3,377
Views
1
CrossRef citations to date
0
Altmetric
Review

The gut microbiome and potential implications for early-onset colorectal cancer

ORCID Icon & ORCID Icon
Article: CRC25 | Received 24 Apr 2020, Accepted 18 Jun 2020, Published online: 13 Oct 2020

References

  • HowladerN, NooneAM, KrapchoMet al.SEER cancer statistics review, 1975–2013. Based on November 2015 SEER data submission, posted to the SEER web site, April 2016. National Cancer Institute, MD, USA (2016). https://seer.cancer.gov/archive/csr/1975_2013/
  • American Cancer Society. Cancer statistics center. http://cancerstatisticscenter.cancer.org
  • SiegelRL, MillerKD, FedewaSAet al.Colorectal cancer statistics, 2017. CA Cancer J. Clin.67(3), 177–193 (2017).
  • DoubeniCA. The impact of colorectal cancer screening on the US population: is it time to celebrate?Cancer120(18), 2810–2813 (2014).
  • LarsenIK, BrayF. Trends in colorectal cancer incidence in Norway 1962–2006: an interpretation of the temporal patterns by anatomic subsite. Int. J. Cancer126(3), 721–732 (2010).
  • PatelP, DeP. Trends in colorectal cancer incidence and related lifestyle risk factors in 15-49-year-olds in Canada, 1969–2010. Cancer Epidemiol.42, 90–100 (2016).
  • YoungJP, WinAK, RostyCet al.Rising incidence of early-onset colorectal cancer in Australia over two decades: report and review. J. Gastroenterol. Hepatol.30(1), 6–13 (2015).
  • YeoH, BetelD, AbelsonJS, ZhengXE, YantissR, ShahMA. Early-onset colorectal cancer is distinct from traditional colorectal cancer. Clin. Colorectal Cancer16(4), 293–299.e296 (2017).
  • MauriG, Sartore-BianchiA, RussoAG, MarsoniS, BardelliA, SienaS. Early-onset colorectal cancer in young individuals. Mol. Oncol.13(2), 109–131 (2019).
  • HofsethLJ, HebertJR, ChandaAet al.Early-onset colorectal cancer: initial clues and current views. Nat. Rev. Gastroenterol. Hepatol.17(6), 352–364 (2020).
  • MorkME, YouYN, YingJet al.High prevalence of hereditary cancer syndromes in adolescents and young adults with colorectal cancer. J. Clin. Oncol.33(31), 3544–3549 (2015).
  • SenderR, FuchsS, MiloR. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol.14(8), e1002533 (2016).
  • Group NHW, PetersonJ, GargesSet al.The NIH human microbiome project. Genome Res.19(12), 2317–2323 (2009).
  • ScherJU, AbramsonSB. The microbiome and rheumatoid arthritis. Nat. Rev. Rheumatol.7(10), 569–578 (2011).
  • FosterJA, McveyNeufeld KA. Gut-brain axis: how the microbiome influences anxiety and depression. Trends Neurosci.36(5), 305–312 (2013).
  • DevarajS, HemarajataP, VersalovicJ. The human gut microbiome and body metabolism: implications for obesity and diabetes. Clin. Chem.59(4), 617–628 (2013).
  • KoenigJE, SporA, ScalfoneNet al.Succession of microbial consortia in the developing infant gut microbiome. Proc. Natl Acad. Sci. USA108(Suppl.1), S4578–S4585 (2011).
  • ScholtensPA, OozeerR, MartinR, AmorKB, KnolJ. The early settlers: intestinal microbiology in early life. Annu. Rev. Food Sci. Technol.3, 425–447 (2012).
  • Rajilic-StojanovicM, HeiligHG, MolenaarDet al.Development and application of the human intestinal tract chip, a phylogenetic microarray: analysis of universally conserved phylotypes in the abundant microbiota of young and elderly adults. Environ. Microbiol.11(7), 1736–1751 (2009).
  • BrooksAW, PriyaS, BlekhmanR, BordensteinSR. Gut microbiota diversity across ethnicities in the United States. PLoS Biol.16(12), e2006842 (2018).
  • OttmanN, SmidtH, DeVos WM, BelzerC. The function of our microbiota: who is out there and what do they do?Front. Cell. Infect. Microbiol.2, 104 (2012).
