005).
  • Rutti S, Ehses JA, Sibler RA et al. Low- and high-density lipoproteins modulate function, apoptosis, and proliferation of primary human and murine pancreatic β-cells. Endocrinology 150(10), 4521–4530 (2009).
  • Samad F, Hester KD, Yang G, Hannun YA, Bielawski J. Altered adipose and plasma sphingolipid metabolism in obesity: a potential mechanism for cardiovascular and metabolic risk. Diabetes 55, 2579–2587 (2006).
  • Bonzon-Kulichenko E, Schwudke D, Gallardo N et al. Central leptin regulates total ceramide content and sterol regulatory element binding protein-1C proteolytic maturation in rat white adipose tissue. Endocrinology 150(1), 169–178 (2009).
  • Kahn B, Flier J. Obesity and insulin resistance. J. Clin. Invest. 106(4), 473–481 (2000).
  • Cheung A, Ree D, Kolls J, Coy D, Bryer-Ash M. An in vivo model for elucidation of the mechanism of TNF-alpha induced insulin resistance: evidence for differential regulation of insulin signaling by TNF-alpha. Endocrinology 139, 4928–4935 (1998).
  • Christiansen T, Richelsen B, Bruun J. Monocyte chemoattractant protein-1 is produced in isolated adipocytes, associated with adiposity and reduced after weight loss in morbid obese subjects. Int. J. Obes. 29(1), 146–150 (2005).
  • Mohamed-Ali V, Goodrick S, Rawesh A et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J. Clin. Endocrinol. Metab. 82, 4196–4200 (1997).
  • Samad F, Badeanlou L, Shah C, Yang G. Adipose tissue and ceramide biosynthesis in the pathogenesis of obesity. Adv. Exp. Med. Biol. 721, 67–86 (2011).
  • Hotamisligil H. The role of TNFalpha and TNF receptors in obesity and insulin resistance. J. Intern. Med. 245, 621–625 (1999).
  • Peraldi P, Spiegelman B. TNF-alpha and insulin resistance: summary and future prospects. Mol. Cell. Biochem. 182(1-2) 169–175 (1998).
  • Bergman B, Howard D, Schauer I et al. The importance of palmitoleic acid to adipocyte insulin resistance and whole-body insulin sensitivity in Type 1 diabetes. J. Clin. Endocrinol. Metab. 98(1), e40–e50 (2013).
  • Hodson L, Karpe F. Is there something special about palmitoleate? Curr. Opin. Clin. Nutr. Metab. Care 16(2), 225–231 (2013).
  • Mozaffarian D, Cao H, King I et al. Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes. A. J. Clin. Nutr. 92(6), 1350–1358 (2010).
  • Pinnick K, Neville M, Fielding B, Frayn K, Karpe F, Hodson L. Gluteofemoral adipose tissue plays a major role in production of the lipokine palmitoleate in humans. Diabetes 61(6), 1399–1403 (2012).
  • Hajduch E, Alessi D, Hemmings B, Hundal H. Constitutive activation of protien kinase B alpha by membrane targeting promotes glucose and system A amino acid transport, protein synthesis, and inactivation of glycogen synthase kinase 3 in L6 muscle cells. Diabetes 47, 1006–1013 (1998).
  • Chatterjee S. Neutral sphingomyelinase action stimulates signal transduction of tumor necrosis factor-alpha in synthesis of cholesteryl esters in human fibroblasts. J. Biol. Chem. 269, 879–882 (1994).
  • Shah C, Yang G, Lee I, Bielawski J, Hannun YA, Samad F. Protection from high fat diet-induced increase in ceramide in mice lacking plaminogen activator inhibitor 1. J. Biol. Chem. 283, 13538–13548 (2008).
  • Auge N, Maupas-Schwalm F, Elbaz M et al. Role for matrix metalloproteinase-2 in oxidized low-density lipoproteininduced activation of sphingomyelin/ceramide pathway and smooth muscle cell proliferation. Circulation 110, 571–578 (2004).