  • DahmusJD, KotlerDL, KastenbergDM, KistlerCA. The gut microbiome and colorectal cancer: a review of bacterial pathogenesis. J. Gastrointest. Oncol.9(4), 769–777 (2018).
  • SmithPM, HowittMR, PanikovNet al.The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science341(6145), 569–573 (2013).
  • MallaMA, DubeyA, KumarA, YadavS, HashemA, AbdAllah EF. Exploring the human microbiome: the potential future role of next-generation sequencing in disease diagnosis and treatment. Front. Immunol.9, 2868 (2018).
  • Jahani-SherafatS, AlebouyehM, MoghimS, AhmadiAmoli H, Ghasemian-SafaeiH. Role of gut microbiota in the pathogenesis of colorectal cancer; a review article. Gastroenterol. Hepatol. Bed Bench11(2), 101–109 (2018).
  • EadenJA, AbramsKR, MayberryJF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut48(4), 526–535 (2001).
  • DaneseS, MantovaniA. Inflammatory bowel disease and intestinal cancer: a paradigm of the Yin-Yang interplay between inflammation and cancer. Oncogene29(23), 3313–3323 (2010).
  • ArthurJC, Perez-ChanonaE, MuhlbauerMet al.Intestinal inflammation targets cancer-inducing activity of the microbiota. Science338(6103), 120–123 (2012).
  • ChanDS, LauR, AuneDet al.Red and processed meat and colorectal cancer incidence: meta-analysis of prospective studies. PLoS ONE6(6), e20456 (2011).
  • Garcia-VillatoroEL, DelucaJaA, CallawayESet al.Effects of high-fat diet and intestinal aryl hydrocarbon receptor deletion on colon carcinogenesis. Am. J. Physiol. Gastrointest. Liver Physiol.318(3), G451–G463 (2020).
  • KimE, CoelhoD, BlachierF. Review of the association between meat consumption and risk of colorectal cancer. Nutr. Res.33(12), 983–994 (2013).
  • BeyazS, ManaMD, RoperJet al.High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature531(7592), 53–58 (2016).
  • DermadiD, ValoS, OllilaSet al.Western diet deregulates bile acid homeostasis, cell proliferation, and tumorigenesis in colon. Cancer Res.77(12), 3352–3363 (2017).
  • KodaM, SulkowskaM, Kanczuga-KodaL, SurmaczE, SulkowskiS. Overexpression of the obesity hormone leptin in human colorectal cancer. J. Clin. Pathol.60(8), 902–906 (2007).
  • YangJ, McdowellA, KimEKet al.Development of a colorectal cancer diagnostic model and dietary risk assessment through gut microbiome analysis. Exp. Mol. Med.51(10), 1–15 (2019).
  • DeFilippo C, CavalieriD, DiPaola Met al.Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc. Natl Acad. Sci. USA107(33), 14691–14696 (2010).
  • ShenQ, ChenYA, TuohyKM. A comparative in vitro investigation into the effects of cooked meats on the human faecal microbiota. Anaerobe16(6), 572–577 (2010).
  • Attene-RamosMS, WagnerED, PlewaMJ, GaskinsHR. Evidence that hydrogen sulfide is a genotoxic agent. Mol. Cancer Res.4(1), 9–14 (2006).
  • MagalhaesB, PeleteiroB, LunetN. Dietary patterns and colorectal cancer: systematic review and meta-analysis. Eur. J. Cancer Prev.21(1), 15–23 (2012).
  • NguyenLH, MaW, WangDDet al.Association between sulfur-metabolizing bacterial communities in stool and risk of distal colorectal cancer in men. Gastroenterol.158(5), 1313–1325(2020).
  • ChoS, ShinA, ParkSK, ShinHR, ChangSH, YooKY. Alcohol drinking, cigarette smoking and risk of colorectal cancer in the korean multi-center cancer cohort. J. Cancer Prev.20(2), 147–152 (2015).
  • SalaspuroM. Bacteriocolonic pathway for ethanol oxidation: characteristics and implications. Ann. Med.28(3), 195–200 (1996).
  • TsuruyaA, KuwaharaA, SaitoYet al.Major anaerobic bacteria responsible for the production of carcinogenic acetaldehyde from ethanol in the colon and rectum. Alcohol Alcohol.51(4), 395–401 (2016).
  • DejeaCM, WickEC, HechenbleiknerEMet al.Microbiota organization is a distinct feature of proximal colorectal cancers. Proc. Natl Acad. Sci. USA111(51), 18321–18326 (2014).
  • GursoyUK, PollanenM, KononenE, UittoVJ. Biofilm formation enhances the oxygen tolerance and invasiveness of Fusobacterium nucleatum in an oral mucosa culture model. J. Periodontol.81(7), 1084–1091 (2010).
  • BrookI. Fusobacterial infections in children. Curr. Infect. Dis. Rep.15(3), 288–294 (2013).
  • HanYW. Fusobacterium nucleatum: a commensal-turned pathogen. Curr. Opin. Microbiol.23, 141–147 (2015).
  • KosticAD, GeversD, PedamalluCSet al.Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res.22(2), 292–298 (2012).
  • CastellarinM, WarrenRL, FreemanJDet al.Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res.22(2), 299–306 (2012).
  • TaharaT, YamamotoE, SuzukiHet al.Fusobacterium in colonic flora and molecular features of colorectal carcinoma. Cancer Res.74(5), 1311–1318 (2014).
  • YuT, GuoF, YuYet al.Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell170(3), 548–563 e516 (2017).
  • YanX, LiuL, LiH, QinH, SunZ. Clinical significance of Fusobacterium nucleatum, epithelial–mesenchymal transition, and cancer stem cell markers in stage III/IV colorectal cancer patients. Onco. Targets Ther.10, 5031–5046 (2017).
  • MimaK, SukawaY, NishiharaRet al.Fusobacterium nucleatum and T cells in colorectal carcinoma. JAMA Oncol.1(5), 653–661 (2015).
  • MehtaRS, NishiharaR, CaoYet al.Association of dietary patterns with risk of colorectal cancer subtypes classified by fusobacterium nucleatum in tumor tissue. JAMA Oncol.3(7), 921–927 (2017).
  • FengYL, ShuL, ZhengPFet al.Dietary patterns and colorectal cancer risk: a meta-analysis. Eur. J. Cancer Prev.26(3), 201–211 (2017).
  • RubinsteinMR, WangX, LiuW, HaoY, CaiG, HanYW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/beta-catenin signaling via its FadA adhesin. Cell Host Microbe14(2), 195–206 (2013).
  • RubinsteinMR, BaikJE, LaganaSMet al.Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/beta-catenin modulator Annexin A1. EMBO Rep.20(4), e47638 (2019).
  • ChenY, PengY, YuJet al.Invasive Fusobacterium nucleatum activates beta-catenin signaling in colorectal cancer via a TLR4/P-PAK1 cascade. Oncotarget8(19), 31802–31814 (2017).
  • YangY, WengW, PengJet al.Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating Toll-like receptor 4 signaling to nuclear factor-kappaB, and up-regulating expression of microRNA-21. Gastroenterology152(4), 851–866 e824 (2017).
  • KosticAD, ChunE, RobertsonLet al.Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe14(2), 207–215 (2013).
  • BullmanS, PedamalluCS, SicinskaEet al.Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science358(6369), 1443–1448 (2017).
  • MimaK, NishiharaR, QianZRet al.Fusobacterium nucleatum in colorectal carcinoma tissue and patient prognosis. Gut65(12), 1973–1980 (2016).
  • HuangJY, LeeSM, MazmanianSK. The human commensal Bacteroides fragilis binds intestinal mucin. Anaerobe17(4), 137–141 (2011).
  • ZamaniS, HesamShariati S, ZaliMRet al.Detection of enterotoxigenic Bacteroides fragilis in patients with ulcerative colitis. Gut Pathog.9, 53 (2017).
  • ToprakNU, YagciA, GulluogluBMet al.A possible role of Bacteroides fragilis enterotoxin in the aetiology of colorectal cancer. Clin. Microbiol. Infect.12(8), 782–786 (2006).
  • BoleijA, HechenbleiknerEM, GoodwinACet al.The Bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin. Infect. Dis.60(2), 208–215 (2015).
  • WuS, MorinPJ, MaouyoD, SearsCL. Bacteroides fragilis enterotoxin induces c-Myc expression and cellular proliferation. Gastroenterology124(2), 392–400 (2003).