  • Hojjati M, Li Z, Zhou H et al. Effect of myriocin on plasma sphingolipid metabolism and atherosclerosis in apoE-deficient mice. J. Biol. Chem. 280, 10284–10289 (2005).
  • Gorski J, Dobrzyn A, Zendzian-Piotrowska M. The sphingomyelin-signaling pathway in skeletal muscles and its role in regulation of glucose uptake. Ann. NY Acad. Sci. 967, 236–248 (2002).
  • Bruni P, Donati C. Pleiotropic effects of sphingolipids in skeletal muscle. Cell. Mol. Life Sci. 65, 3725–3736 (2008).
  • Keller S, Lienhard G. Insulin signalling the role of insulin receptor substrate 1. Trends Cell Biol. 4, 115–119 (1994).
  • Nystrom F, Quon M. Insulin signalling: metabolic pathways and mechanisms for specificity. Cell Signal. 11(8), 563–574 (1999).
  • Chavez J, Summers S. Characterizing the effects of saturated fatty acids on insulin signaling and ceramide and diacylglycerol accumulation in 3T3-L1 adipocytes and C2C12 myotubes. Arch. Biochem. Biophys. 419(2), 101–109 (2003).
  • Holland W, Brozinick J, Wang L et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-, and obesity-induced insulin resistance. Cell Metab. 5, 167–179 (2007).
  • Boden G, Lebed B, Schatz M, Homko C, Lemieux S. Effects of acute changes of plasma free fatty acids on intramyocellular fat content and insulin resistance in healthy subjects. Diabetes 50, 1612–1617 (2001).
  • Hajduch E, Balendran A, Batty I, Litherland G. Ceramide impairs the insulin-dependent membrane recruitment of protein kinase B leading to a loss in downstream signalling in L6 skeletal muscle cells. Diabetologia 44(2), 173–183 (2001).
  • Itani S, Ruderman N, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase c, and IkB-alpha. Diabetes 51, 2005–2011 (2002).
  • Teruel T, Hernandez R, Lorenzo M. Ceramide mediates insulin resistance by tumor necrosis factor-alpha in brown adipocytes by maintaining Akt in an inactive dephosphorylated state. Diabetes 50, 2563–2571 (2001).
  • Turinsky J, O’Sullivan D, Bayly B. 1,2-Diacylglycerol and ceramide levels in insulin-resistant tissues of the rat in vivo. J. Biol. Chem. 265, 16880–16885 (1990).
  • Schmitz-Peiffer C, Craig D, Biden T. Ceramide generation is sufficient to account for the inhibition of the insulin-stimulated PKB pathway in C2C12 skeletal muscle cells pretreated with palmitate. J. Biol. Chem. 274, 24202–24210 (1999).
  • Chavez JA, Knotts TA, Wang LP et al. A role for ceramide, but not diacylglycerol, in the antagonism of insulin signal transduction by saturated fatty acids. J. Biol. Chem. 278, 10297–10303 (2003).
  • Stratford S, Dewald D, Summers S. Ceramide dissociates 3’-phosphoinositide production from pleckstrin homology domain translocation. Biochem. J. 354, 359–368 (2001).
  • Stratford S, Hoehn K, Liu F, Summers S. Regulation of insulin action by ceramide: dual mechanisms linking ceramide accumulation to the inhibition of Akt/protein kinase B. J. Biol. Chem. 279, 36608–36615 (2004).
  • Salinas M, Lopez-Valdaliso R, Martin D, Alvarez A, Cuadrado A. Inhibition of PKB/Akt1 by C2-ceramide involves activation of ceramide-activated protein phosphatase in PC12 cells. Mol. Cell. Neurosci. 15, 156–169 (2000).
  • Zinda M, Vlahos C, Lai M. Ceramide induces the dephosphorylation and inhibition of constitutively activated Akt in PTEN negative U87mg cells. Biochem. Biophys. Res. Commun. 280, 1107–1115 (2001).