  • WuS, RheeKJ, AlbesianoEet al.A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat. Med.15(9), 1016–1022 (2009).
  • DejeaCM, FathiP, CraigJMet al.Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science359(6375), 592–597 (2018).
  • LvY, YeT, WangHPet al.Suppression of colorectal tumorigenesis by recombinant Bacteroides fragilis enterotoxin-2 in vivo. World J. Gastroenterol.23(4), 603–613 (2017).
  • SittipoP, LobiondaS, ChoiK, SariIN, KwonHY, LeeYK. Toll-like receptor 2-mediated suppression of colorectal cancer pathogenesis by polysaccharide a from Bacteroides fragilis. Front. Microbiol.9, 1588 (2018).
  • BoleijA, Van GelderMM, SwinkelsDW, TjalsmaH. Clinical Importance of Streptococcus gallolyticus infection among colorectal cancer patients: systematic review and meta-analysis. Clin. Infect. Dis.53(9), 870–878 (2011).
  • SillanpaaJ, NallapareddySR, SinghKV, FerraroMJ, MurrayBE. Adherence characteristics of endocarditis-derived Streptococcus gallolyticus ssp. gallolyticus (Streptococcus bovis biotype I) isolates to host extracellular matrix proteins. FEMS Microbiol. Lett.289(1), 104–109 (2008).
  • AbdulamirAS, HafidhRR, BakarFA. Molecular detection, quantification, and isolation of Streptococcus gallolyticus bacteria colonizing colorectal tumors: inflammation-driven potential of carcinogenesis via IL-1, COX-2, and IL-8. Mol. Cancer9, 249 (2010).
  • KumarR, HeroldJL, SchadyDet al.Streptococcus gallolyticus subsp. gallolyticus promotes colorectal tumor development. PLoS Pathog.13(7), e1006440 (2017).
  • AymericL, DonnadieuF, MuletCet al.Colorectal cancer specific conditions promote Streptococcus gallolyticus gut colonization. Proc. Natl Acad. Sci. USA115(2), E283–E291 (2018).
  • BoleijA, DutilhBE, KortmanGAet al.Bacterial responses to a simulated colon tumor microenvironment. Mol. Cell Proteomics11(10), 851–862 (2012).
  • ButtJ, BlotWJ, TerasLRet al.Antibody responses to Streptococcus gallolyticus subspecies gallolyticus proteins in a large prospective colorectal cancer cohort consortium. Cancer Epidemiol. Biomarkers Prev.27(10), 1186–1194 (2018).
  • CorreaP, HoughtonJ. Carcinogenesis of Helicobacter pylori. Gastroenterology133(2), 659–672 (2007).
  • AlfaroukKO, BashirAHH, AljarbouANet al.The possible role of Helicobacter pylori in gastric cancer and its management. Front. Oncol.9, 75 (2019).
  • MeraR, FonthamET, BravoLEet al.Long term follow up of patients treated for Helicobacter pylori infection. Gut54(11), 1536–1540 (2005).
  • MassarratS, Haj-SheykholeslamiA, MohamadkhaniAet al.Precancerous conditions after H. pylori eradication: a randomized double blind study in first degree relatives of gastric cancer patients. Arch. Iran Med.15(11), 664–669 (2012).
  • LiuIL, TsaiCH, HsuCHet al.Helicobacter pylori infection and the risk of colorectal cancer: a nationwide population-based cohort study. QJM112(10), 787–792 (2019).
  • ZumkellerN, BrennerH, ZwahlenM, RothenbacherD. Helicobacter pylori infection and colorectal cancer risk: a meta-analysis. Helicobacter11(2), 75–80 (2006).
  • GuoY, LiHY. Association between Helicobacter pylori infection and colorectal neoplasm risk: a meta-analysis based on East Asian population. J. Cancer. Res. Ther.10(Suppl.), S263–S266 (2014).
  • GellerLT, Barzily-RokniM, DaninoTet al.Potential role of intratumor bacteria in mediating tumor resistance to the chemotherapeutic drug gemcitabine. Science357(6356), 1156–1160 (2017).
  • PushalkarS, HundeyinM, DaleyDet al.The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov.8(4), 403–416 (2018).
  • RiquelmeE, ZhangY, ZhangLet al.Tumor microbiome diversity and composition influence pancreatic cancer outcomes. Cell178(4), 795–806.e712 (2019).
  • GopalakrishnanV, SpencerCN, NeziLet al.Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science359(6371), 97–103 (2018).
  • GiannakisM, MuXJ, ShuklaSAet al.Genomic correlates of immune-cell infiltrates in colorectal carcinoma. Cell Rep.15(4), 857–865 (2016).
  • LeDT, UramJN, WangHet al.PD-1 blockade in tumors with mismatch-repair deficiency. N. Engl. J. Med.372(26), 2509–2520 (2015).
  • HamadaT, ZhangX, MimaKet al.Fusobacterium nucleatum in colorectal cancer relates to immune response differentially by tumor microsatellite instability status. Cancer Immunol. Res.6(11), 1327–1336 (2018).
  • OhHJ, KimJH, BaeJM, KimHJ, ChoNY, KangGH. Prognostic impact of Fusobacterium nucleatum depends on combined tumor location and microsatellite instability status in stage II/III colorectal cancers treated with adjuvant chemotherapy. J. Pathol. Transl. Med.53(1), 40–49 (2019).
  • ZhangJ, HainesC, WatsonAJMet al.Oral antibiotic use and risk of colorectal cancer in the United Kingdom, 1989–2012: a matched case-control study. Gut68(11), 1971–1978 (2019).
  • MizunoS, MasaokaT, NaganumaMet al.Bifidobacterium-rich fecal donor may be a positive predictor for successful fecal microbiota transplantation in patients with irritable bowel syndrome. Digestion96(1), 29–38 (2017).
  • MoayyediP, SuretteMG, KimPTet al.Fecal microbiota transplantation induces remission in patients with active ulcerative colitis in a randomized controlled trial. Gastroenterology149(1), 102–109 e106 (2015).
  • Van NoodE, VriezeA, NieuwdorpMet al.Duodenal infusion of donor feces for recurrent Clostridium difficile. N. Engl. J. Med.368(5), 407–415 (2013).
  • RosshartSP, VassalloBG, AngelettiDet al.Wild mouse gut microbiota promotes host fitness and improves disease resistance. Cell171(5), 1015–1028.e1013 (2017).
  • MolskaM, RegulaJ. Potential mechanisms of probiotics action in the prevention and treatment of colorectal cancer. Nutrients11(10), 2453 (2019).
  • ChangJH, ShimYY, ChaSK, ReaneyMJ, CheeKM. Effect of Lactobacillus acidophilus KFRI342 on the development of chemically induced precancerous growths in the rat colon. J. Med. Microbiol.61(Pt 3), 361–368 (2012).
  • ZhangM, FanX, FangB, ZhuC, ZhuJ, RenF. Effects of Lactobacillus salivarius Ren on cancer prevention and intestinal microbiota in 1, 2-dimethylhydrazine-induced rat model. J. Microbiol.53(6), 398–405 (2015).
  • ZhuJ, ZhuC, GeSet al.Lactobacillus salivarius Ren prevent the early colorectal carcinogenesis in 1, 2-dimethylhydrazine-induced rat model. J. Appl. Microbiol.117(1), 208–216 (2014).
  • WanY, XinY, ZhangCet al.Fermentation supernatants of Lactobacillus delbrueckii inhibit growth of human colon cancer cells and induce apoptosis through a caspase 3-dependent pathway. Oncol. Lett.7(5), 1738–1742 (2014).
  • RafterJ, BennettM, CaderniGet al.Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am. J. Clin. Nutr.85(2), 488–496 (2007).
  • ZaharuddinL, MokhtarNM, MuhammadNawawi KN, RajaAli RA. A randomized double-blind placebo-controlled trial of probiotics in post-surgical colorectal cancer. BMC Gastroenterol.19(1), 131 (2019).
  • GhoshTS, DasM, JefferyIB, O’toolePW. Adjusting for age improves identification of gut microbiome alterations in multiple diseases. Elife9, e50240 (2020).
  • WeinbergBA, WangH, GengXet al.A comparison study of the intratumoral microbiome in younger verses older-onset colorectal cancer (COSMO CRC). J. Clin. Oncol.38(Suppl. 4), S241–S241 (2020).
  • Vich VilaA, CollijV, SannaSet al.Impact of commonly used drugs on the composition and metabolic function of the gut microbiota. Nat. Commun.11(1), 362 (2020).