  • Hu W, Ross J, Geng T, Brice SE, Cowart LA. Differential regulation of dihydroceramide desaturase by palmitate versus monounsaturated fatty acids: implications for insulin resistance. J. Biol. Chem. 286(19), 16596-16605 (2011).
  • Yu C, Chen Y, Cline G et al. Mechanism by which fatty acids inhibit insulin activation of insulin receptor substrate-1 (IRS1)-associated phosphatidylinositol 3-kinase activity in muscle. J. Biol. Chem. 277(52), 50230–50236 (2002).
  • Ross J, Hu W, Rosen B, Snider A, Obeid L, Cowart L. Sphingosine kinase 1 is regulated by peroxisome proliferator-activated receptor alpha in response to free fatty acids and is essential for skeletal muscle interleukin-6 production and signaling in diet-induced obesity. J. Biol. Chem. 288(31), 22193–22206 (2013).
  • Prevention CFDCA. National Diabetes Fact Sheet: National Estimates and General Information on Diabetes and Prediabetes in the United States, 2011. US Department of Health and Human Services, Centers for Disease Control and Prevention, Atlanta, GA, USA (2011).
  • Kovacic JC, Castellano JM, Farkouh ME, Fuster V. The relationships between cardiovascular disease and diabetes: focus on pathogenesis. Endocrinol. Metab. Clin. North. Am. 43(1), 41–57 (2014).
  • Baranowski M, Gorski J. Heart sphingolipids in health and disease. Adv. Exp. Med. Biol. 721, 41–56 (2011).
  • Russo SB, Ross JS, Cowart LA. Sphingolipids in obesity, Type 2 diabetes, and metabolic disease. Handb. Exp. Pharmacol. 216, 373–401 (2013).
  • Lago RM, Singh PP, Nesto RW. Nat. Clin. Pract. Endorinol. Metab. 3(10), 667 (2007).
  • Summers SA, Nelson DH. A role for sphingolipids in producing the common features of Type 2 diabetes, metabolic syndrome X, and Cushing’s syndrome. Diabetes 54(3), 591–602 (2005).
  • Kerage D, Brindley DN, Hemmings DG. Review: novel insights into the regulation of vascular tone by sphingosine 1-phosphate. Placenta 35S, S86–S92 (2014).
  • Alewijnse AE, Peters SL. Sphingolipid signalling in the cardiovascular system: good, bad or both? Eur. J. Pharmacol 585(2–3), 292–302 (2008).
  • Reibel DK, O’rourke B, Foster KA, Hutchinson H, Uboh CE, Kent RL. Altered phospholipid metabolism in pressureoverload hypertrophied hearts. Am. J. Physiol. 250(Pt 2), H1–H6 (1986).
  • Errami M, Galindo CL, Tassa AT, Dimaio JM, Hill JA, Garner HR. Doxycycline attenuates isoproterenol- and transverse aortic banding-induced cardiac hypertrophy in mice. J. Pharmacol. Exp. Ther. 324(3), 1196–1203 (2008).
  • He L, Kim T, Long Q et al. Carnitine palmitoyltransferase-1b deficiency aggravates pressure overload-induced cardiac hypertrophy caused by lipotoxicity. Circulation 126(14), 1705–1716 (2012).
  • Russo SB, Baicu CF, Van Laer A et al. Ceramide synthase 5 mediates lipid-induced autophagy and hypertrophy in cardiomyocytes. J. Clin. Invest. 122(11), 3919–3930 (2012).
  • Das M, Das DK. Lipid raft in cardiac health and disease. Curr. Cardiol. Rev. 5(2), 105–111 (2009).
  • Rodriguez-Calvo R, Serrano L, Barroso E et al. Peroxisome proliferator-activated receptor alpha down-regulation is associated with enhanced ceramide levels in age-associated cardiac hypertrophy. J. Gerontol. A. Biol. Sci. Med. Sci. 62(12), 1326–1336 (2007).
  • Liu L, Shi X, Bharadwaj KG et al. DGAT1 expression increases heart triglyceride content but ameliorates lipotoxicity. J. Biol. Chem. 284(52), 36312 (2009).
  • Weber C, Noels H. Atherosclerosis: current pathogenesis and therapeutic options. Nat. Med. 17(11), 1410–1422 (2011).
  • Jiang XC, Goldberg IJ, Park TS. Sphingolipids and cardiovascular diseases: lipoprotein metabolism, atherosclerosis and cardiomyopathy. Adv. Exp. Med. Biol. 721, 19–39 (2011).
  • Hammad SM. Blood sphingolipids in homeostasis and pathobiology. Adv. Exp. Med. Biol. 721, 57–66 (2011).
  • Jiang XC, Liu J. Sphingolipid metabolism and atherosclerosis. Handb. Exp. Pharmacol (216), 133–146 (2013).
  • Jiang XC, Paultre F, Pearson TA et al. Plasma sphingomyelin level as a risk factor for coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 20(12), 2614–2618 (2000).
  • Hoff HF, Morton RE. Lipoproteins containing apoB extracted from human aortas. Structure and function. Ann. NY Acad. Sci. 454, 183–194 (1985).
  • Guyton JR, Klemp KF. Development of the lipid-rich core in human atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 16(1), 4–11 (1996).
  • Schissel SL, Tweedie-Hardman J, Rapp JH, Graham G, Williams KJ, Tabas I. Rabbit aorta and human atherosclerotic lesions hydrolyze the sphingomyelin of retained low-density lipoprotein. Proposed role for arterialwall sphingomyelinase in subendothelial retention and aggregation of atherogenic lipoproteins. J. Clin. Invest. 98(6), 1455–1464 (1996).
  • Schissel SL, Jiang X, Tweedie-Hardman J et al. Secretory sphingomyelinase, a product of the acid sphingomyelinase gene, can hydrolyze atherogenic lipoproteins at neutral pH. Implications for atherosclerotic lesion development. J. Biol. Chem. 273(5), 2738–2746 (1998).
  • Jeong T, Schissel SL, Tabas I, Pownall HJ, Tall AR, Jiang X. Increased sphingomyelin content of plasma lipoproteins in apolipoprotein E knockout mice reflects combined production and catabolic defects and enhances reactivity with mammalian sphingomyelinase. J. Clin. Invest. 101(4), 905–912 (1998).
  • Sattler KJ, Elbasan S, Keul P et al. Sphingosine 1-phosphate levels in plasma and HDL are altered in coronary artery disease. Basic Res. Cardiol 105(6), 821–832 (2010).
  • Hammad SM, Crellin HG, Wu BX, Melton J, Anelli V, Obeid LM. Dual and distinct roles for sphingosine kinase 1 and sphingosine 1 phosphate in the response to inflammatory stimuli in RAW macrophages. Prostaglandins. Other. Lipid. Mediat. 85(3–4), 107–114 (2008).
  • Skoura A, Michaud J, Im DS et al. Sphingosine-1-phosphate receptor-2 function in myeloid cells regulates vascular inflammation and atherosclerosis. Arterioscler. Thromb. Vasc. Biol 31(1), 81–85 (2011).
  • Wang F, Okamoto Y, Inoki I et al. Sphingosine-1-phosphate receptor-2 deficiency leads to inhibition of macrophage proinflammatory activities and atherosclerosis in apoE-deficient mice. J. Clin. Invest. 120(11), 3979–3995 (2010).
  • Rhainds D, Bourgeois P, Bourret G, Huard K, Falstrault L, Brissette L. Localization and regulation of SR-BI in membrane rafts of HepG2 cells. J. Cell. Sci. 117(Pt 15), 3095–3105 (2004).
  • Keul P, Lucke S, Von Wnuck Lipinski K et al. Sphingosine-1-phosphate receptor 3 promotes recruitment of monocyte/ macrophages in inflammation and atherosclerosis. Circ. Res. 108(3), 314–323 (2011).
  • Keul P, Tolle M, Lucke S et al. The sphingosine-1-phosphate analogue FTY720 reduces atherosclerosis in apolipoprotein E-deficient mice. Arterioscler. Thromb. Vasc. Biol. 27(3), 607–613 (2007).
  • Nofer JR, Bot M, Brodde M et al. FTY720, a synthetic sphingosine 1 phosphate analogue, inhibits development of atherosclerosis in low-density lipoprotein receptor-deficient mice. Circulation 115(4), 501–508 (2007).
  • Levkau B. Cardiovascular effects ofsphingosine-1-phosphate (S1P). Handb.Exp. Pharmacol. 216, 147–170 (2013).
  • Bielawska AE, Shapiro JP, Jiang L et al. Ceramide is involved in triggering of cardiomyocyte apoptosis induced by ischemia and reperfusion. Am. J. Pathol. 151(5), 1257 (1997).
  • Zhang DX, Fryer RM, Hsu AK et al. Production and metabolism of ceramide in normal and ischemic-reperfused myocardium of rats. Basic. Res. Cardiol 96(3), 267–274 (2001).
  • Cordis GA, Yoshida T, Das DK. HPTLC analysis of sphingomylein, ceramide and sphingosine in ischemic/reperfused rat heart. J. Pharm. Biomed. Anal. 16(7), 1189–1193 (1998).
  • Beresewicz A, Dobrzyn A, Gorski J. Accumulation of specific ceramides in ischemic/reperfused rat heart; effect of ischemic preconditioning. J. Physiol. Pharmacol. 53(3), 371–382 (2002).
  • Argaud L, Prigent AF, Chalabreysse L, Loufouat J, Lagarde M, Ovize M. Ceramide in the antiapoptotic effect of ischemic preconditioning. Am. J. Physiol. Heart. Circ. Physiol. 286(1), H246–H251 (2004).
  • Hernandez OM, Discher DJ, Bishopric NH, Webster KA. Rapid activation of neutral sphingomyelinase by hypoxiareoxygenation of cardiac myocytes. Circ. Res. 86(2), 198–204 (2000).
  • Karliner JS, Honbo N, Summers K, Gray MO, Goetzl EJ. The lysophospholipids sphingosine-1-phosphate and lysophosphatidic acid enhance survival during hypoxia in neonatal rat cardiac myocytes. J. Mol. Cell. Cardiol. 33(9), 1713–1717 (2001).
  • Lecour S, Smith RM, Woodward B, Opie LH, Rochette L, Sack MN. Identification of a novel role for sphingolipid signaling in TNF alpha and ischemic preconditioning mediated cardioprotection. J. Mol. Cell. Cardiol. 34(5), 509–518 (2002).
  • Jin ZQ, Zhou HZ, Zhu P et al. Cardioprotection mediated by sphingosine-1-phosphate and ganglioside GM-1 in wild-type and PKC epsilon knockout mouse hearts. Am. J. Physiol. Heart. Circ. Physiol. 282(6), H1970–H1977 (2002).
  • Knapp M, Zendzian-Piotrowska M, Blachnio-Zabielska A, Zabielski P, Kurek K, Gorski J. Myocardial infarction differentially alters sphingolipid levels in plasma, erythrocytes and platelets of the rat. Basic. Res. Cardiol 107(6), 294 (2012).
  • Knapp M, Baranowski M, Czarnowski D et al. Plasma sphingosine-1-phosphate concentration is reduced in patients with myocardial infarction. Med. Sci. Monit. 15(9), CR490–CR493 (2009).
  • Jin ZQ, Karliner JS, Vessey DA. Ischaemic postconditioning protects isolated mouse hearts against ischaemia/reperfusion injury via sphingosine kinase isoform-1 activation. Cardiovasc. Res. 79(1), 134–140 (2008).
  • Tao R, Zhang J, Vessey DA, Honbo N, Karliner JS. Deletion of the sphingosine kinase-1 gene influences cell fate during hypoxia and glucose deprivation in adult mouse cardiomyocytes. Cardiovasc. Res. 74(1), 56–63 (2007).
  • Zhang J, Honbo N, Goetzl EJ, Chatterjee K, Karliner JS, Gray MO. Signals from Type 1 sphingosine 1-phosphate receptors enhance adult mouse cardiac myocyte survival during hypoxia. Am. J. Physiol. Heart. Circ. Physiol. 293(5), H3150–H3158 (2007).
  • Means CK, Xiao CY, Li Z et al. Sphingosine 1-phosphate S1P2 and S1P3 receptor-mediated Akt activation protects against in vivo myocardial ischemia-reperfusion injury. Am. J. Physiol. Heart. Circ. Physiol. 292(6), H2944–H2951 (2007).
  • Theilmeier G, Schmidt C, Herrmann J et al. High-density lipoproteins and their constituent, sphingosine-1-phosphate, directly protect the heart against ischemia/reperfusion injury in vivo via the S1P3 lysophospholipid receptor. Circulation 114(13), 1403 (2006).
  • Means CK, Brown JH. Sphingosine-1-phosphate receptor signalling in the heart. Cardiovasc. Res. 82(2), 193–200 (2009).
  • Guha A, Harmancey R, Taegtmeyer H. Nonischemic heart failure in diabetes mellitus. Curr. Opin. Cardiol. 23(3), 241 (2008).
  • Boudina S, Abel ED. Diabetic cardiomyopathy, causes and effects. Rev. Endocr. Metab. Disord. 11(1), 31–39 (2010).
  • Baranowski M, Blachnio-Zabielska A, Hirnle T et al. Myocardium of Type 2 diabetic and obese patients is characterized by alterations in sphingolipid metabolic enzymes but not by accumulation of ceramide. J. Lipid. Res. 51(1), 74–80 (2010).
  • Yagyu H, Chen G, Yokoyama M et al. Lipoprotein lipase (LpL) on the surface of cardiomyocytes increases lipid uptake and produces a cardiomyopathy. J. Clin. Invest. 111(3), 419 (2003).
  • Dobrzyn P, Dobrzyn A, Miyazaki M, Ntambi JM. Loss of stearoyl-CoA desaturase 1 rescues cardiac function in obese leptin-deficient mice. J. Lipid. Res. 51(8), 2202 (2010).
  • Russo SB, Tidhar R, Futerman AH, Cowart LA. Myristate-derived d16:0-sphingolipids constitute a cardiac sphingolipid pool with distinct synthetic routes and functional properties. J. Biol. Chem. 10288(19) 13397–13409 (2013).
  • Drosatos K, Bharadwaj KG, Lymperopoulos A et al. Cardiomyocyte lipids impair beta-adrenergic receptor function via PKC activation. Am. J. Physiol. Endocrinol. Metab. 300(3), E489 (2011).
  • Wang J, Zhen L, Klug MG, Wood D, Wu X, Mizrahi J. Involvement of caspase 3- and 8-like proteases in ceramideinduced apoptosis of cardiomyocytes. J. Card. Fail. 6(3), 243 (2000).
  • Cnop M, Hannaert JC, Hoorens A, Eizirik DL, Pipeleers DG. Inverse relationship between cytotoxicity of free fatty acids in pancreatic islet cells and cellular triglyceride accumulation. Diabetes 50(8), 1771 (2001).
  • Baranowski M, Blachnio A, Zabielski P, Gorski J. PPARalpha agonist induces the accumulation of ceramide in the heart of rats fed high-fat diet. J. Physiol. Pharmacol. 58(1), 57 (2007).
  • Holland WL, Miller RA, Wang ZV et al. Receptor-mediated activation of ceramidase activity initiates the pleiotropic actions of adiponectin. Nat. Med. 17(1), 55 (2011).
  • Ma MM, Chen JL, Wang GG et al. Sphingosine kinase 1 participates in insulin signalling and regulates glucose metabolism and homeostasis in KK/Ay diabetic mice. Diabetologia 50(4), 891 (2007).
  • Robert P, Tsui P, Laville MP et al. EDG1 receptor stimulation leads to cardiac hypertrophy in rat neonatal myocytes. J. Mol. Cell. Cardiol. 33(9), 1589 (2001).
  • Tessari F, Travagli RA, Zanoni R, Prosdocimi M. Effects of long-term diabetes and treatment with gangliosides on cardiac sympathetic innervation: a biochemical and functional study in mice. J. Diabet. Complications 2(1), 34 (1988).
  • Prosdocimi M, Paro M, Travagli RA, Tessari F. Alterations of the vegetative nervous system, experimental diabetes and pharmacological use of gangliosides. Funct. Neurol. 2(4), 559 (1987).
  • Machado M, Marques-Vidal P, Cortez-Pinto H. Hepatic histology in obese patients undergoing bariatric surgery. J. Hepatol. 45, 600–606 (2006).
  • Kim C, Younossi Z. Nonalcoholic fatty liver disease: a manifestation of the metabolic syndrome. Cleve. Clin. J. Med. 75, 721–728 (2008).
  • Clark J, Brancati F, Diehl A. The prevalence and etiology of elevated aminotransferase levels in the United States. Am. J. Gastroenterol. 98, 960–967 (2003).
  • Neuschwander-Tetri B, Caldwell S. Nonalcoholic steatohepatitis: summary of an AASLD Single Topic Conference. Hepatology 37, 1202–1219 (2003).
  • Kneeman J, Misdraji J, Corey K. Secondary causes of nonalcoholic fatty liver disease. Therap. Adv. Gastroenterol. 5(3), 199–207 (2012).
  • Szendroedi J. Ectopic lipids and organ function. Curr. Opin. Lipidol. 20, 50–56 (2009).
  • Duval C, Thissen U, Keshtkar S et al. Adipose tissue dysfunction signals progression of hepatic steatosis towards nonalcoholic steatohepatitis in C57Bl/6 mice. Diabetes 59(12), 3181–3191 (2010).
  • Coleman R, Lee D. Enzymes of triacylglycerol synthesis and their regulation. Prog. Lipid. Res. 43, 134–176 (2004).
  • Yosuke O, Seki E, Kodama Y et al. Acid sphingomyelinase regulates glucose and lipid metabolism in hepatocytes through Akt activation and AMP-activated protein kinase suppression. FASEB. J. 25(4), 1133–1144 (2011).
  • Roden M, Stingl H, Chandramouli V et al. Effects of free fatty acid elevation on postabsorptive endogenous glucose production and gluconeogenesis in humans. Diabetes 49, 701–707 (2000).
  • Boden G, Cheung P, Stein T, Kresge K, Mozzoli M. FFA cause hepatic insulin resistance by inhibiting insulin suppression of glycogenolysis. J. Physiol. Endocrinol. Metab. 283, e12–e19 (2002).
  • Preiss B, Sattar N. Non-alcoholic fatty liver disease: an overview of prevalence, diagnosis, pathogenesis, and treatment considerations. Clin. Sci. (London) 115, 141–150 (2008).
  • Bijl N, Sokolovic M, Vrins C et al. Modulation of glycosphingolipid metabolism significantly improves hepatic insulin sensitivity and reverses hepatic steatosis in mice. Hepatology 50(5), 1431–1441 (2009).
  • Deevska G, Rozenova K, Giltiay N et al. Acid sphingomyelinase defiency prevents diet-induced hepatic triacylglycerol accumulaion and hyperglycemia. J. Biol. Chem. 284, 8359–8368 (2009).
  • Yang G, Badeanlou L, Bielawski J, Roberts A, Hannun Y, Samad F. Central role of ceramide biosynthesis in body weight regulation, energy metabolism and the metabolic syndrome. Am. J. Physiol. Endocrinol. Metab. 297, e211–e224 (2009).
  • Park J, Park W, Kuperman Y, Boura-Halfon S, Pewzner-Jung Y, Futerman A. Ablation of very long acyl chain sphingolipids causes hepatic insulin resistance in mice due to altered detergent-resistant membranes. Hepatology 57(2), 525–532 (2013).
  • Brice SE, Cowart LA. Sphingolipid metabolism and analysis in metabolic disease. Adv. Exp. Med. Biol. 721, 1–17 (2011).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.